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Abstract

Although every Functional Decomposer program from the literature uses certain strategy
for finding bound and free sets of variables (variable partitioning), and/or selecting various
partial decomposition processes or auxiliary decomposition subroutines, there is nothing
published on comparing the different decomposition strategies.

By general search strategies we understand programmed methods, like for instance de-
ciding whether to execute a decomposition (and which type of), or to continue looking for
a better bound set.

Using our decomposer MULTIS we found that the general search strategies of the de-
composer influence its cost/speed tradeoff more than any other of its single components,
such as the encoding algorithm or the column minimization algorithm.

In this report we present various search strategies for MULTIS, and we also propose how
the code developer should create even more improved strategies of such type. We propose
also ways to create good heuristic search strategies for partial combinatorial problems solved
by the decomposer, such as the set covering or the graph coloring problems.
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1 INTRODUCTION

It is our experience gained from experiments with MULTIS until now, that one of the most im-
portant components to create a successful multi-level functional decomposer is the general strategy of
decomposition. By the general search strategy we understand the following:

1. how to select bound sets, free sets and sets of repeated variables at every decomposition step.

2. what types of decompositions to select at every step (serial, parallel, approximate serial, gate type
decompositions, etc.)?

3. to which sub-functions (i.e., intermediate, multi-input, multi-output logic blocks) the next decom-
position step should be applied?

4. what data to create for Column Minimization, Encoding, and Parallel Decomposition problems?

In principle, better search methods usually on one hand use some kind of heuristics, and on the
other hand, utilize some systematic search strategies, that guarantee, at least local, optima. One
convenient and popular way of describing such strategies is to use the concepts of tree searching.

In MULTIS, we have several problems that require tree searching. First, we have the entire strategy
of selecting special kinds of decompositions and selecting bound, free and shared sets of inputs variables
for them. We call it the "top-level” strategy. Next, we need such strategies for: Variable Partitioning
Problem, Column Minimization Problem, Encoding, and other.

The problem of creating complex heuristic strategies to deal with combinatorial problems is very sim-
ilar to that of general problem-solving methods in Artificial Intelligence. There are five main principles
of problem solving in Al:

e state-space approaches,

e problem decomposition,

e automatic theorem proving,
e rule-based systems,

e learning methods (neural nets, abductive nets, immunological, fuzzy logic, genetic algorithm,
genetic programming, Artificial Life, etc.).

It seems that all of the above principles can be utilized to construct the top-level search strategy for
MULTIS, as well as to construct strategies for some partial combinatorial problems of MULTIS, such
as the Column Minimization or Variable Partitioning algorithms.

Since we will limit the discussion in this report to the description of the state-space principle, the
approach used is based on the assumption that any combinatorial problem can be solved by searching
some space of states. This seems to be the best approach and, by doing so, the types of approaches to
the problems of our interest that can be considered within this framework are not greatly restricted.

There are other reasons for choosing the state-space heuristic programming approach:

e The variable partitioning problem can be reduced to integer programming, dynamic program-
ming, or graph-theoretic problems. It can also be reduced to decision diagram ordering problem.
The Column Minimization problem can also be reduced to integer programming, dynamic pro-
gramming, or graph-theoretic problems. In particular, to set covering, maximum clique, or graph
coloring. Similarly, all other combinatorial problems that have been programmed in MULTIS, or
not yet programmed but described in one of our reports. The computer programs, however, that
would result from pure, classical formulations in these approaches would not take sufficiently into
account the specific features and heuristics of the problems. Instead reducing to known models,



we will create then our own general model, and next ”personalize” this model to our problems.
Thus, instead of popular graph coloring, we will formulate the compatible graph coloring prob-
lem, and moreover, we will use heuristics based on our data to solve this problem efficiently. The
problems are rather difficult to describe using these standard formulations. The transition from
the problem formulation, in these cases, to the working version of the problem-solving program is
usually not direct and cannot be automated well. It is then difficult to experiment with strategy
changes, heuristics, etc., which is our main goal here. We aim at model’s flexibility, to be able to
easily tune it experimentally. In a sense, we are looking at "fast prototyping” possibility.

Some of these combinatorial problems (or similar problems) have been successfully solved using
the state-space heuristic programming methods. The state-space methods include some methods
that result from other AI approaches mentioned above. Some backtracking methods of integer
programming, and graph-traversing programs used in graph partitioning and clustering meth-
ods, are for instance somewhat similar to the variable partitioning problem. They can be thus
considered as special cases of the problem-solving strategies in the space of states.

Roughly speaking, several partial problems in the functional decomposition problem can be reduced
to the following general model:

The rules governing the generation of some set S, called state-space, are given. For instance
in variable partitioning, the elements of set S are called Partition Input-Output Vectors. The
Partition Input-Output Vector is the vector of sets: Set of Bound Input Variables, Set of Free
Input Variables, Set of Shared Input Variables and Set of Output Variables.

Constraint conditions exist which, if not met, would cause some set S’ € S to be deleted from
the set of potential solutions.

The solution is an element of S that meets all the problem conditions.
The cost function F is defined for all solutions.

The solution (one, more than one, or all of them) should be found such that the value of the cost
function is optimal (quasi-optimal) out of all the solutions.

A problem condition pe is a function with arguments in S and values For instance, if set S is the set
of natural numbers:

pei(z) = true — if © is @ prime number; false — otherwise

In general, a problem is then defined as an ordered triple:

P = (S,PC,F), (1)

where:

1.

2.

PC is a set of predicates on the elements of S, called problem conditions,

F is the cost function that evaluates numerically the solutions. Solution is an element of S that
satisfies all the conditions in PC.

The tree search method includes:

1.

2.

the problem P,

the constraint conditions,



3. additional solution conditions that are checked together with the problem conditions,
4. the generator of the tree,
5. the tree-searching strategy.

Additional solution conditions are defined to increase the search efficiency. Let us for instance assume
that there exists an auxiliary condition that is always satisfied when the solution conditions are satisfied,
but the auxiliary condition can be tested less expensively than the original solution conditions. In such
case the search efficiency is increased by excluding the candidates for solutions that do not satisfy this
auxiliary solution.

The additional solution conditions together with the problem conditions are called solution condi-
tions. The method is complete if it searches the entire state-space and thus assures the optimality of the
solutions. Otherwise, the method will be referred to as incomplete. Obviously, for practical examples
most of our searches will be in incomplete spaces.

Let us illustrate these ideas with the minimal covering problem which we use for several applications
in MULTIS, predominantly for the Column Minimization Problem. For instance:

1. the state-space S is a set that includes all of the subsets of the set of rows of the covering table
(rows correspond to prime implicants contained in the function [32]).

2. The solution is an element of S that covers all the columns of the function.

3. A cost function assigns the cost to each solution. The cost of a solution is the number of selected
rows. It may be also the total sum of costs of rows selected.

4. A solution (set of rows) should be found that is a solution and minimizes the cost function.
5. Additional quality functions are also defined that evaluate states and rows in the search process.

6. This process consists of successively selecting "good” rows (based on the value of the quality
function), deleting other rows that cover fewer of the matrix columns (these are the dominated
rows), and calculating the value of the cost function.

7. The cost value of each solution cover found can then be used to limit the search by backtracking.

8. This process can be viewed as a search for sets of rows in the state-space, and can be described
as a generation of a tree (solution tree) using rows as operators, sets of rows as nodes of the tree,
and solutions as terminal nodes.

A combinatorial problem of a set covering type can be either reduced to a covering table, or solved
using its original data structures.

It is well known, that the PLA minimization problem, finding vacuous variables, column minimiza-
tion, microcode optimization, data path allocation, Three Level AND/NOT Network with True Inputs
(TANT) minimization problem, factorization, test minimization and many other logic synthesis prob-
lems can be reduced to the set covering. Hence, the latter problem can be treated as a generic logic
synthests subroutine. Several efficient algorithms for this problem have been created [6, 7, 18, 22, 66, 80].
We can use the search ideas from this report to solve efficiently all these problems. Equivalently, we
believe that some of the ideas originated in these papers can be also used to extend the search framework
presented by us.

Moreover, various methods of reduction of a problem to the Set Covering Problem exist. These
methods would result in various sizes of the covering problem. By a smart approach, the problem may
still be NP-hard, but of a smaller dimension. For a particular problem then, one reduction will make
the problem practically manageable, while the other reduction will create a non-manageable problem.
This is true, for instance, when the PLA minimization problem is reduced to the set covering of the



signature cubes [Brayton] as columns of the covering table, instead of the minterms as the columns.
Similar properties exist for the Graph Coloring, Maximum Clique, and other combinatorial problems
of our interest in functional decomposer. Although the problems are still NP-hard as a class, good
heuristics allows to solve a high percent of real life problems efficiently, because of the Occam’s razor
principle.

Many other partial problems in functional decomposition can also be reduced to a class of NP-
hard combinatorial problems that can be characterized as constrained logic optimization problems.
They are described using multi-valued Boolean functions, graphs, or arrays of symbols. On these
data some constraints are formulated and some transformations are executed in order to optimize cost
functions. These problems include Boolean satisfiability, tautology, complementation, set covering [22],
clique partitioning [73], maximum clique [73], generalized clique partition, graph coloring, maximum
independent set, set partitioning, matching, variable partitioning, linear and quadratic assignment,
encoding, and others.

With respect to high importance of these problems, several different approaches have been proposed
to solve them. These approaches include:

e mathematical analysis of the problems is done in order to find as efficient as possible algorithms
(exact or approximate), or algorithms for particular sub-classes of these problems [8], in spite
of the fact that the problems are NP-hard so that no efficient (polynomial) algorithms exist for
them. For instance, the proper graph coloring problem is NP-hard, but for a non-cyclic graph
there exists a polynomial algorithm. How practical is this polynomial algorithm depends only on
how often non-cyclic graphs are met in any given area of application where the graph coloring is
used.

e special hardware accelerators are designed to speed-up the most often executed or the slowest
operations on the standard types of data used in the algorithms.

e general purpose parallel computers, like message-passing hypercubes, SIMD arrays, data flow
computers and shared memory computers are used [10].

o the ideas of Artificial Intelligence, computer learning, genetic algorithms, and neural networks are
used, also mimicking humans that solve these problems [61].

In future, we plan to use our FPGA-based Universal Hardware Accelerator from DEC, PERLE 1,
to implement a special hardware architecture that will speed up the entire functional decomposition
by speeding up the process that is repeated most often, and that contributes the most to the quality
of results (perhaps checking the column compatibility, or the set covering). We have to develop some
good respective models of our methods first.

QUESTIONS FOR SELF-EVALUATION
1. What are the main combinatorial optimization problems in Functional Decomposition?

2. What tree search problems do you know? Give examples. Why the solutions for them were
successful?

3. What are the tree search problems that are used in functional decomposition.
4. How to create a tree search program for the following problems?

(a) maximum clique generation.
(b) all cliques generation.

(c) graph coloring.



set covering.

Petrick Function.

bound set selection.

conversion from Sum-of-Products to Product-of-Sums forms and vice versa.
Satisfiability of POS formula.

finding all prime implicants.

finding all sets of vacuous variables.

parallel decomposition.

Give examples of trees and solutions in them. Give the pseudocodes of tree-searching pro-
grams based on the formulated by you methods and trees.

10



2 MULTISTRATEGICAL COMBINATORIAL PROBLEM-SOLVING
2.1 BASIC IDEAS

The goal of this section is to explain how the general objectives outlined above can be realized in
C++ programs to be included in MULTIS. Our interest is in uniform explanation and creation of
state-space tree search methods. Our goal is Fast Prototyping. It is desired that all these programs are
written in such a way that the developer of the program will be able to experiment easily with problem
description variants and create various search strategies for different tree search methods to optimize
the efficiency of the search.

The tree-searching strategy is created by selecting respective classes and values of strategy parameters.
The creation of multiple variants of a tree-searching program, that would have otherwise require weeks
of code writing and debugging, would then be possible in a shorter period of time. Some efficiency of
execution will be lost but the gain of being able to test very many variants of the algorithm will be
much more substantial. The behavior of the variants of the tree search methods will be then compared
and evaluated by the developer to create the final efficient algorithms.

Of course, these search programs will all use our basic logic design subroutines that include those that
realize operations on cubes or cube arrays, like sharp, intersection, or consensus [14, 74]. It also uses
BDD subroutines, partition subroutines, and all other partial subroutines that already exist in GUD.

2.2 DESCRIPTION OF THE SOLUTION TREE

The search strategy realizes some design task by seeking to find a set of solutions that fulfill all
problem conditions. It checks a large number of partial results and temporary solutions in the tree search
process, until finally it determines the optimality (optionally, the quasi-optimality) of the solutions. The
state-space S for a particular problem solved by the program is a set which includes all the solutions to
the problem. The elements of S are referred to as states. New states are created from previous states
by application of operators. During the realization of the search process in the state-space, a memory
structure termed solution tree, solution space, is used.

The solution tree is defined as a graph:

D = [NO,RS]

e Solution tree contains nodes from set NO, and arrows from set of arrows RS. Nodes correspond
to the stages of the solution process. (see Figure 37).

e Each arrow is a pair of nodes (n;1,n;2). Arrows are also called oriented edges. They correspond
to transitions from stages to stages of the solution process.

e An open node is the node without created children, or immediate successors. Child of child is
called grandchild. If s is a child of p then p is a parent of s. A successor is defined recursively as
a child or a successor of a child. A predecessor is defined recursively as a parent or a predecessor
of a parent.

e A semi-open node is the node with an expanded part of children, but not all of its children.
e A closed node is a node for which all its children have been already created in the tree.

e The set of all nodes corresponding to solutions will be denoted by Sg.

