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ABSTRACT 

A new algorithm is shown that converts disjoint cube 
representation of Boolean functions into fixed-polarity General- 
ized Reed-Muller Expansions (GRME). Since the known fast 
algorithm Ihal generates the GRME based on the factorization 
or thc Reed-Muller transform matrix always starts from the 
truth table (minterms) of Boolean function, then the described 
method has the advantages due to smaller required computer 
memory. Moreover, for the Boolean functions described by 
only fcw disjoint cubes the method is much more efficient than 
the fast algorithm. 

1. INTRODUCTION 
The classical approach to analysis, synthesis and testing of digital cir- 

cui~s is bascd on the description by the operators of Boolean algebra. How- 
cvcr, for many ycars, an alternative description based on the operations of 
modulo-2 arithmctic has been developed [l,  81. The algebra corresponding 
LO this sccond approach, being an example of a finite field, supports such 
familiar for digital signal processing operations as matrices, and fast 
transforms. It is obvious, that this modulo-2 algebra is the simplest case of 
a n  algebra known in the literature [I] as a finite field or Galois field algebra 
and it is why it is frequently denoted by the symbol GF (2). 

Any Boolean function can be represented in the modulo-2 algebra. 
The modulo-2 sum-of-products expression is known in the literature [I, 8, 
141 as the complement-free ring-sum or Reed-Muller expansion. In such an 
cxprcssion there is 2" possible product terms selected from the n variables 
of a Boolean function, each of the terms having only the not complemented 
variablcs of a Boolean function. By allowing the complementation of the 
input variablcs one can derive the Generalized Reed-Muller expansions 
(GRMEs) whcrc each input variable x, can appear either true throughout the 
cxpansion or complemented throughout it. It is apparent that there exist 2" 
GRMEs for a Boolean function with n variables, each with different polar- 
ity, including the positive polarity form (i.e., Reed-Muller expansion). Since 
ihc polarity of an input is constant in a GRME these expansions are termed 
fixed-polarity forms. It should be noted that for a given Boolean function 
each GRME is unique and forms a canonical form. 

Thc application of exclusive OR gates has some advantages over the 
gatcs uscd commonly in logic design. One of the reasons is that many useful 
functions have a high content of the so called linear part (EXOR part of the 
function). Some of the examples of such functions are: adders and parity 
checkers. What is more, the circuit build around the EXOR gates is easily 
tcstablc. Rcddy showed, that when the circuit is represented as a Reed- 
Mullcr cxpansion then, if only permanent stuck-at faults occur in either a 
single AND or only a single EXOR gate is faulty, only (n + 4) tests are 
rcquircd for fault-free primary inputs for an arhitrary n input Boolean func- 
tion 1121. 

2. BASIC DEFINITIONS AND PROPERTIES 
The propcrties of disjoint cube representation of Boolean functions 

used in the description of the algorithm calculating the GRME are stated. 
An algorithm that gcncrates such a representation has been shown in [41 and 
its implemenlation has been described in [5]. In what follows, the 
definitions of the RME [81 and GRME are also presented. 
Defvrition 1: The n -variable Reed-Muller expression takes the form: 

In the above definition C means summation over GF (2), and the e;, j are 
either 0 or 1 so that literal x.$ = 1 and xk = xk. 

Property 1:  The n -variable Reed-Muller expression has 2" possible product 
terms (pi term represented by symbol x )  selected from the n variables. 

Property 2: The subscript i in the piterm n; represents the decimal 
equivalent of the straight binary code (SBC) formed from the join of sym- 
bols e, ,n  , e;, - 1 , . . , e;, I ,  where the most significant bit of the SBC is e,," 
and the least significant bit of the SBC is e;, 1. 