In the solution space we can distinguish the following sub-spaces:

e actual solution space - the space which has a representation in the computer memory.

e potential solution space - the space that can be created froom the actual space using operators
and taking into account constraints.

11



0 1 2 3
QS GS

{}{123} {1 {23  {12{3 {123} {}

Figure 1: Example of T} type tree generator of a full tree

e closed space - the space which has already been an actual space for some time, but has been
next removed from the memory (with except of the solutions).

The search process grows the actual space at the expense of the potential space, and grows the closed
space at the expense of the actual space. The actual space is permanently modified by adding new tree
segments and removing other segments. Sometimes the closed space is saved in hard disk, and re-used
only if necessary.

The way to expand the space, called the search strategy, is determined by: (1) the way the open and
semi-open nodes are selected, (2) the way the operators applied to them are selected, (3) the way the
termination of search procedure is determined, (3) the conditions for which the new search process is
started, and (4) the way the parts of the space are removed from the memory. By ”opening a node”
we will mean creating successors of this node.

The arrows are labelled by the descriptors of the operators. Each node contains a description of a
state-space state and some other search related information, in particular descriptors of the operators
to be applied. Descriptors are some simple data items. For instance, the descriptors can be: numbers,
names, atoms, pairs of elements, sets of elements. Descriptors can be created and manipulated by the
search program. They can be stored in nodes or removed from the nodes. For instance, let us discuss
the case where partial solutions are sets of integers. In such case, descriptors can be pairs of symbols
(aritmetic_operator, integer) and the application of an operator consists in taking a number from the
partial solution and creating a new number, like this:

12



new_number := number aritmetic_operator integer

and replacing the number in the partial solution of the successor node by the new_number.

The descriptors can be created by programs called descriptor generators. They generate descriptors
for each node one by one or all of them at once. Operators traverse the tree from a node to a node,
which is equivalent to searching among the states of S. Each of the solution tree’s nodes is a vector of
data structures. For explanation purposes, this vector’s coordinates will be denoted as follows:

e N - the node number,
e SD - the node depth,

e CF - the node cost,

e AS - description of the hereditary structure,

QS - partial solution,
e GS - set of descriptors of available operators,

Additional coordinates can then be defined, of course, as they are required.
Other notations used:

e NN - the node number of the immediately succeeding node (a child),
e OP - the descriptor of the operator applied from N to NN,

e NAS - actual length of list AS,

e NQS - actual length of list @S,

e NGS - actual length of list GS.

The operator is denoted by OF;, and it’s corresponding descriptor by r;. An application of operator
OP; with the descriptor 7; to node N of the tree is denoted by O(r;, N). A macro-operator is a sequence
of operators that can be applied successively without retaining the temporarily created nodes.

A prerequisite to formulate the combinatorial problem in the search model is to ascertain the neces-
sary coordinates for the specified problem in the initial node - the root of the tree. The way in which
the coordinates of the subsequent nodes are created from the preceding nodes must be ascertained as
well. This leads to the description of the generator of the solution space (tree generator). Solution
conditions and/or cost functions should be formulated for most of the problems. There are, however,
generation problems (such as generating all the cliques of a specific kind), where only the generator of
the space is used to generate all the objects of a certain kind.

e S is the partial solution: that portion of the solution that is incrementally grown along the
branch of the tree until the final solution is arrived at. A set of all possible values of QS is a
state-space of the problem. According to our thesis, some relation RE € S x S of partial order
exists usually in S. Therefore, the state s € S symbolically describes the set of all s € S such
that s RE s’. The solution tree usually starts with QS(No) which is either the minimal or the
mazimal element of S. All kinds of relations in S should be detected, since they are very useful
to create efficient search strategies.

e The set GS(N) of descriptors denotes the set of all operators that can be applied to node N.
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e AS(N) denotes the hereditary structure. By a hereditary structure we understand any data
structure that describes some properties of the node N that it has inherited along the path of
successor nodes from the root of the tree.

e The solution is a state of space that meets all the solution conditions.
e The cost function CF is a function that assigns the cost to each solution.

e The quality function QF can be defined as a function of integer or real values pertinent to each
node, i.e., to evaluate its quality. It is convenient to define the cost and quality functions such
that

QF(N) < CF(N) and if QS(N) is the solution, then QF(N) = CF(N) (2)

e TREEFE(N) denotes a subtree with node N as a root. Often function QF(N) is defined as a sum
of function F(N) and function iL(N):

QF(N) = CF(N) + h(N) (3)

° iL(N) evaluates the distance 2(N) of node N from the best solution in TREE(N). F(N) in such
a case defines a partial cost of @S(N). Then h(N) is called a heuristic function. We want to
define A in such a way that it as close to k as possible (see [46] for general description).

A theoretical concept of function f is also useful to investigate strategies as well as cost and quality
functions. This function is defined recursively on nodes of the extended tree, starting from the terminal
nodes, as follows:

f(NN) = CF(NN) when the terminal node NN is a solution from Sg, (4)
f(NN) = oo  when the terminal node NN is not a solution, (5)
f(N) = min(f(N;)), for all N; which are the children of node N. (6)

This function can be calculated for each node only if all its children have known values, which means
practically that the whole tree has been expanded. f(N) is the cost of the least expensive solution for
the path which leads through node N. We assume that such function C'F' can be created that for every
node N (and not only for the nodes from set Sg of solutions), it holds that additionally hold:

CF(N) < f(N) (7)

and

CF(NN)>CF(N)  for NN € SUCCESSORS(N) (8)

The general idea of the Branch and Bound Strategy consists in having a CF that satisfies
equations 4, 7, 8. Then, knowing a cost CF,,;, of any intermediate solution that is temporarily treated
as the minimal solution, one can cutt-off all subtrees TREE(N) for which CF(N) > CFpy (or, CF(N)
> CFpin when we look for only one minimal solution).

In many problems it is advantageous to use a separate function QF, distinct from CF, and then CF
guides the process of cutting-off subtrees, while QF guides the selection of nodes for expansion of the
tree. In particular, often the following functions are defined:
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g(N) the smallest from all the values of cost function calculated on all paths from Ny to N.

h(N) the smallest from all the values of increment of cost function calculated from N to some N €
Sr. This is the so-called heuristic function.

f(N) = g(N) + h(N).

Since function A cannot be calculated in practice in node N during tree’s expansion, and g is often
difficult to find - a function C'F can be introduced that approximates g and function A that approximates
h, such that

QF(N) = CF(N) + h(N) (9)
R(N) > B(N) > 0 (10)
h(M) — h(N) < h(M,N) (11)

where h(M, N) is the smallest of all increment values of cost function from M to N, when M, N ¢ Sp.
It holds also:

QF(N) = CF(N)  forN €Sgp (12)

R(N) = h(N) = 0 for N € Sp (13)

Function defined like that are useful in some search strategy, called Nilsson A* Search Strategy. Some-
times while using branch-and-bound strategies it is entirely not possible to define cost function g(N)
for N ¢ Sg. However, in some cases one can define function QF such that for each N

QF(N) < g(N) (14)

For nodes N € Sg one calculates then g(N) = CF(N), and next one uses standard cut-off principles,
defining for remaining nodes N;: CF(N;) = QF(N;), and using function C'F in a standard way for
cutting-off. A second, standard role of QF is to control the selection of non-closed nodes. (By non-
closed nodes we mean those that are either open or semi-open). One should then try to create QF that
plays these both roles.

A quasi-optimal or approzimate solution is one with no redundancy: i.e., if the solution is a set,
all of its elements are needed. When the solution is a path in a certain graph, for example, it has no
loops. An optimal solution is a solution QS(N) = s € S such that there does not exist s € S where
F(s) > F(s'). The problem can have more than one optimal solution. The set of all solutions will be
denoted by SS. Additional quality functions for operators can also be used.

In many combinatorial problems, the set of all mathematical objects of some type are needed: sets,
functions, relations, vectors, etc. For example, the following data are created:

e The set of all subsets of a set of prime implicants in the minimization of a Boolean function.
e The set of all subsets of bound variables in the variable partitioning problem.
e The set of all two-block partitions in the encoding problem.

e The set of maximal compatibles in the column minimization.
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Figure 2: Examples of tree generators

These sets can be generated by respective search routines for them in a standard way using generators
of trees. This is useful in direct problem descriptions.

It is desirable to develop descriptor generators for several standard sets, several types of tree gener-
ators, many ordering possibilities for each generation procedure, and several tree extension strategies
for each ordering. The type of tree is defined by the generator that generates descriptors as well as the
generator that generates the tree. A full tree is a tree generated by generators only, ignoring constraint
conditions, quality functions, dominations, etc. Full trees of the following types exist:

e a tree of all subsets of a given set - type T3.
e a tree of all permutations of a given set - type T5.
e a tree of all one-to-one functions from a set A to set B - type T3,

and many others.

The type T} tree generator of a full tree of the set of all subsets of the set {1,2,3}, shown in Fig. 37
can be described as below.
1. Initial node (root) is described as:

QS(No) = 0; (15)

GS(No) = {1,2,3}; (16)

where 0 is an empty set, and Ny is the root of the tree.
2. The children of any node N are described recursively as follows:

16



L1, 1 1 1, . 2.3 4. 5 _AD BC
L2131t 41 (1,23 {23 —{3h ¢E{4%{ 45 ¢ {AD}7r {ADBC}
S821 . {5} AC ~C{ADBD}
) SaL L2 (34>{345) H{ACH R {ACEC)
—22r 281 s . s BC {AC,BD}
. S22 AT 24 {245 o0 (B9
, 12— 4 (25 —{BD}
- 101213 141 —& {234 {2.345)
132 — {235}
. —2122—3123 23— ‘51{ 14> {145}
L2112 29132114 . 2{L5)
?{ 1,34—{1,34,5}
—{1,3,5}
73{ 1, g { 1,2,4}i{ 1,2,4,5}
4 5 {1,2,5}
75{ 1,2,3,4+{1,2,3,4,5}
@ o ® ©
¢ —%{AC}%{AC,BD} # A acH——{ACD {(A,CD)(B,C)}—{ (A,CD)(B,CD)}
-——{AD}——{AD,BC} {(A,CD)(B.D)}
LC{ BC}
5D (D) ——{(AO®B.C—{(AC)B.CD)}
- {(AC)(B.D)}
——{ADF—{(AD)BCOF——{(AD)B.CD)}
{(AD)BD)}
—{B,C}———{B,CD}
- {BD}
(d) (e

Figure 3: Further Examples of tree generators

(Vr € GS(N)) [QS(NN) = QS(N) U {r}; GS(NN) = {r, € GS(N) | 1 >r}]  (17)

where NN is some child of node N, and r is the descriptor of the operator. Set GS is either stored
in the node or its elements are generated one by one in accordance with the ordering relation > while
calculating the children nodes.

Figure 2 and Figure 3 present examples of full sets for many important combinatorial problems.

2.3 CREATING SEARCH STRATEGIES

A number of search strategies can be specified for the tree search procedure along with the quality
functions. Beginning with the initial node, the information needed to produce the solution tree can be
divided into global information, that relates to the whole tree, and local information. Local information
in node N refers to subtree TREE(N). The developer-specified search strategies are, therefore, also
divided into a global search and a local search. The selection of the strategy by the user of the Universal
Search Strategy from section 2.6 is based on a set of strategy describing parameters. By selecting certain
values he can for instance affect the size of subsequent sets of bound variables or the types of codes in
the encoding problem. We assume also that in the future we will create smart strategies that will allow
to dynamically change the strategy parameters by the main program during the search process. Such
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strategies, that for instance search breadth-first and after finding a node with certain properties switch
to depth-first search, have been used with successes in Artifficial Intelligence.

Let us distinguish the complete search strategies that guarantee finding all of the optimal solutions
from the incomplete strategies that do not. Both the complete and the incomplete search strategies can
be created for a complete tree search method. A tree searching strategy that is created for a complete
tree search method and includes certain restricting conditions or cutting-off methods that can cause
the loss of all optimal solutions is referred to as an incomplete search strategy for a complete search
method. By removing such conditions a complete search strategy is restored, but it is less efficient.

This approach offers the following advantages:

e The quasi-optimal solution is quickly found and then, by backtracking, successive, better solu-
tions are found until the optimal solution is produced. This procedure allows to investigate
experimentally the trade-offs between the quality of the solution and speed of arriving at it.

e The search in the state-space can be limited by including as many heuristics as required. In
general, a heuristic is any rule that directs the search.

e The application of various quality functions, cost functions, and constraints is possible.

e The problem can be described within several degrees of accuracy. The direct description 1is
easy for the designer to formulate, even though it produces less efficient programs. It is created
in the early prototype development stages, on the basis of the problem formulation only, and
the heuristics are not yet taken into account. The only requirement is that the designer knows
how to formulate the problem as a state-space problem using standard mathematical objects and
relations. Only the standard node coordinates are used. The detailed description of the tree
search method, on the other hand, provides the best program that is adequate for the specific
problem but it requires a better understanding of the problem itself, knowledge about the program
structure, and experimentation.

e By using macro-operators along with other properties, the main strategies require less memory
than the comparable, well-known search strategies [33, 46, 49].

The search strategy is either selected from the general strategies, of which the following is a selection,
or it is created by the developer’s writing of the sections’ codes, and next the user assigning values to
the strategy describing parameters.

e Breadth-First. With this strategy, each newly created node is appended to the end of the so called
open-list which contains all the nodes remaining to be extended: open nodes. Each time the first
node in the list is selected to be extended, it is removed from the list. After all the available
operators for this node have been applied, the next node in the open-list to be extended is focused
on.

e Depth-First. The most recently generated node is extended first by this strategy. When the
specified depth limit SD,, 4, has been reached or some other cut-off condition has been satisfied,
the program backtracks to extend the deepest node from the open-list. This newly created node
is then placed at the beginning of the open-list. The consequence is that the first node is also
always the deepest.

e Branch-and-Bound. The temporary cost B is assigned which retains the lowest cost of the solution
node already found. Whenever a new node NN is generated, its cost CF(NN) is compared to
the value of B. All the nodes whose cost exceed B will be cut off from the tree.

e Ordering. This strategy, as well as the next one, can be combined with the Branch-and-Bound
strategy. A quality function Q(r, N) is defined for this strategy to evaluate the cost of all the
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available descriptors of the node being extended. These descriptors are applied in the operators
in an order according to their evaluated cost.

e Random. With this strategy, the operator or the open node can be selected randomly for expan-
sion, according to the probability distribution specified.

o Simulated annealing, that transforms nodes from open list using the respective algorithm.
o Genetic algorithm, uses open list as a genetic pool of parent chromosomes.

All the strategy creating tools should be defined as C++ classes. The strategy describing subroutines
and parameters are outlined below.

There are two types of conditions for each node of the tree: by-pass condition and cut-off condition.
The cut-off condition is a predicate function defined on node N as an argument. If the cut-off condition
is met in node N, the subtree TREE(N) is prevented from being generated and backtracking results.
The by-pass conditions do not cause backtracking and the tree will continue to extend from node N.
The following cut-off conditions exist:

e bound condition - it is known (possibly from information created in node N) that node Nj exists
(not yet constructed) such that CF(N;) < CF(N) and QS(Ny) is a solution.

e depth limit condition - SD(N) is equal to the declared depth limit SDp,4q.
e dead position - no operators can be applied to N, i.e. GS(N) = 0.

e restricting conditions - QS(N) does not fulfill certain restrictions, i.e. no solution can be found

in TREE(N).

e solution conditions of the cut-off type - if QS(N) is a solution, then for each M € TREE(N),
CF(M) > CF(N) (or CF(M) > CF(N)) and M may be not taken into account.

e Branch Switch Conditions and Tree Switch Condition. Satisfaction of Switch condition causes
modification of the actual search strategy to another strategy, resulting from the search context
and previous conditional declaration of the user. This leads to the so-called Switch Strategies that
dynamically change the search strategy during the process of search. For instance, the depth first
strategy can be changed to breadth first if certain condition is met.

e other types of conditions formulated for some other type restrictions special to problems (selected
by the user by setting flags in the main algorithm).

A value that interrupts the search when a solution node N is reached such that CF(N) = CFpnin min
is denoted by CFpuin min. This is a known minimum cost of the solution. This value can be arrived
at through a calculated guess or by mathematical deduction. It may also be a known optimal cost. In
most cases it i1s a guessed value that may be incorrect, so it will serve only here as one more control
parameter.

When all the solution conditions are met in a certain node N, QS(N) is a solution to the given
problem. This is then added to the set of solutions and is eventually printed. The value of CF(N) is
retained. If one of the solutions is of the cut-off type, the program backtracks. Otherwise, the branch
is extended.

2.4 RELATIONS ON OPERATORS AND STATES

It is often very useful that one can determine some relations on operators (descriptors) and/or
relations on states of the solutions space or on nodes of the tree. This allows to cut-off nodes, and
also to remove dispensable descriptors from the nodes. Specifically, in many problems it is good to
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check solution conditions immediately after creating a node, and next immediately reduce the set od
descriptors that can be applied to this node.

The following relations between the operator descriptors (so called relations on descriptors) can be
created by the program developer to limit the search process:

e relation of domination,
e relation of global equivalence,
e relation of local equivalence.

We will distinguish local and global domination relations. Operator O; is locally dominated in node
N by operator O3 (or descriptor 73 is locally dominated by r1) when:

(01, O3) € DOML(N) (18)
while relation DOM L satisfies the following conditions:

DOML is transitive (19)
and
(01, O2) € DOML = f(O1(N)) < f(O2(N)) (20)
We will apply the notation:
defi >
(01, 05) € DomL %™ o T o, (21)

L

We will define operator O, as locally subordinated in node N with respect to operator O; (where

dl, dy € GS(N)), if

> s
O, 70, AN O 0] 22
17 Oz 2 1 (22)
This will be denoted by
>
01 O (23)

If O, Z O innode N, then tree TREE(O3(N)) can be cut-off without sacrificing optimal solutions,
since

f(O1(N)) < f(Os(N)) (24)
It is easy to check that relation f, defined as
R define > >
ol I O, —s ol I Oy A Oy I ol (25)

is an equivalence relation, which we will call Local Relation of Equivalency of Descriptors in node
N. Relation 7 partitions set GS(N) into classes of abstraction [d;]. It is then obvious, that if we want
to obtain only one optimal solution being a successor of N, then we have to select from each class of

abstraction [d;] one element, and remove all remaining from GS(N).

The relation of global domination gives better advantages that the local domination, if it can be
defined. Operator O3 is globally dominated in tree TREE(N) by operator O; when

(01, 0;) € DOMG(N) C O(TREE(N)) x O(TREE(N)) (26)
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By O(TREE(N)) we denote the set of operators to be applied in tree TREE(N). Relation DOMG
satisfies the following conditions:

DOMG is transitive (27)

and

(01, O2) € DOMG(N) = (VM; € NO(TREE(N)))
[di € GS(M1) Ady € GS(M1) A f(O1(M1)) € f(O2(M1)) Vda ¢ GS(M:)] (28)

Similar to local relations, one can define relation Z, of global subordination in tree TREE(N), and
relation 7, of global equivalence in tree TREE(N).

Relation 7 partitions every set GS(My) for each My € NO(TREE(N)) into classes of abstraction.
If we have no intention to find all optimal solutions, then from each class of abstraction we take just
one element, and the remaining operators are removed from GS(My).

It can be proven that if for each branch N, N1, Ny, ....Nj, of tree TREE(N) it holds GS(N) D GS(N3)
D GS(Ng) then the descriptors from set [d;] \ {d;}, where [d;] is the global equivalence class of operator
O; in node N, can be once forewer removed from GS for all nodes in TREE(N).

When we want to use the relation of global equivalency, and the property from this theorem does
not hold, then it is necessary to calculate the descriptors, which should not be applied in this node
(sometimes it can be easily done from an analogous set for the node being the parent of this node).

Node M is dominated by node N if f(N) < f(M)

(N, M) € DOMS <= f(N) < f(M) (29)
Analogously as before, we can introduce relations g, :, and :

If STy and ST, are two strategies, which differ only in their domination relations Dy and D, (these
can be relations of domination of any of the presented types) and if D1 O D; then kit < k;? for each
of the introduced coeflicients k;.

Let us also observe, that by incorporating checking the relation of domination (or equivalence) to
an arbitrary strategy that generates all optimal solutions, there exists the possibility of sacrificing only
some optimal solutions (or all but one optimal solutions). This decreases the number of generated
nodes, which for many strategies brings gains both in time and in memory. On the other hand, if
evaluating relations is very complex, the time of getting the solution can increase. The stronger the
domination, the more complex its evaluation, or larger its domain - therefore the longer is the checking
time. In turn, the more gain from the decreased number of generated nodes. Often it is convenient
to investigate relation of domination only in nodes of the same depth, or on operators of some group.
Theoretical analysis is often difficult and experimenting is necessary.

Let us finally observe that domination relations are not based on function f, which values are not
known a’priori while creating the tree. The domination relations are also not based on costs, but on
some additional problem-dependent information about the nodes of the tree, that is available to the
program. This is based on some specific problem-related information. In most cases, implication in
equation 20 cannot be replaced by an equivalence, since this would lead to optimal strategies with no
search at all, and each branch would lead to optimal solutions.

2.5 COMPONENT SEARCH PROCEDURES

Main Universal Search subroutine is in charge of the global search which includes the selection of
strategies, the arrangement of the open-list and the other lists as well as the decision making facilities
related to the cut-off branch, and the configuration of the memory structure for the tree. The lines
of code that realize the strategies of breadth-first, depth-first, or branch-and-bound are built into
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main search routine. Subroutines RANDOM1 and RANDOM?2 are selectively linked for the random
selection of the operator or the open node, respectively. The role of the subroutines linked to the
Universal Search subroutine is as follows:

e GENER is responsible for the local search that extends each node. GEN ER cuts off the nodes
which will not lead to the solution node when the description for the new node is created.

e GEN carries out the task of creating nodes.
Other subroutines, offered to create local search strategies, are the following:

e MUSTAND and MUSTOR are subroutines that serve to find two types of the indispensable
operators. (The indispensable operators are the operators that must be applied.) All operators
found are indispensable in MU ST AN D subroutine, and only one of operators is indispensable in
case of MUSTOR subroutine. The set of indispensable operators is next substituted as the new
value of coordinate GS(N).

e subroutine MUSTNT deletes subordinate operators. Subordinate operators are those that would
lead to worse solutions, or to no solutions at all. The set MUSTNT(N) is subtracted from set
GS(N).

Domination and equivalence conditions for the tree nodes can also be declared as follows:
e EQUIV cancels those nodes that are included in other nodes.

e FILTER checks whether the newly created node meets the conditions.

e SOLNOD checks the solution condition.

e REAPNT is used to avoid the repeated applications of operators when the sequence of operator
applications does not influence the solution.

These local strategies as well as the global strategies listed above can be selected by reading the
parameter values as input data. ORDER sorts the descriptors, QF calculates the quality function for
the descriptors, and CF calculates the cost of the nodes.

2.6 UNIVERSAL SEARCH STRATEGY

In this section we will present the universal search strategy.

Meaning of Variables and Parameters

CPFin - cost of the solution that is actually considered to be the minimal one. After a full search, this
is the cost of the exact minimum solution.

SOL - set of solutions actually considered to be minimal. If parameter M ETHOD = 1 then this set
has always one element. After terminating full search, this set includes solutions of the exact
minimal cost.

OPERT - list of descriptors, which should be applied to the actual state of the tree.
OPEN - list of open and semi-open nodes.
N - actual state of the space.

NN - next state of the space (being actually constructed from N).
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OUTPUT

QFrmin
OPT
PP9
EL

DESCRIPTOR
MUST
PG5

PG6

PG6D

PG6E
PG6F

PGT

The

- a parameter that specifies the type of the actually created node;
when OUTPUT = 0 - the created node NN is a branching node;
when OUTPUT =1 - the created node NN is an end of a branch;

when OUTPUT = 2 - a quasioptimal solution was found, whereby by a quasioptimal we un-
derstand any solution that has the value of the cost function not greater than the user-declared
parameter C Frin min-

- parameter. assumed by the user, determined heuristically or methodically, the value that satisfies
him.

- the actually minimal value of the quality function.
- parameter; when OPT = 1 then any solution is sought, otherwise the minimal solution.
- parameter; when PP9 — 1 then called is the subroutine ”Actions on the Selected Node”.

- actual descriptor from which the process of macro-generation starts (this is the first element of
list OPERT).

- actual descriptor during the macrogeneration process.
- list of descriptors of operators, which must be applied as part of the macrooperator.

- parameter; if PG5 = 1 then it should be investigated, directly after creation of node NN, if
node NN could be cut-off.

- parameter; if PG6 = 0 then it should be investigated if node NN can be cut-off with respect
to the monotonically increasing cost function C'F, and in respect to satisfaction of CF,,; =

CF(NN).

- parameter; if PG6D = 1 then value C Fy,;, should be calculated with respect to a subroutine
of a user, otherwise C Fyp;,, is calculated in a standard way as CF(NN).

- parameter; if PG6E = 1 then the learning subroutine is called.

- parameter; if PG6F = 1 then after finding a solution the actions declared by the user are
executed.

- parameter; if PG7 = 1 then descriptors defined by other parameters are removed from GS(NN).

Main Search Strategy

. Set the values of parameters that determine the search strategy.

CFpin, := 00, SOL := 0, OPERT := 0, OPEN := 0,

. Call the macrogeneration subroutine GEN E R for the user-declared initial state Ny.

If the value of variable OUTPUT (this value is set by subroutine GENER) is 1 or 2

then, according to the declared parameters, return to the calling program for the problem, or
select a strategy corresponding to the declared data.

. State N has been (possibly) transformed by subroutine GEN ER.

Store the new state N{ in the tree. OPEN := {N{}.
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10.

11.

12.

13.

14.

15.

16.

If OPEN = { then either return to the calling program, or change search strategy according to
parameters and strategy change parameters for trees (T'ree Switch). (see section 2.8.

If the threshold values for the tree have been exceeded (size, time, etc) then return to the calling
program, or change strategy, as in step 6.

If the Stopping Moment Learning Program decides termination of search, then this search process
is terminated and return to the calling program, that will decide what to do next (see section 12.
N := selected node from list OPEN. This step is executed on the basis of Strategy Selecting
Parameters, including minimal values QF or CF.

If parameters specify A* Strategy of Nillsson and QF(N) > QFpin

then return to the calling program (since all minimal solutions have been already found).