Definition 2: The n -variable Reed-Muller expression can be represented in 
short by: 

F ( x a , x n - i , .  . . .xi ) =  '3 C, xi, 

where the meaning of the summation is exactly the same as in Definition 1. 
The next property is the consequence of Definition 1 and Definition 2. 
Property 3: The n -variable Reed-Muller expression is fully described by the 
set of all ci Reed-Muller spectral coefficients. 
Definition 3: The n -variable Generalized Reed-Muller expression takes the 
form: 

2"-1 

In the above definition means summation over GF(2). and the e::, are 
either 0, 1 ,  or - 1 so that literal x.$ = 1, x i  = X k ,  and xcl = xk. The symbol w 
denotes the polarity of the GRME. 
Property 4: The n -variable Generalized Reed-Muller expression has 2" pos- 
sible product terms (generalized piterms represented by symbol no) selected 
from then variables. 
Definition 4: The polarity number of the GRME expression denoted by w is a 
binary string computed by taking the n bit straight binary code (SBC) 
formed by writing a 0 or a 1 for each variable accordmg to whether it is used 
in affirmative or negative form respectively. 
Property 5: For a given polarity w each variable in all generalized piterms 
can be either in a f h a t i v e ,  negative form or be absent from the piterm. 
Definition 5: The n -variable Generalized Reed-Muller expression can be 
represented in short by: 

F(xn,xn-i3...,xi)= ,s G ~ P ,  

where the meaning of the summation is exactly the same as in Definition 3. 
The next property is the consequence of Definition 3 and Definition 5. 
Property 6: The n -variable Generalized Reed-Muller expression is fully 
described by the set of all ci Reed-Muller spectral coefficients. 
Definition 6: The cube of degree m is a cube that has m defined literals that 
can be either affirmative or negative (i.e., m is equal to the sum of the 
number of zeros and ones in the description of a cube). 
Let symbol p denote the number of X's in the cube (for explanation of the 
symbol X see Definition 9) and n denote the number of variables of a given 
Boolean function F. Then, n = m + p .  
Defmition 7: The cube and the piterm are of the same degree (order) when 
the number of defined literals is the same for both of them. 

Property 7: The number of piterms of z-rh order is equal to C; = [:I, where 
n is the number of variables of a Boolean function. 

Definition 8: The partial Reed-Muller spectral coefficients of an ON- cube 
cui of degree m from disjoint cube representation of a Boolean function F 
are those parts of the final Reed-Muller spectral coefficients ci that 
correspond to the contribution of the cube cui of degree m to full n -  space 
Reed-Muller spectrum of the Boolean function F described by the array of 
all the disjoint cubes. 
Property 8: Each final Reed-Muller spectral coefficient is obtained by 
adding modulo 2 all partial coefficients of all the disjoint cubes describing 
the function. 
Property 9: The number of partial Reed-Muller spectral coefficients npsc 
describing the Boolean function F is equal to the number of ON- cubes 
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describing this function times 2" 

Property 10: When the Boolean function is described by its truth tablc (a set 
of true and false minterms) then the number of partial spectral cocfficients of 
the Boolean function in this representation is equal to the sum of the numbcr 
of ON- minterms times 2". Let symbolf denote the number of false min- 
terms. Then, npsc = 2" ( 2" -f ). 
In Table 3 and 4 each row of symbols "0" and "1" next to the cube rcprcscnts 
values of partial spectral coefficients of a given cube. The order of cach of 
these coefficients is the same as the order of the pitcrm placcd in thc top of 
the column above the particular partial spectral coefficient. 

Definition 9: A cube is represented by a positional notation whcrc "0" 
corresponds to a negated literal, "1" to the affirmative literal, and "X" to the 
literal that is absent in a given cube. 

Algorithm 1 ;  Generation of GRME from disjoint cubes. 
step 1. 

step 2. 
Set a number of cubes and all piterms to a given polarity w. 

Adjust all cubes to a given polarity w. 
stcp 3. 

For each adjusted cube generate a set of all piterms that match exactly. 
Operation of exact matching starts from the piterms having the same 
order as the cube and continues for pitcrms of all smaller orders. 
If  all cubes are matched go to step 4 else repeat step 3. 

step 4. 
Add modulo 2 each column of the temporary array. The result 

describes Reed-Muller spectral coefficients of the Boolean function. 

For example, the cube XI ~ 1 x 4  is reprcscnted by 1x01. 
Defnition 10: A piterm rcP is represented by a positional notation that is the 
same as in Definition 9 for cubes. 