. If parameter PP9 = 1

then

call subroutine ”Actions on the selected node” (this subroutine can for instance declare such
actions as: cut-off a node upon satisfying some condition, sorting GS(N), assigning GS(N) := 0,
deletion of redundant or dominated operators).

OPERT := GS(N).
Remove from list OPFEN all closed nodes.
If OPERT = 0 then go to 6.

EL := OPERTI0], remove EL from list OPERT.
/* OPERT|0] selects the first element of list OPERT */

Call subroutine GEN ER.
If a Branch Switch Strategy has been declared and a respective switch condition is satisfied
then execute the Branch Switch change of the search strategy.

If OUTPUT = 0 then store the node NN, created in GENER, in the tree (if a tree exist in
addition to list OPEN), and add this node in some place of list OPEN. This place depends on
the selected strategy.

If OUTPUT = 2 then (if parameter OPT = 2 then return to the calling program, else go to 11.

Go to 11.

Subroutine GENER

1.

If GENER is executed in step 13 of the main search strategy then MUST := EL (value of EL
has been previously set in the main search routine).

If MUST = 0 then set OUTPUT := 0, return.

. DESCRIPTOR := MUSTI0].

Call subroutine OPERATOR of the user: O(N, DESCRIPTOR). It generates new state NN
for the descriptor selected in step 3.

GS(N) := GS(N) \ DESCRIPTOR.
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5. If parameter PG5 = 1
and

(node NN satisfies on of the Branch Cut-Off Conditions or NN is dominated by another node (it
means it is equal to it or is dominated by one of relations: Node Domination, Node Equivalence,
Node Subordination))

then cut-off node NN. OUTPUT := 1, return.

If CF(NN) > CFp;n (while looking for all minimal solutions)

or

If CF(NN) > CFp;yn (while looking for a single minimal solution)
then

cut-off node NN. OUTPUT := 1, return.

6. If parameter PG6 = 0 then:

If CFpin = CF(NN) and the parameter specifies that CF is monotonically increasing and node
NN does not satisfy all the user-declared Solution Conditions

then cut-off node NN, OUTPUT := 1, return.
If node NN satisfies all the user-declared Solution Conditions then

A If CF(NN) < CFp;y and the A* Strategy of Nillsson is realized then:
store @Fpin := QF(NN).
B If CF(NN) = CPFyin then:

a) ( if all optimal solutions are sought
then append QS(NN) to the list of solutions SOL else do nothing. )

C If CF(NN) < CFpp then set SOL := {QS(NN)}.

D If parameter PG6D = 1 then calculate C F,y;, using the User Subroutine Calculating C F,;,,
else CFpin := CF(NN).

E If parameter PG6E = 1 then call subroutine of parametric learning the quality function for
operators.

F If parameter PG6F = 1 then call subroutine ” Actions after Finding a Solution”. This is a
subroutine in which the user specifies actions to be executed after the solution is found, such
as printout, display, storage, etc.)

G If CF(NN) = CFpin min then OUTPUT := 2, return.

H If CF(NN) # CFpin min then OUTPUT := 1, return.

7. If PG7 = 1 then remove from GS(NN) the indispensable descriptors (depending on the values
of parameters, these are: Inconsistent Descriptors or Descriptors that result from: Local Sub-
ordination Relation, Local Domination Relation, Local Equivalence Relation, Local Equivalence
Relation, Global Subordination Relation, Global Domination Relation, Global Equivalence Rela-
tion).

Use subroutine MUSTNT.

If a Condition of Node Expansion Termination is satisfied then set GS(NN) := 0.
If the set of Indispensable Operators of MUSTOR type is declared

and

respective Condition of operators of MUSTOR type is satisfied

then set GS(NN) := MUSTOR(GS(NN)).
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8. N :=NN.

9. If MUST # 0 then go to 2.
else set MUST := set of Indispensable Descriptors of MUSTAN D type in GS(N) and go to 2.

The first call of subroutine GENER is intended to check if in the initial state given by the user
exist the indispensable operators of type MUSTAN D. These operators are applied to the successively
created states until a solution is found or a node in which no indispensable descriptors exist. When
subroutine GEN ER is returned from, the state Ny may have been transformed. A condition to find
a minimal solution is to terminate with an empty list OPEN. In steps 8 and 9, with respect to the
strategy determining parameters, selected is a node for expansion, as well as the operators that will
be applied to it. This node can be open or semi-open. Open means all possible operators have been
applied to it. Semi-open, means some operators (descriptors) were applied but other still are ready to
be applied in a future. Selected descriptors are successively applied to the node, until list OPERT is
cleared.

If the user-determined value of parameter OPT is 1 then the subroutine will return to the calling
program after finding the first quasi-optimal solution.

Subroutine GEN E R is used to find and apply macro-operators. On the list of indispensable operators
MU ST placed is (except of the call in step 3) operator EL selected in the main search program. Such
approach has been chosen in order to check if some indispensable operators exist in the initial state. In
all subsequent nodes it is known that there are no indispensable operators, since if in a node created
by GEN ER there exists an indispensable operator, it is immediately applied. Therefore, the result of
subroutine GEN ER is always one child that has no indispensable operators.

In a general case, pure branch-and-bound strategy (discussed below) will terminate in steps 4 and 6
of the main search strategy. The A* strategy of Nilsson will terminate in step 8.

Of course in lists OPEN, OPERT and other, not objects but pointers to them are stored.

2.7 PURE SEARCH STRATEGIES

These strategies are the following.

1. Strategy STgr where:

QF(SEL].QF(OPEN)) = minNieOPENQF(Ni), SEL2(:I:) = (30)

SEL1 is the node selection strategy and SE L2 is the descriptor selection strategy.

In this strategy, all children of node N are generated at once. This corresponds to the ”Ordered
Search” strategy, as described in [46, 26]

If additionally QF satisfies conditions (4.6) - (4.10) then it corresponds to A* strategy of Nilsson.

2. Strategy STcr (strategy of equal costs), in which:
CF(SEL].CF(OPEN)) = minNieOPENCF(Ni), SEL2(:I:) = (31)
This is a special case of the strategy from point 1..

3. Depth-first Strategy
SEL14(OPEN) = the node that was recently opened, SEL2(z) = =

4. Breadth-first Strategy
SEL1,(OPEN) = the first of the opened nodes, SEL2(z) = =z
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Strategy STy, (depth, with sorting and selection of k best operators):
SELl4,x(NON-CLOSED) = the node that was recently opened,

SEL24, 1 (GS(SELI(NON-CLOSED))) = set that is created by selecting the first k elements
in the set GS(SEL1(NON-CLOSED)) sorted in nondecreasing order according to function ¢ ,.
A particular case of this strategy is STy ,,1, called the Strategy of Best Operators (Best Search
Strategy).

. Strategy STy, % (depth, with selection of node, sorting, and selection of k best operators).

SELly, s x(NON-CLOSED) = anode of minimum value of function QF among all nodes that
are created as the extension of the recently expanded node (not necessarily of the recently opened

node).
SEL2;

x = analogously to SEL2, k.
Analogously, one can define "k-children” strategies STgrk, STork, STy k-

. Strategy STgrs of Random Search.

SEL1rs(NON-CLOSED) = randomly selected node from NON-CLOSED.
SEL2rs(GS(SEL1Rs(NON-CLOSED))) = randomly selected subset of descriptors.

Strategy STrs,q of Random Search Depth.
SELlgrs,i(NON-CLOSED) = recently opened node from NON-CLOSED.
SEL2rs(GS(SELlgrs,s(OPEN))) = randomly selected descriptor.

Analogically, one can specify many other strategies by combining functions SEL1 and SEL given
above.

Let us introduce now some measures of quality of strategies.

k1

k2

ks

k4

ks

ke
kr

= CARD(B,), where B, is the set of all closed and semi-open nodes that were created until all
minimal solutions have been found.

= CARD(B;), where B; is the set of all closed and semi-open nodes that were created until one
minimal solution has been found.

= CARD(V,), where V;, D B, is the set of all closed, semi-open, and open nodes that were created
until all minimal solutions have been found.

= CARD(V;), where V; D B, is the set of all closed, semi-open, and open nodes that were created
until one minimal solution has been found.

= CARD(T,), where T, D B, is the set of nodes that were created until proving the minimality
of solutions, it means the total number of nodes that have been ever created by a strategy that
searches all minimal solutions.

CARD(T;), analogously to ks, but for a strategy that searches a single solution.
= max SD(N;) - the length of the maximal path (branch) in the tree.

The advantage of the ordered search strategy is the relatively small total number of generated nodes
(coefficients ks and ke). The following theorem is true, analogous to one from [46].

Theorem 2.1 If QF satisfies equations 9, 10, 11, 12, 13 and the ordered search strategy has been
chosen (i.e. realized is the strategy A* of Nilsson) and when some solution of cost QF' has been found,
such that all nodes of costs smaller than QF' have been closed, then this solution is the ezxact minimal

one.
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It is important to find conditions, by which this algorithm finds the optimal solution, generating
relatively few nodes. The theorem below points to the fundamental role of function iL, the definition of
which can substantially influence the quality of operation of the algorithm.

Let ST; and ST; be two A* Nilsson strategies, and izl and fzz their heuristic functions. We will
define that strategy ST5 is not worse specified than strategy ST, when for all nodes N it holds:

B(N) > ha(N) > ha(N) > 0 (32)

which means, both functions evaluate h from the bottom, but function k1 does it more precisely than

ha.

Theorem 2.2 If STy and ST, are A* Nilsson strategies, and STi s better specified than ST;, than for
each solution space the set of nodes closed by STy before the minimal solution is found is equal to the
set of closed nodes of ST,, or is included in it.

This theorem says in other words that if we limit ourselves to A* Nilsson strategies only, then
there exists one of them, better than all remaining ones, since it closes not more nodes than any
other strategy. This is the strategy that most precisely evaluates the function h, preserving of course
equations 10, 11, 13.

For many classes of problems the ordered search strategy is very inefficient, since it generates its
first solution not earlier than very many nodes have been already created. Then it proves its optimality
relatively quickly. In cases when one wants to find a good solution quickly, and only as the secondary
criterium the exact solution, it is better to use one of the variants of the branch-and-bound strategies
that search in depth.

Many properties can be proven for the branch-and-bound strategy presented above. We assume that:

for each N,NN,QF(N) # QF(NN) and QF(NN) > QF(N) for NN € SUCCESSORS(N) (33)

1) The branch-and-bound strategy is convergent, independent on function QF. Therefore, also the
specific strategies included in it, such as ”"depth-first”, "ordered search”, etc, are also convergent
if the user has not declared some additional cut-off conditions that may cause the loss of the
optimal solution. Some of these strategies do not require calculating function QF that would
satisfy certain conditions, which is the advantage of the given above universal search strategy,
when compared with the A* Nilsson Strategy.

2) If we are able to define the quality function QF* such that:

(VN:, N;)[Q@F"(N:) < QF*(N;) = f(N1) < F(N;)] (34)

then the strategy STgr is optimal in the sense of the number of opened nodes. Extended are
only nodes that are on paths leading to solutions (opened are also other nodes).

3) If additionally we succeed to find such quality function for operators ¢*¥ that is consistent with
f, it means such that:

(VN,01,09)[g"" (01) > ¢"V(02) = f(O1(N)) < f(O2(N))] (35)
the the strategy is optimal in the sense of the number of generated nodes. Expanded are only

the nodes that lay on the paths leading to minimal solutions, and in addition none other nodes
are opened (this concerns the 1-child strategies).
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4)

6)

It is possible to introduce the relation of partial ordering < on the set of all possible strategies
STor. It is shown that the strategies that are adjacent in the sense of this order have also similar
behavior:

if STor, € STgrF, then kil < kiz, fori = 1,2,...,6. (36)

The strategy which is best with respect to relation <« (the minimal element of the lattice) is the
strategy STor+. Next the "adjacent” strategies are defined, and it is proven, that if QFy, QF1,
..... , @F; is a sequence of such adjacent functions, then corresponding strategies STor,, STgr,,
..... , STgr, are adjacent in the lattice. Therefore, in the class of the ordered search strategies
function ST is in a sense a continuous function of function QF': small changes of QF cause small
changes of STor. If QF =~ QF” then behavior of STor is close to optimal. If the user is
then able to make choices among all functions QF then by the way of successive experimental
modifications he can approach STgp-.

. Since strategies "depth-first” are very rarely located in the lattice (they have high distances), small

changes of QF can cause a ”jump” from STgp- to a far-away from it lattice element. Analogously,
small modification of QF in the direction of @ F* not necessarily need to lead to the improvement
of the algorithm’s behavior.

It can be shown, that in the sense of some of the introduced measures the proposed algorithm is
better than the branch-and-bound algorithm investigated in literature [26].

In general case, we should always attempt at finding function QF close to QF*. The better will
be this function, the sooner will the program find a good solution of small value CF;, (the decrease
of coefficients k; - k4). Therefore, the cut-off of subsequent branches will be done with the smaller
value, which will in turn decrease ks and kg. In case of depth-first strategy, the changes in behavior
can occur in jumps. In addition, with respect to 3), one has to select function ¢ and with respect to
equations 19- 29 respectively define relations on descriptors and states.

By constructing strategies one has also to keep in mind the following.

1.

In general case, for those branch-and-bound strategies that search in depth, it is necessary that
each branch of the tree either terminates with a solution, or that for each branch determined is
certain constructive condition of cutting-off in certain moment (for instance, by reaching certain
depth of the tree, or by having no more operators to apply). Lack of these conditions may lead to
a danger of infinite or long search in depth, for instance in case of strategy ST, 1. This condition
is not necessary for A* Nilsson strategy, which is a special case of the strategy.

. In the sense of parameters k; - k4, the best performance have strategies that combine properties

of strategies STy ; s %, A* Nilsson Strategy, and STy ; %.

In sense of parameter k7 the 1-child strategies are the best, and §Ty,1 in particular.

. In case, when we look for a solution on a minimal depth in the tree, the breadth-search strategy

theoretically creates the exact solution as the first solution. However, the tree can grow in some
cases so quickly, that the strategy cannot be used. Still in some cases it is good to use disk
memory. Also, the strategy is useful when the problem is small, or when one can define powerful
relations on descriptors or relations on states of the search space.

. Depth-first strategy allows to find solutions quicker, when the depth is limited or when we can find

good upper bounds. This is a good strategy when there are many solutions. It requires not much
memory. This strategy is not recommended when the cost function does not grow monotonically
along the branches.

29



2.8
Sw

Sw

2.
3.
4.
5.

Th

Strategies STor and STy, allow often the most efficient time of calculations, and the second
strategy requires smaller memory.

By constructing strategies that use quality functions one has to take into account that the eval-
uation of more complex function allows to decrease the search, but at the same takes more time.
The trade-offs must be then experimentally compared.

It is possible to combine all presented strategies, and also to add new problem-specific properties to
the strategies. One can for instance create from the depth-first strategy and breadth-first strategy
a new strategy that will be modifying itself while searching the tree and finding intermediate
solutions. Another useful trick is to cut-off with some heuristic values, for instance some medium
value of CF,;,, and CFin min-

An advantage of random strategies is a dramatic limitation of required space and time. These
strategies are good to find many good starting points for other strategies that next find local
optima.

SWITCH STRATEGIES
itch strategies are:

switch strategies for branches,
switch strategies for trees.

itch strategy is defined by using the conditional expression:

[sci — (MMy, TREE,), .....,scn — (MM, TREE,) ] (37)

. 8C1,....., SCy are switch conditions

MM; = (M;, ST*) are methods to solve problems by Universal Strategy,
M; are tree methods,

ST* are pure strategies,

TREE,; are initial trees of methods M M, (trees after strategy switchings).

e meaning of formula 37 is the following: If condition sc; is satisfied use method M M; with initial

tree TREFE;. Else if condition sc; is satisfied use method M Ms with initial tree TREFE;. And so on,
until sc;. This is like COND instruction of Lisp.

In
some
struct

practice, M;, ST* and TREE; are defined by certain changes to the actual data. These can be
symbolic transformations, or numeric transformation. Also, these can be selections of new data
ures. Therefore one has to declare the initial data: My, ST° and TREE,.

In Switch Strategy for a Branch, the conditions s¢;, 2 = 1, ...n are verified in the moment of creating
a new node (or a new node being a solution, being a solution better than the previous one, etc -
the type of the node is specified by the parameters).

In the Tree Switch Strategy the conditions are checked after some type of full tree search has been
completed.

In both types of strategies, the conditions of switching strategies can be defined on:
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e nodes NN,
e branches leading from Ny to NN,
e expanded trees.

There can exist various Mized Strategies ST M, defined as follows:

STM = (88Tr,S55Tg) (38)
where:
SST7 - is a Tree Switch Strategy,
SS5Tg - is a Switch Strategy for a Branch.

For both the switching strategies for tree, and switching strategies for branches there exist eight
possible methods of selecting changes, specified by one of subsets of set of data < M;, ST*, TREE; >
In a special case, by selecting an empty set, changes of M;, ST; or TREE, are not specified. This
corresponds to pure strategy STp (which was declared as the first one). As we see, pure strategies are
a special case of switch strategies.

Analogously, complex methods, defined as CM = (My, ..., M, ST M) are generalizations of methods
MM,;.

Now we will present changes of TREE;, M;, and ST,.
1. We considered the following changes of TREE;.

e change of coordinates of nodes (locally, or in a branch, or in the whole tree),
e adding or removing some coordinates (locally, or in a branch, or in the whole tree),

o cut-off of the tree.

2. Changes M; by switch strategy can be executed by specifying new components of the solution
space.

An example of switching strategy that changes both TREE and M is a strategy for graph coloring
- see section 5.

3. Strategy is changed by determining the change of strategy parameters. Change of strategy for
switching strategy can consist for instance in a permutation of list OPEN, a selection of some its
subset, or in some modification to list OPFRT. Since the whole necessary information about the
solution tree is stored in list OPEN - after the Branch Switch the new strategy can start working
immediately. The Main Universal Search Subroutine is constructed in such a way, that even by
applying the switch search strategy the obtaining of the exact solution is still possible.

Examples of Switch Strategies

e The Far-Jumps Strategy. An example of switch strategy for branches is a strategy of "far
Jumps”, which first finds solutions of high distance in the solution space. At first, the Breadth-
First Strategy with macrooperators and dominance relations is used to develop a partial tree.
Together with each node N of the tree we stored also its level in the tree, SD(N). Selected is
a node from OPEN that has the smallest level. Next the "depth-first” strategy is used until
the first solution is found. The program evaluates, using some additional method, whether this
is a minimum solution, or a good enough solutions. When it is evaluated that this is not the
minimum solution, the ”strategy switch” is executed. The strategy switch consists in selection
from list OPEN the node of the actually lowest level, and next adding this node at the beginning
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of this list. Starting from this node, the tree is expanded again using the depth-first strategy,
until the next solution is found, etc. With each solution, the order of nodes in OPEN can be

modified.

The Distance Strategy. An advantage of the switch strategy called ”distance strategy” is,
that in contrast to the ”depth-first” or other pure search strategies, the successively generated
solutions are placed far away one from another. This gives the possibility of ”sampling” in many
parts of the space, which can lead to finding good cut-off values quicker (thanks to jumping out
of local minima of the quality function).

The Strategy of Best Descriptors. The Strategy of Best Descriptors consists in storing for
some pure strategy (for instance the depth-first, or ordered-search) all or some, of the descriptors
that proved to be the most useful by finding the previous solution. For instance, the dominating
descriptors, or the descriptors with the highest values of cost or quality functions are stored. After
switch, these descriptors are placed at the beginning of list OPERT, and are thus used as the first
ones in the next tree expansion. The switch strategies of this type can be in some cases applied
for fast finding of good cut-off values in branch-and-bound strategies.

An example of switch strategies for trees can be a ”Strategy of Sequence of Trees”. It expands
some full tree, or a tree limited by some global parameters (time, number of nodes). Next, using
some additional principles, it selects few nodes of the expanded tree (for instance, the nodes with
the minimum value of the cost function). Next, the strategy expands new trees that start from
these nodes. It usually uses a different set of components of the space, and/or pure strategy in
these new trees.

In particular one of strategies is to select another set of descriptors.

In another strategy of this type CF,;n is calculated as some function of C Fy,;, and other pa-
rameters, including the probabilistic evaluations of CFrin min, during the moment of switching.
This strategy is not complete, but it can substantially limit the search by backtracking at the
smaller depths.

QUESTIONS FOR SELF-EVALUATION

1.

2.

6.

What are the main concepts in tree search?

What is the difference between state space and search tree?

. For problems from the previous section, specify each tree-search process in terms of states, oper-

ators, coordinates and strategies explained in this section.

Do any of the problems from the previous section require modifications to the main Universal
Search Strategy? What problems?

Create Search Methods for the Maximum Clique Problem:

- searching starting from the smallest cliques,

- searching starting from the largest cliques,

- searching starting from cliques of certain size,

- searching starting from certain clique and next cliques that differ from small amount and

numbers of nodes from it.

Repeat point 4 above for the Problem of Finding the Bound Set of Variables.
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10.

11.
12.

13.

14.

15.
16.
17.
18.
19.
20.
21.

22.

Show full trees of the following types:

e a tree of all subsets of a given set - type T7.
e a tree of all permutations of a given set - type T5.

e a tree of all one-to-one functions from a set A to set B - type T3,
How to modify the strategy programs given above that they will include genetic algorithm?
How to modify the strategy programs given above that they will include simulated annealing?

Explain in more detail the possible pure and mixed strategies that have been only mentioned in
the last two sections.

Using the framework of creating strategies shown, can you create a superior Universal Strategy?

Discuss the role of functins CF, QF, f and q. Compare and illustrate with an examples of
problems from this and previous sections.

For type T} tree generator of a full tree of the set of all subsets of the set, discussed above, what are
the possible applications in the combinatorial problems that occur in functional decomposition?
List all of them.

Create a tree like 77, but starting from an arbitrary subset of a set. Use a small adaptation of
rules for Tj.

How to create a search program that will find all k-element subsets of a set with K elements?
How to create a search program that will find all k-element variations of a set with K elements?
How to create a search program that will find all k-element combinations of a set with K elements?
Give examples of descriptors.

What are the types of descriptors? Give examples of applications.

Give examples of macro-operators.

For each tree from Figure 2 do the following:

e explain what is the set created in this tree.

e explain what would be all possible applications of this set or this tree.

e write the specification of the full tree generator.

e draw an example how the tree can be expanded to larger dimension using your generator.
explain what would be a possible application of this set or this tree.

For each tree from Figure 3 do the following:

e explain what is the set created in this tree.
e explain what would be all possible applications of this set or this tree.
e write the specification of the full tree generator.

e draw an example how the tree can be expanded to larger dimension using your generator.
explain what would be a possible application of this set or this tree.
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3 METHODOLOGY TO CREATE TREE SEARCH PROGRAMS
3.1 PROBLEM-SOLVING MODEL

The following is a model that describes how the developer, starting from the most general problem
formulation, should proceed to create the completely finished search program.

3.1.1 Problem Formulation

The first task is to formulate a given problem to be solved according to the definition of the problem
given in section 2.

e The types of given objects (sets, functions, graphs, etc.) as well as the types of objects sought by
the program, should be specified. If these objects are not the standard objects of the MULTIS
system, they should be defined or the problem needs to be re-formulated in such a way that it
will be possible to use the system’s standard objects.

e The developer should describe the problem conditions using these structures. He or she should
also define the cost function, if it exists. It should be considered, how the problem conditions and
the constraint conditions can be decomposed or re-formulated.

e It should be determined, whether the conditions need to be checked separately or jointly.

e The developer has also to determine the order in which the conditions should be checked. Let
us assume, for example, that a set of objects being generated by generator G that satisfy the
problem conditions C; and C3 need to be found.

1. One of the methods would be to generate the set S; out of all the objects generated by
G that meet the condition C; first, and then to test the S; objects for the satisfaction of
condition Cj.

2. The procedure in another method would be identical except that the conditions would be
reversed. Subsequently, the objects could be generated one at a time using generator G and
both conditions checked for each generated object. In this case, we also have to decide on
the order of checking the conditions.

3. Finally, another generator that would generate only those objects generated by G that pass
the C; test, etc. can also be constructed.

Many methods can be derived from the direct problem formulation based on the methodology pro-
vided here. The developer then determines which one is best, and in some cases creates a parametrized
version to leave the final decisions to the user of the system for its testing on numerous benchmarks.

3.1.2 Creating the Method to Solve a Problem

The developer who already understands the problem structure well, can subsequently move on to
the stage of formulating the method of solving the problem. In doing so, it is recommended that the
similarities of the problems and the possibilities of reducing problems to other problems be systematically
and intentionally applied, such as:

e is it a covering problem?
e is it an ordering problem?
e is it an constraing-satisfaction problem?

e is it a path search in some graph?
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e is it a partitioning problem?
e is it an encoding problem?

The similarity of problems and the reduction of combinatorial problems offer an experienced developer
many opportunities, which include using the already existing subroutines of the system for new prob-
lems. A number of useful reductions is presented for instance in [30]. Other reductions for digital design
problems are discussed in [20, 44, 56, 77] and [57].

When the developer considers the combinatorial problems that are useful for decomposition, he should
specify whether the new problem is isomorphic, similar, or reducible to one of the familiar problems. If
such a relation between problems is found, it should be used, for example, for such applications as:

e restricting the solution space,

e constructing the generator for this space,

e proving theorems related to cutting off or to equivalences in the tree,
e detecting and utilizing symmetries,

e creating the quality and cost functions,

e specifying relations on descriptors or nodes in the tree,

e specifying other method conditions.

If only one similarity exists in the problems, such as: the cost function, the generator of the space,
the conditions, the operators, then, using this similarity, the attempt should be made to re-formulate
the problem in such a way that the number of similarities is increased. If there are no similarities and
the problem cannot be reduced to some well-known problem, an attempt at decomposing the problem
into well-known sub-problems can be made. In this way, part of the problems, or perhaps all of them,
should be isomorphic, similar or reducible to the well-known problems.

It is also often useful to find a different problem that is simpler than the original problem, and for
which one of the techniques mentioned above can be applied.

Finally, such problems can be transformed by modifying new problem conditions, or by adding new
problem conditions, in order to conform with one of the previously mentioned cases. This can lead to
another problem with respect to the specified earlier definition of the problem. This is often the case
because the actual problems are not precisely formulated.

The successful application of the above techniques can simplify the selection of the generators and
the conditions of the solution space, and make it easier to work with the prototype development later
on.

Until now, we used most of these techniques in one or another form in MULTIS development, but
we did not analyzed them systematically yet.