For example, the piterm nP2p1 = X I  x3 xy is represented by IX 10. 
Definition 11: A cube adjusted to upolurity o is such a cubc that is build of 
these litcrals of thc original cub;: that are different than the bits of the polar- 
ity w in the SBC. The same literals are marked by the symbol "-", 

The adjustment operator is defined in Table I .  When the cubc cu, = 1 X 0 1 
is adjusted to the polarity w = 0000 then it is equal to C U ? ~ '  = 1X-I, and 
when the same cube is adjusted to the polarity w = 0101 then it is cqual to 

Definition 12: A cube and a piterm of the samc degrees match exactry when 
both of them have the same literals in the same polarity w or the cubc has 
some literals that have becn created by the adjustmcnt operation and arc 
marked by "-". 
The exact matching operator is defined for bits of a piterm and a cubc in 
positional notation in Table 2. When a cube is previously adjusted to somc 
polarity then the value of the exact matching operator for the bits of the 
adjusted cube marked by symbols "-" is always 1 independently of the value 
of the piterm. It is shown in the fourth row of Table 2. From this point on it 
will be understood that the exact matching operation is dcfined by the whole 
Table 2. 

Defnition 13: A cube and a piterm of the same degrees match in all but one 
literal when there exists one literal in the piterm that is negatcd in the cubc 
and the rest of the literals in both the cube and piterm match exactly. 
The above definition can be extended to a more general case. 

Definition 14: A cube and a piterm of the same degrees match in ai[ but k 
literals when there exist k literals in the piterm that are ncgatcd in the cube 
and the rest of the literals in both cube and piterm match exactly. 
Defnition 15: A cube and a piterm of the same degree match opposing when 
all the literals in the piterm are in negation to the literals of the cube, i.e., 
literals in the cube are in the polarity w ( w means bit by bit negation ). 
Definition 16: A set of expanded piterms of a givcn cube and a piterm that 
match in all but k literals is composed of the highest order pitcrm that 
matchcs exactly and all the higher order pitcrms that are composcd of the 
literals of the piterm that matches exactly and are expanded by thc remaining 
literals of the cube in such a way that thc obtaincd piterms malch thc given 
cube in all but one, all but two, ..., all but k litcrals. 
Property 11: A set of expanded piterms from Definition 16 has 2' mcmbcrs. 

Property 12: All members of the set of expanded pitcrms match exactly the 
adjusted cube for which they are generated. 
Property 13; The order of the highest order membcr of the set of expanded 
piterm of a given cube is not higher than the order of the adjusted cube itself. 
The next property is a consequence of Property 13. 
Property 14: The number of the piterms that has to be checked for exact 
matching in order to generate the whole set of expanded piterms for an 
adjusted cube of order z is equal to C,' + C,? + C: + , , , + C;, where n is the 
number of variables of a Boolean function. It is obvious that n > z . 

3. ALGORITHM TO GENERATE GRME FROM DISJOINT CUBES 
The algorithm refers to properties and definitions from the previous 

section. It is assumed that the Boolean function is described by an m a y  of 
disjoint ON- cubes that can be generated by the algorithms prcsentcd in 14, 
51. During execution of the algorithm the values of the partial spcctral 
coefficients corresponding to adjusted cubcs are stored in a tcmporary array. 
The dimension of the array is m x 2", where m is a number of disjoint cubes 
that represent an n variable Boolean function. 

cu,0101 = 1x-  -. 

Titc detailed examplc of the execution of this algorithm is shown next. 

Example 1: An example of the calculation of Reed-Muller canonical expan- 
sion for a four variable completely specified Boolean function described by a 
sct of disjoint cubes in positional notation is shown in Table 6 and Table 7. 
In order to obtain the values of all Reed-Muller spectral Coefficients the 
columns of the partial spectral coefficients from the temporary array 
corresponding to all cubes describing a given Boolean function are added 
modulo 2. 
Let us show the execution of all steps of the algorithm simultaneously for 
both tables. First, the number of cubes is determined to be 6. The pitcrms 
for Tablc 6 are in the polarity w = 0000, and for Table 7 in the polarity 
o = 0101. For short, the piterms from both tables have the same symbols. It 
should be noticed, however, that piterm n12~  from Table 6 corresponds to 
the group_xl x g 3  x4 while piterm ~ ~ 2 3 4  from Table 7 corresponds to the 
groupxlx2x3x4,etc. 
Secondly, all the cubes are adjusted to the given polarities. The results of 
this operation for both tables are shown in Table 3. 
In the third step, the exact matching operation generates the expanded set of 
pitcrms. The result of this operation for the adjusted cubes from Table 6 is 
shown in Table 4 and Table 7 in Table 5. 