3.1.3 Precise definition of the algorithm

The next step is to formulate the tree-search algorithm precisely. The existing point subroutines of
MULTIS, such as Graph Coloring or Boolean Operations on BDDs, determine certain space of methods.
The task of the application developer is to determine how to link them in the most efficient way. A
certain subspace in the space of methods should, therefore, be systematically investigated.

All of the steps taken are intended to define the method that is computationally efficient. Three
basic directives result from the above general assumption:

1. The solution space needs to be limited by constructing a good tree generator.
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Six Possible Cases to Improve Tree Search

Specification of Tree
Generation and Conditions Selection of Strategy

Limiting the state-space M1 M4
Specifications of the best M2 M5
way of extending nodes

Decrease of the processing M3 M6
time and the memory used

for each node

Figure 4: Six Possible Cases to Improve the Tree Search Methods

2. The best possible way of extending the nodes in this space (order of generation) should be found.
3. The processing time and the memory used for each node should be decreased.

These directives can be complied with by specifying the corresponding generators and conditions for
the solution space, or by the selection of strategies. Therefore, six possible cases of improving the tree
search have to be dealt with, as shown in Table from Figure 4.

3.1.4 Discussion of methods to increase the search efficiency

Six methods to increase the search efficiency are outlined in detail below. Bear in mind that they are
all mutually related.

Case M.

In each problem, the developer should focus first on maximally decreasing the solution space, by
specifying the corresponding generators and conditions. To achieve this, the developer should consider
the way in which the states need to be represented, so as to cut-off and check the conditions in these
states in the most efficient manner.

e What should the initial node be?
e What should be the coordinates, the operators, and the descriptors?

e What should the additive cost function be? The additive cost function should be formulated in
such a way that it can be used for cutting off. Still, it may be more or less precize.

While maintaining a completeness of the strategy, the developer should focus on proving the theorems
related to limiting the space.
These can be of the following types.

1. The theorems to determine the solution space. Sometimes it can be proven that some
space S’ exists, S’ C S, such that $§ C S’ (55 is a set of solutions). The theorems concerned
with determining the solution space can be of two types. They either lead to a space-constructing
mechanism that is built into a special tree generator, or they lead to new constraint conditions
that are tested for nodes or descriptors.

2. The theorems about the limit parameters that specify the solution tree. In some
problems, such parameters as SDpue Or CFryin min can be determined. Let us assume, for
example, that a single, minimal coloring of a planar graph needs to be found, and it was shown
that no solution of cost 3 exists, because a clique with 4 nodes exists in the graph. It is a known
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mathematical fact that a planar graph can be colored using 4 colors. Hence we set the control
parameter CFyin min = 4 and when a solution with 4 colors is found, the algorithm terminates.

3. Theorems about relations on descriptors. Often, relations of subordinance, dominance,
equivalence (local and global), inconsistency, symmetry, or implication, can be found and proven.
The utilization of analogies of problems is useful (see for example in [564] how analogies can be
used to solve efficiently the highly cyclic covering problems). It needs to be ascertained whether
the relations on the descriptors are independent, and also consider the possibility of checking only
some of the subsets of those relations.

4. Theorems about the relations between the tree nodes. The relations of identity, isomor-
phisms, symmetry, and the similarity between the nodes in the solution tree should be considered,
[54].

5. Theorems about the construction of generators. The possibility of moving the constraint
conditions to the tree generator itself should be taken into consideration. Instead of first generating
nodes and later removing them, fewer nodes would be generated in this approach. If the subset
of a certain set is sought that does not fulfill a certain restricting condition W, for example, then,
perhaps, instead of generating a tree of type 77 and checking the condition W in the nodes of the
tree, 1t is more reasonable to construct a more efficient generator that would only generate the
subsets of the set that do not meet condition W. However, this may be a more time consuming
way. Therefore, trade-offs must be thoroughly considered by the developer.

Case M2.

In this case, one contemplates which of the elements in the state space has to correspond to the
initial node of the solution space. In the problems concerned with finding a path, for instance, the
search can be performed from the final situation to the initial situation. The components discussed in
the types 3,4 and 5 above also influence the search method as well as the ordering of the auxiliary sets
(see example in [55]). In the problem of selecting a subset of a set (for instance a set of bound variables,
or maximum clique) one can start from the largest, the middle, or the smallest elements of the lattice
of subsets as the starting point.

Case M3.
The processing time can also be decreased for the following reasons:

a. Selection of the corresponding order of checking the problem conditions and con-
straint conditions while generating new nodes. This is also related to specifying the order in
which the coordinates of the state vector are calculated. The problem conditions or constraint con-
ditions can either be calculated jointly or the conditions can be decomposed to several successively
calculated conditions. These are calculated intermittently using the values of some coordinates to
allow for backtracking sooner. The various placement possibilities are considered along with the
decomposition of conditions and the influence that they have on the cases M1 and M3.

b. Formulation of weaker relations on descriptors (which is opposed to the directive regarding
the limiting of the solution space). Let us consider the following example as an illustration. It
could be possible to generate a small tree by applying strong relations on descriptors but this could
then take longer time because the relations would then be checked slower. On the other hand,
replacing this strategy with one that applies weaker relations that are rapidly checked produces
a larger tree but one in which each node is extended faster. The total processing time of some
problems can, therefore, be decreased if no memory limitation exists.

c. Simplification of the quality functions (which is opposed to the directives resulting from
M4 and M5). The argumentation for this case is similar to that in ”b” above.
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d. Specification of the type of nodes that are suitable to be checked in the relations on
nodes (it is sometimes sufficient, for example, to investigate only the nodes of the same depth
or in the same branch of the tree as the current node N).

e. Selection of the additively calculated cost function and quality function in such a way
that they are both mutually related. See discussion in [46, 54, 55].

f. Selection of the corresponding data structures of the lowest levels and the auxiliary
functions influences both the processing time and the memory size. In some problems, for
example, it is reasonable to represent sets as the lists or vectors, and in other problems to represent
them as binary words in which each set element corresponds to one bit of the computer word.

Case M4.
The solution space can be limited by the selection of the strategy. The only possibility for this in the
case of complete strategies is the application of the cutting-off principle using the cost function. Then
the problem is reduced to M5 in order to find the quasi-optimal solution as quickly as possible. The
cutting-off, however, can result from the selection of some local strategy parameter values for incomplete
strategies.

Case MS5.

In this case, it needs to be considered whether some of the basic strategies match the specifics of the
problem. The values of each strategy parameter, different combinations of parameter values, and the
quality functions for states and operators should be considered. The possibility and the rationality of
focusing on matching the quality function to the cost function should be analyzed so that they meet
the special properties mentioned previously. When the characteristic of the problem is known, it should
be determined which of the strategies discussed fits best the specifics of the problem. Applying the
subroutines for ordering and selection should be considered by the developer, and next by the user,
while selecting the corresponding strategy parameters.

Case M6.
If there is not enough memory for larger data, one should consider the following possibilities:

a. Changing the strategy (out of the complete strategies, the best is the Depth-First Strategy With
One Child). If this is not sufficient, the Random search strategy should be applied or the disk
memory for part of the tree should be used.

b. Increasing the number and the power of the cutting off rules that are controlled by the strategy
parameters (this can lead to losing the completeness of the method). Such means can also reduce
the calculation time.

With respect to the cases shown above, the developer can expand the concept by experimenting
with the program from the simplest to the more complex problem descriptions, and from the standard
strategies to those especially created strategies for the problem. These non-standard strategies could be
for instance made by replacing the standard parameters and sections with the non-standard parameter
values and code sections. Analysis of some of the above cases is important not only with respect to
the efficiency, but is also very useful for the clarity of the results and the required interface to other
programs. If the complete tree is being extended, for instance, the strategy does not affect the efficiency.
The selection of the strategy is not irrelevant, however, when a certain order of generating the objects
is mandatory or expected.

The methodology outlined above has allowed us to create several classical logic design algorithms
in the past [38, 44, 50, 55, 57, 61, 62]. These include state minimization or various PLA minimization
algorithms created by formal transformations of space generators and conditions of the direct problem
description. Several new algorithm variants for these problems have also been derived using the same
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methodology. Therefore we believe that it will also be useful for functional decomposition, but this still
must be verified by programs that we are in the process of developing.

3.2 EXPERIMENTING WITH DIRECTIVES BY THE DEVELOPER, AND
BY THE USER

After having introduced in previous subsections the methodology of creating search programs, the
manner in which the tree searching programs can be improved by experimenting with changes in various
description sections will be discussed. This has already been illustrated to some extent in section 3.1.
These principles will be further illustrated using several examples of problem descriptions.

The advantage of the state-space methods is the natural manner in which they are described and
their similarity to the human problem-solving techniques. This allows the introduction of various
heuristic rules to the state-space generation process that are direct and easy to modify. The prototype
programs created as recommended in previous sections are flexible and adaptable and can be modified
by replacing the section codes in problem descriptions, problem and solution conditions, the search
strategy parameters, and other sections or by adding new classes derived from previous classes. The
modification process is orthogonal and incremental in nature, which means that the changes in various
segments of the code can be done separately, and one at a time. They exhaust the space of search
methods.

3.2.1 Heuristics

A "heuristic” is any method, technique, or directive, that, in general, leads to a solution. We can
only assume, with a certain degree of plausibility, that a given heuristic directive produces the desired
results. In our case, the heuristics are expressed as subroutines, program segments, parameter segments,
or computational mechanisms that expedite the generation of the optimal solution (or quasioptimal
solution, if so desired) and even enables the developer to find a solution that would otherwise have been
impossible.

If a heuristic directive is proven to lead to optimal solutions all of the time, it can be classified as a
methodic directive and would no longer be referred to as a heuristic. It is usually necessary, however,
to have both types of directives because, without directives, the enormously large state-space would
often make finding solutions impossible. The methodic directives are based on the strict formal analysis
and can relate to certain parameters that limit the solution space or that order the descriptors in the
solution space nodes, or that order such nodes themselves in the OPEN list. The solution method is
complete when both the tree generator and the strategy are complete. The search efficiency can be
increased through independent attempts to ease the condition governing the method’s or the strategy’s
completness. This independence is advantageous when experimenting with variants of the program and
with various sizes of data for it.

Heuristic directives of the type being considered here can be divided into three categories:

1. Heuristic directives that correspond to the manner in which the problem is formulated. These
directives determine the state-space. The introduction of additional problem conditions (or rea-
sonably motivated constraints) can essentially reduce the size of the state-space.

2. Heuristic directives related to the manner in which the problem is represented in the solution space.
3. Heuristic directives that organize the search process.

When it is not possible or reasonable to specify a complete solution space, we look for the heuristic
directives that attempt to achieve the same goals as the methodic directives that were described in
section 3.1. Each of the cases M1 - M6 has its counterparts in heuristic directives.

The categorization of any particular heuristic is not unique. It is often useful, when seeking heuristic
directives, to rely on some analogies of the problems, and to use the analogies of the methods applied in
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their solutions. The existence and type of the heuristic directives influences the speed and the quality
of the solutions generated. The developer should look for the best trade-offs. The analysis of various
variants of programs for the same application also reveals the trade-offs between the enumeration and
the knowledge-based reasoning that has already been presented. The initial, direct problem description
uses only the problem conditions. The initial program does not, however, need to be, and usually is
not, the most efficient one. It suffices if it works. It is obtained quickly so more experience is gained by
working with it. A very large tree is generated and displayed. The developer can analyze the printouts of
the large trees and suggest changes based on redundancies, symmetries and other information found in
these trees. The obviously redundant or non-optimal sub-trees are noted. The analysis, as to why they
were generated, leads usually the developer to the introduction of new problem conditions. Often also to
formulation new heuristic directives, and sometimes also methodic directives. Incremental changes lead
to new variants, the behavior and speed of which are analyzed in order to find the optimal trade-offs
between the speed and the quality of results. Limiting the search can sometimes go too far - solutions
are lost or the search time increases because the manner in which the partial solutions are evaluated
becomes too complex. In such cases the developer should withdraw incrementally from some of his
previous decisions. In some other cases, the developer overconstrains first the method description, and
then he will have to experiment with sets of less constrained descriptions.

3.2.2 The Process of Fast Prototyping
Constructing the program is a complex process in which three phases are iterated:

e problem definition,
e construction of the algorithm, and

e coding of the algorithm.

Coding itself is not the most time consuming task of programming. Much more time is spent on
the problem formulation, testing of variants, debugging, trying various program segments and modifi-
cations in the data structure, testing various controls of programs, analyzing the usefulness of heuristic
directives, preparing and modifying documentation, etc. Usually the algorithm is initially not known.
It is the goal of this report to facilitate the task of finding the correct algorithm and implementing
the program. Experimenting with the program towards this end should be simplified by planning and
keeping each individual phase independent from the other as much as possible. In order to solve a
problem, when aided by the computer, the developer must have the knowledge required in the three
phases outlined above. Since these phases of the design process, to varying degrees, are contained in
the program experimentation process, the developer needs to bear in mind the aspects of the problem
and method description already mentioned. The entire prototype development should consist of the
sequence of the vertical transformations described in section 3.1 and the horizontal transformations
from this section, interleaved with experimental variant evaluations.

Heuristic directives are learned with the experience of solving a great number of problems that are
repetitive in nature. In fact, one of our methodology postulates is that such learning is facilitated and
expedited by the problem solver’s use of the appropriate programmed computer and not only through the
use of pencil and paper.

Observing human techniques of solving problems we see that people apply several intuitive hypotheses
that are often informal analogies to the cutting-off methods of our more formal search model. These
hypotheses are often formed based on induction from observing examples of how the program behaves.
Sometimes, with new methods, the representation of the problem is also modified or even totally
changed. These hypotheses are often not true, not always true, or not sufficiently founded. They play
a very fundamental role, however, in the trial-and-error process of constructing the final version of
the prototype program. The methodology proposed here has the aim of improving the fundamental
structure of human heuristics by providing better proof based on the model of solution space.
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We believe that such an experimental search environment helps to design algorithms that are ex-
perimental in nature and must, therefore, be done in an experimental manner. We observed several
times the dogmatical tendencies with which the students, engineers, CAD tool developers and even re-
searchers view algorithms out of textbooks and research papers. Creating an algorithm systematically
and playing with many variants of the algorithm crushes these dogmatical tendencies in them, and
makes them more critical and also more creative. The proposed methodology encourages to look for
new ways of solving problems.

A reader may ask, is it worthy to analyze all these problems that carefully, and with such a detail?
Is it worthy? How much improvement will it bring practically to the Functional Decomposer? In
our opinion, this analysis is of very big importance since it results from our preliminary tests of our
decomposer that small changes in decomposition strategies can lead to dramatic changes in solution
cost, decomposition times, and their mutual trade-offs (see section 13 and ?7).

QUESTIONS FOR SELF-EVALUATION

1. Select one combinatorial problem that is not trivial and that you know really well, possibly you
wrote a program for it, or at least created an algorithm. Follow the methodology outlined above
to create as many as possible new ideas and methods to solve this problem.

2. Follow the methodology outlined above to create as many as possible new ideas and methods to
solve the Set Covering Problem.

3. Follow the methodology outlined above to create as many as possible new ideas and methods to
solve the Graph Coloring Problem.

4. Follow the methodology outlined above to create as many as possible new ideas and methods to
solve the Column Minimization Problem.

5. Follow the methodology outlined above to create as many as possible new ideas and methods to
solve the Parallel Decomposition Problem.

6. Follow the methodology outlined above to create as many as possible new ideas and methods to
solve the Input Encoding Problem.

7. Follow the methodology outlined above to create as many as possible new ideas and methods to
solve the Output Encoding Problem.

8. Follow the methodology outlined above to create as many as possible new ideas and methods to
solve the Variable Partitioning Problem.
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4 EXAMPLE OF APPLICATION: THE COVERING PROBLEM

The following examples of some partial problems of MULTIS will illustrate the basic ideas involved
in the state-space search. It will also show the methods used to formulate problems for multi-purpose
search routines like those used, or to be soon used, in MULTIS.

4.1 THE FORMULATION OF THE SET COVERING PROBLEM

This problem is used in Column Minimization. It is also widely encountered in logic design (among
others, in PLA minimization, test minimization, multilevel design - see many recent examples in [77]).
Let us consider, as an example, the covering table shown in Fig. 5.

123456 123456
111100011 1[X X X
2010111 2| X X XX
3/]0011001 — 3 X X
4/0010101 4 X X
5/1 101001 5|X X X

Figure 5: A Covering Table With Equal Costs of Rows

Each row has its own cost indicated by the value in the parentheses beside it. In this example, they
are all equal. An X at the intersection of row r; and column ¢; means that row »; covers column c;.
This can be described as:

(ri,c;) €COV C Rx C, (39)
or briefly, by COV (7, ¢;).
A set of rows which together cover all the columns and have a minimal total cost should be found.

The direct problem formulation is as follows:

1. Given:
a. the set R={r1,ry,..., 7% } (each r; is a row in the table);
b. the set C = { ¢1, ¢2 ..., cn } (each ¢; is a column in the table);
c. the costs of rows f1(r;),j = 1,...,k;

d. the relation of covering columns by rows is COV C R x C.

2. Find :
Set SOL C R;

3. Which fulfills the condition:

(Vej € C)3r € SOL)[COV(r4,¢c4)] (40)

4. And minimizes the cost function:

2= ) fi(r) (41)

r; € SOL
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It results from the above formulation that the state-space § = 2F. This means that SOL C R.
Hence, it results from the problem formulation that all the subsets of a set are being sought. Then,
according to the methodology, the standard generator, called T3, that generates all the subsets of a set
is selected. Operation of such generator can be illustrated by a tree.

The previously mentioned relation RE on the set S x S can be found for this problem and used to
reduce searching for a respective search method. It can be defined as follows:

s1 RE s <= s2 D s1 (42)

Therefore, when a solution is found a cut-off occurs in the respective branch.

There exists for each element ¢; € C an element r; € SOL such that their relation COV is met.
In other words, 7; covers ¢; which means that the predicate COV(r;, ¢;) is satisfied. The cost function
F assigns the cost to each solution. In this case, this means that F' = f2 is the total sum of f1 costs
of rows from the set SOL. Using the problem definition from section 2, the covering problem can be
then formulated as the problem

P = (2%, {m}, f2), (43)

where

p1(SOL) = (V¢; €C) (I r; € SOL) [COV(ri,cf] (44)
Tree Search Method # 1
The initial tree search method is based on the direct problem formulation, is then as follows:

1. The initial node No: (QS, GS, F):= (0, R, 0).

2. The descriptors are rows r;. The application of the operator is then specified by the subroutine:
O(N, r) =
[ GS(NN) := GS(N) \ {r},
QS(NN) := QS(N) U {rs}
CF(NN) CF(N) + fi(r;).
]

3. Solution Problem and Condition (cut-off type):

pi(NN) = (V¢; € C) (T r; € QS(NN)) [COV (74, ¢5)] (45)
Comments.

1. NN denotes a successor of node N.
2. @S(N) is the set of rows selected as the subset of the solution in node N.

3. F(N) is the cost function for node N. This is the total sum of costs of the selected rows from
QS(N).

As we can see in this problem, the formulation of the additive cost function is possible.

An example of the cover table is shown in Fig. 5. In this example, for simplification, equal cost
of rows are assumed. The method can, however, be easily extended to arbitrary costs of rows. The
solution tree obtained from such a formulation is shown in Fig. 6.

The nodes of the search tree are in the ovals. The arrows correspond to the applications of operators,
and each descriptor of operator stands near the corresponding arrow. The solution nodes are shown in
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Figure 6: First Search Method for the Table from Figure 5

bold ovals. The costs of nodes are outside the ovals, to their right. The sets inside the ovals correspond
to partial solutions in the nodes. Since the entire tree has been developed here, the sets GS for each
node can be reconstructed as the sets of all descriptors from the outpointing arrows.

The cutting-off is realized based on the fact that the cost function increases monotonically along the
branches of the tree; this is the cut-off condition. The nodes that are the solutions are therefore not
extended. If the cut-off conditions were not defined, for example, the nodes {1,2,3} and {1,2,4} would
be extended. Otherwise, the tree is produced under the assumption that the cutting-off is not done for
the solutions with cost function values worse than for those nodes previously calculated. The values of
the function f are shown next to the nodes.

Observe that the nodes in this tree are extended (for example, the node {3}) in such a way, that
solutions may not be produced in their successor nodes. Based on the fact that each column must be
covered by at least one row in the node, the generation of such nodes can be avoided. This is done by
storing the columns ¢; that are not yet covered in set AS. The branching for all rows r; that cover the
respective column for each individual column is also generated. These rows are such that COV(r;, ¢;).

We can now formulate a new tree search method:



Tree Search Method #2

1. Initial node Ny:

(RS, GS, AS, CF) := (0,{rr € R | COV(ry, c1)}, C, 0) (46)
The first element of C is denoted by c¢; above.

2. Operator:

O(N, ri) =
QS(NN) = QS(N) U {rs),
AS(NN) = AS(N) \ {¢; € C| COV(ri,c;)},
¢; := the first element of AS(NN),
GS(NN):={r, € R | COV(rg, ¢;) },
CF(NN) := CF(N) + fi(r:)

]

3. Solution condition (cut-off type):

pi(NN) = (AS(NN) = 0) (47)

The corresponding tree is shown in Fig. 7.

Two disadvantages to this method become apparent from Fig. 7. The first one is in creating the
redundant descriptor 4 in GS(Ns) that can not be better than descriptor 2. This disadvantage can
easily be overcome by using the new section code that defines the domination relation on descriptors.
The second disadvantage is due to the repeated generation of the solution {1,3,4}, the second time as
{1,4,3}. If the optimal solution is desired then there is no way to avoid the inefficiency brought about
by the Tree Search Method #2.

Tree Search Method #3

Another method to avoid generating nodes for which f = oo is the application of the first method (the
generation of the T; type of tree) and an additional filtering subroutine to check nodes to verify if the
set of rows from GS(N) covers all the columns from AS(N). In addition, the following code of type
? Actions on the Selected Node” is created:

If

AS(N) ¢ {¢; €C | (3 7 € GS(N)) [COV(rs, c;)]} (48)
then

This means, that the cut-off is done by clearing set GS(N) when the set of all the columns covered by
the available descriptors from GS(N) does not include the set AS(N) of columns to be covered. For
example, at the moment of generation shown by the arrow in Fig. 6, the set of GS(Ny) = {3,4,5} and it
does not cover AS(Ny) = C. Therefore, it is assigned GS(Ny) := 0, and the generation of the subtree
terminates. This constitutes the Tree Search Method #3.

Tree Search Method #4
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Figure 7: Second Search Method for the Table from Fig. 5

The generated tree can be decreased even further when the second method is used and it is declared in
the operator that:

GS(NN) = {r, € GS(N) \ {r} | COV(r,c;)} (49)

Above, \ denotes operation of set difference.

This approach, Tree Search Method #4, can lead however to the loss of the optimal solution. It is then
a typical heuristic directive and not a methodic directive like those discussed previously.

In both trees, the cutting off condition based on the cost function has not yet been considered. If the
solution {1,2,3} in the tree shown in Fig. 6 were first found, node {2,3,4} could be cut off, and the non-
optimal solution {2,3,4,5} would not be generated. Until now, however, only methods of constructing
the generator of complete, non-redundant trees have been presented. These are the trees calculated for
the worst case of certain rules and heuristics that will be discussed in section 4.2.

4.2 SEARCH STRATEGIES

Various search strategies can now be illustrated to give the reader an intuitive feeling for the concepts
and statements introduced in the previous sections.

The node enumeration order from Fig. 7 corresponds to the Breadth-First strategy, and to the
strategy of Equal Costs (with respect to the equal cost of rows applied in this example). Eight nodes
were generated in node N7 to find the optimal solution {1,3,2}. The optimality of the solution {5,4,2}
was proven after creating node Nj5, which means, after generating 16 nodes. Nodes N; to N5 were
temporary. Cost-related backtracking occurs in node N;3 and, therefore, nodes Ni;g and Ni7 are not
generated.

The strategy Depth-First generates the nodes in the order Ny, Ny, N3, N5, Ng, Ni4, Nis, Nia, Nis,
N3, N, Ng, Nig, Ni1, N7, Ng. After finding N4, i.e., generating six nodes, the optimal solution {5,4,1}
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is found. As previously, after generating 16 nodes, the optimality of the solution {1,3,4} is determined.
We can say, it is proven, since the method is exhaustive, and we generated all nodes.

The strategy Depth-First-With-One-Successor, generates the nodes in the order: Ng, Ni, N3, N,
Ng, N4, Ng, Nlo, Nlla Nz, N5, N12, N13, Ne, N14, N15. The optimal solution {1,3,2} is found after
creating four nodes. After generating 16 nodes, the optimality of the solution {5,4,2} has been proven.
Because the selection of the descriptor depends on the row order among the rows covering the first
column, the selection is arbitrary. Hence, the order of generation in the worse case could be Ny, Nj,
Ns, Ni3, Nig (the temporary solution {5,4,3,1} of cost 4 has been found), Ni7, N1z, Ne, Nia, Nis,
Ny, N3, N7, Ng, N4, Ny, Nig, N1;. A tree of 18 nodes would be generated to prove the optimality of
{1,4,5}. This illustrates, how important are good heuristics to limit the size of the solution tree.

Tree Search Method #5

Subsequent advantages will result from the introduction of the heuristic functions that direct the order
in which the tree is extended, with regard to the method #2 presented above. The introduction of such
functions will not only lead to finding of the optimal solution more quickly, but also to expediting the
proof of its optimality. This is due to a more complete application of the cutting-off property, which
results in a search that is less extensive when the optimal solution is found sooner.

The quality function for the operators with regard to the selection of the best descriptors in the
branching nodes as well as the quality function for nodes with regard to the selection of the nodes to
be extended is defined below.

Quality function for nodes:

QF(NN)=CF(NN) + h(NN), (50)

where

~

h(NN) = CARD(AS(NN)) - CARD(GS(NN)) - K (51)
and
fi(r:) - CARD {c; € AS(NN) | COV(ri,c;)}
K — r; € GS(NN) (52)

)> CARD {¢; € AS(NN) | COV(ri,c;)})*
r; € GS(NN)

Such a defined function A is relatively easy to calculate. As proven in the experiments, it yields an
accurate evaluation of the real distance of h of NN from the best solution. It is calculated as an
additional coordinate of the node’s vector. The function’s form results from the attempt to take the
following factors into account:

1. Such nodes N; are extended that in the AS(N;) the fewest columns need to be covered. There
is a higher probability that the solution is in the subtree D(N;) at the shallow depths for such
nodes. Hence, the component CARD(AS(NN)).