For the sake of explanation the Table 4 is rewritten to Table 6, and Table 5 
to Table 6. Let us notice that both pairs of tables content the same informa- 
tion in a different notation. First the columns cube in Table 6 and Table 7 
correspond to the cubes before adjustment (see Table 3 and Table 4). 
Secondly, the members of the set of expanded piterms from Table 5 and 
Tablc 6 are marked in Table 6 and Table 7 by 1-es accordingly. In both 
tables all the partial coefficients are given for each cube - not only those that 
have values 1 (that mark the piterms from the set of expanded piterms) but 
also the partial spectral coefficients that have values 0. 
The last step of the algorithm is the operation of addition modulo 2 of all the 
partial spectral coefficients. The result of this operation is shown in the bot- 
tom rows of Table 6 and Table 7. 

The resulting 4-variable Reed-Muller expression for Table 1 takes the form 
(the symbol "+" stands for the sum modulo 2): 

F ( X I ,  ~ 2 ,  ~ 3 ,  ~4 ) = . X I  + xz + X I  X Z + X I  ~4 + ~3 ~ 4 +  XI ~ 2 x 4  + X Z X ~  ~ 4 .  

The resulting 4-variable Generalized Reed-Muller expression for Table 2 is 
as follows (the symbol "+" has the same meaning as above): 

- -  - -  _ _  - - 
F ( X I ,  x z  , x3, x4) = 1 + X ? + X 2 X 3  +XI X2*4+X2X3 x4 

One can notice, that the original set of disjoint cubes can be taken 
directly as one possible mixed polarity Generalized Reed-Muller form [9-11] 
of the considered Boolean function. 

4. CONCLUSION 
In this paper, a new algorithm that generates any fixed-polarity GRM 

exprcssions from the disjoint cube representation of Boolean functions is 
shown. The Boolean functions are represented in the form of arrays of dis- 
joint cubes [4, 51. For each cube the appropriate partial GRME is obtained. 
By adding modulo-2 all the entries corresponding to the full set of disjoint 
cubes describing the given Boolean function its fixed-polarity GRME is 
found. This algorithm can be executed in parallel. 

The algorithm presented in this paper is similar to the algorithms for 
the calculation of Hadamard-Walsh spectra of Boolean functions developed 
previously by the authors [2, 31. It is possible also to develop similar algo- 
rithms for Arithmetic and Adding transforms [7] and for Walsh transforms 
of multiple-valued input binary functions [6]. All these transforms have been 
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rccci~~ly introduccil by ~lic authors [6, 71. Whcn the Boolean functlon has a 
;,ig, I I I I I I I ~ ) ~ ~  of IitcrAs and is dcscribcd by only few disjoint cubes then the 
~ i r ~ x ~ n t c d  algori~hin is very cfficicnt in comparison to the fast algorithm 
Ii~iscd on tile transform matrix factorization [13]. The presented algorithm 
c;m lie cxpandcd for the casc of mixed-polarity GRME [9, 101 and it is the 
~ y i i c  of the ongoing rcsearch of thc authors. 
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Table 1. Adjusunent operator between bits of a cube in positional notation and polarity in the SBC. 

I 1 1  Pitcrm I 

Table 2. Exact matching opcrator bctween bits of a cubc and a pitcrm in positional notation. 
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Table 3. Cube adjustment to polarities 0000 and 0101. Table 4. Generation of expanded set of piterms by exact matching operation. 

Table 5. Generation of expanded set of piterms by exact matching operation. 

Table 6. Reed-Muller spectral coefficients for polarity 0000. 

Table 7. Reed-Muller spectral coefficients for polarity 0101 
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