2. The nodes in which the fewest decisions need to be made are extended. This is a general directive

of tree searching that is especially useful when there exist, as in our problem, strong relations on
descriptors. Hence, the component CARD(GS(NN)).

3. The coefficient K was selected in such a way that, with respect to the properties of the strategies
discussed previously, the function h is as near to h as possible.

The quality function for operators is defined by the formula:
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"V (r;) = cifi(ri) + cafa(rs) + cafs(ri), (53)

where ci, cg, c3 are arbitrarily selected weight coefficients of partial heuristic functions f1, f2, fs,
defined as follows:

f1 has previously been defined as the cost function of rows (54)

fa(rs) = CARD{c; € AS(NN) | COV(ri, ¢j)} (55)

n
fa(r) = 7 Elr ] Z CARD [r. | c; € AS(NN) A COV(ri,cj) A re € GS(NN) A COV(re,c;)] (56)
2(7i) i
where n is a number of columns. Function f3 (r;) defines the "resultant usefulness factor of the row”
r; in node NN. Let us assume that there exist k& rows covering some column in the set GS(NN). The
usefulness factor of each of these rows with respect to this column is k. When k = 1, the descriptor is
indispensable (or with respect to Boolean minimization, the corresponding prime implicant is essential).
The resultant usefulness factor of the row is the arithmetical average of the column usefulness factors
with respect to all the columns covered by it. Then, one should add an instruction in the operator
subroutine to sort the descriptors in GS(NN) according to the non-increasing values of the quality
function for descriptors g™ ¥ .

The next way of decreasing the solution tree could be by declaring new section code that checks the
relations on descriptors.

If the descriptors r; and r; are in the node N in the domination relation (such relation is denoted
by r; > 7;), r; can be removed from GS(N) with the guarantee that at least one optimal solution will
be generated.

If the descriptors r; and r; are in node NNV in the global equivalence relation, one or the other of them
can be selected and the other one should then be removed from GS(N), as well as from GS(M) where
M is any node in the sub-tree TREE(N). The equivalence class [r] of some element r from GS(N) is
replaced in this coordinate by r itself. Descriptors declared as locally equivalent are treated similarly.
The only difference is that the descriptors are then removed from GS(N) only. Let us observe that
these relations are not based on costs, but on some additional problem-dependent information about
the nodes of the tree that is available to the program. The familiar to us covering problem may be a
good example of this property.

The descriptors r; and ry are globally equivalent in node NN when they have the same cost and
cover the same columns:

rT = Trog < fl("'l) = fl(’l‘z) A (V c AS(NN)) [COV(’I‘l,C) = COV(’I‘z,C)]. (57)

Descriptors (rows) r; and r; are locally equivalent in node NN when, after removing one of them from

the array, the number of columns covered by j rows is the same foreach j = 1,...,CARD(GS(NN))-1
as after removing the second one.

ry = ry & (Vj=1,..,CARD(GS(NN))— 1) [LK(j,r1) = LK(j,r3)] (58)

where LK (j,r) is the number of columns covered by j rows in the array that originates from M(NN)
after removing row 7.

LK(j,r) = CARD {cy € AS(NN) | CARD(X;) = j} (59)

where X} is the set of rows covering the column cg;
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Figure 8: Final Search Method for the Table from Fig. 5

X, = {z € GS(NN) \{r} | COV(z,cz)} (60)

Descriptor r1 is dominated by descriptor ro when it has larger cost and covers at most the same columns
as 7, or if it has the same cost and covers the subset of columns covered by r;,

r1 < rg <= fi(r1) > fu(r2) A(V ¢, € AS(NN))[COV(r1, cx) = COV(ra, c)]
orfi(r1) = fi(ra) A{ex € AS(NN) | COV(ry, ¢x)} C{cx € AS(NN) | COV(ry, cx)} (61)

The developer can program all of the relations given above or only some of them. If all the relations
have been programmed and parametrized, the user can still select any of their subsets for execution
using parameters. The solution process is shown in Fig. 8.

Column 1 and rows 1 and 5 are selected at the beginning (GS(No) = {1,5}). After the selection of
row 1 to @S(N1), row 5 becomes dominated by 2 (or 3) and is removed. The domination of descriptor 5
by descriptor 2 is denoted in the Figure 8 by 2D5. Now descriptors 2,3,4 are locally equivalent, denoted
as LR(2,3,4). One of them, say 3, is selected. Descriptors 2 and 4 then become globally equivalent in
node Ny , denoted as GR(2,4). One of them, say 2, is selected. This leads to the solution QS(N;') =
{1,3,2}. Now the backtracking to the initial node, Np, occurs and descriptor 5 is selected. Next,
descriptors 1 and 3 are removed since they are dominated and then descriptors 2 and 4 are selected as
indispensable descriptors in node Nj that is denoted as IN(2,4) in Fig. 8. This produces the solution
QS(N;) = {5,2,4}. After backtracking to the initial node GS(Ng) = 0, node Ny is removed from the
open-list. The open-list = @ completing the search of the tree. The last solution of the minimal cost 3
is then proven to be the optimal solution.

Note the following facts:

e not all of the minimal solutions were obtained but more than one was produced,

e only node Ny is permanently stored in the tree,

o if the user declared parameter Fp.;n min = 3, the program would terminate after finding the

solution {1,3,2}. In some problems, guessing or evaluating the cost of the function is not difficult.
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A (4) X| X
B (3) X X
c@®) X
D@E) | X| X| X X
E(2) X| X| X
F@) | X| X X

Figure 9: A Covering Table with Costs of Rows not Equal

If all of the above relations, except the most expensively tested local descriptor equivalence, were
declared, the complete tree consisting of 8 rows and 3 solutions would be obtained.

Yet another approach would be to select Branch-and-Bound and Ordering as global strategies and
MUSTO0, EQUIV, REAPNT to define the local strategy. EQUIV only checks for the global equiv-
alence of descriptors. In this example, the covering table shown in Fig. 9 will be solved. The cost of
each row is entered next to its respective descriptor. In this example, the costs of the rows are not
equal. The tree structured state-space for this problem is shown in Fig. 10. The details concerning the
node descriptions for this tree are also illustrated in Table from Figure 11. (By pred(N) we denote the
predecessor node of node N).

The search starts from node 0 where no column is covered so that the set AS consists of all the columns
and all the rows available as descriptors, as well as Q.S which is an empty set since no descriptor has
been applied. After being processed by EQUIV, it is found that descriptor B is dominated by the
other descriptor, D. Descriptor B is, therefore, deleted from the descriptor list. MUSTO finds that
descriptor C' is indispensable (with respect to column 7), and it is then immediately applied by GEN
to create the new node 1. The descriptor list is then ordered by ORDER using the quality function
mentioned above. Assuming the coefficients ¢; = 0.5, ¢c; = 0, and ¢z = 1, the costs of descriptors are

Q(A) = 2+4/2 = 4.0, Q(D) = 1.544/4=25 (62)

Q(E) = 1+3/3=2.0, Q(F) = 2+4/3=33 (63)

The descriptor list is arranged according to the descriptor costs as {E, D, F, A}. The descriptors
are applied according to this sequence.

There is no difference between the application of the descriptors in the sequence of E, D or D, E
for the solution in this problem. Therefore, if descriptors £ and D have already been applied, it is not
necessary to apply them again in another sequence. This is why descriptor F is cancelled for node 3; E
and D for node Dy ; as well as F, D and F for node D;. This cancellation is done by REAPNT. The
above procedure prevents node Dy from finding the descriptor to cover column 5. Therefore, this node
is not in the path to the solution and should be cut off by GEN ER. This phenomena also happen for
nodes Dq, D3, and Ds. The cost of node D5, which is 13, exceeds the temporary cost B which is the cost
of solution node 4 that has already been found. It was, therefore, cut off by the Branch — and — Bound
strategy. So was node D;. The whole search procedure in this example deals with 11 nodes but only
stores the descriptions of 5 nodes in the memory structure. A total of two optimal solutions has been
found in the search.
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Figure 10: A Search Method for the Table from Figure 9

The methodology presented above illustrates the characteristic trade-off relationship between the
knowledge-based reasoning and the exclusively intrinsic search already mentioned in section 3. The
direct description of the problem allows us to find a solution based strictly on the generation of all pos-
sible cases not worse than the solution generated previously. The successive addition of the information
in the form of new heuristic directives and methodic directives that are based on the analysis of the
problem and the solution process (e.g. quality functions, domination relations, equivalences, Finin min,
etc.) allows for the search to be decreased.

Until now, we have not focused on how the relation COV is represented. This could be an array, a
list of pairs (r;, ¢;), a list of lists of columns covered by rows, a list of lists of rows covering the columns,
etc. The selection of the representation is independent from the selection of the method and from the
strategy, but various combinations of these can have different effects. At some stage in creating the
program, the user decides on the selection of, for example, the binary array and writes the corresponding
functions. The user can then work on the representation of the array next; by the words, by the bits.
The arrays M(N) also do not necessarily need to be stored in nodes as separate data structures, they
can be re-created from AS(N) and GS(N). The local strategy parameters should also be matched to
the representation. This is related to such factors as the total memory available for the program as well
as the average times needed to select the node, to generate the individual node, to extend the node, to
select the descriptor, and to check the solution condition.

In similar problems in the past, we have found that the application of each of the equivalence
conditions, dominance conditions, or indispensable conditions in the covering problem reduces the search
space by about 2 to 3 times. The joint application of all the conditions brought about a reduction of
approximately 50 to 200 times the generated space.

QUESTIONS FOR SELF-EVALUATION

1. Create methods and strategies for Petrick Function Minimization Problem, that will make use of
the similarity of this problem to the Set Covering Problem explained above.

2. Repeat point 1 for the Problem of Finding all Sets of Vacuous Variables for a binary single-output
strongly unspecified function.
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Figure 11: Node Descriptions for the Tree from Fig. 9

3. Repeat point 1 for the Problem of Finding all Sets of Vacuous Variables for a multiple-valued
single-output strongly unspecified function.

4. Create methods and strategies for the POS Satisfiability Minimization Problem, that will make
use of the similarity of this problem to the Set Covering Problem explained above. Remember,
that contrary to the Petrick Function Problem, the POS Satisfiability can have no solution. If
solutions exists, you want to find one that has the minimal number of positive (non-negated)
variables.

5. Use the Set Covering Problem from this section as an example to create various methods and
strategies for the Generalized Clique Partitioning Problem. Assume that each node of the graph
has a cost, and we look for a clique that maximizes the cost. What are the heuristics here? How
can you use the heuristics?
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5 EXAMPLE OF APPLICATION: THE GRAPH COLORING PROBLEM

The tree search algorithm for the Graph Coloring Problem given below colors successively nodes with
actually available color of a smallest number, remembering for each node all remaining possibilities of
coloring (it is assumed that initially the set of colors has as many elements as the set of nodes).

The chromatic number of the graph is equal to the number of colors in the exact solution. We apply
the strategy: ”depth-first with one child”. After finding a solution that is better than a previous one
(in a new branch) the algorithm has a new, improved evaluation of the chromatic number, so it can
remove from sets GS(N) all the operators that correspond to colors which were not included in the
solution. This is a very simple example of a Branch Switch Strategy. The process of tree creation is
continued using the cut-off principle based on cost function.

Algorithm for Proper Graph Coloring
This algorithm uses the Universal Strategy.
NODES is the set of nodes.
EDGES C NODES x NODES is the set of edges.
G =< NODES, EDGES > is the graph.

1. Creating the Initial State:

1. NODE, := NODES]0], /* take first node from NODES */
create initial QS := {NODE; . 1)}.
NODE, := NODES[1], /* take second node from NODES */

if ((NODE,, NODE,) € EDGES ) or ( (NODE,, NODE,) € EDGES )
then append (NODE,, 2) to QS; COLORS.USED := {1,2}

else append (NODE,, 1) to QS; COLORS.USED := {1}.

CF := CARD(COLORS.USED).

2. SET_ OF_COLORS := {1,2,...,CARD(NODES) }.

3. (QS,GS,REMAINING_NODES,COLORS USED,CF) :=
({ @S, REMAINING_NODES, COLORS.USED, CF)

2. Operator O(N, COLOR) = |

a) SN := first element from REMAINING_NODES(N), /* SN = selected node */
b) REMAINING.NODES(NN) := REMAININB_NODES(N) \ SN,
¢) QS(NN) := QS(N) U { (SN, COLOR) }
d) if COLOR € COLORS.USED(N) then CF(NN) := CF(N)

/* color exists, no change in cost */

else

(CF(NN):= CF(N)+ 1, COLORS_USED(NN) := COLORS_USED(N) U {COLOR}),
¢) if CF(NN) > CFyin A REMAININGNyODES(NN) # 0

then (cut-off, backtrack),

f) GS(NN) := SET_.OF_COLORS \ {FK(SN) | ( (SN;, SN) € EDGES or (SN, SN;) €
EDGES )}

]
3 Selected Strategy: Depth-First With One Child.
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color 2
Figure 12: Graph for Coloring to Example 5.1

4 Switch Condition for Branch:
If REMAINING_ NODES(NN) = 0§ then
for each N; in branch from Ny to NN do
GS(N;) := GS(N;) N COLORS.USED(NN)

COMMENTS

1. Coordinate QS(N) includes a partial coloring of the graph, it means the set of pairs (j, FK(7))
where ; € NODES. In the initial state two inconsistent nodes are colored with different colors 1
and 2, and two nodes n; and ng such that (n;, n2) ¢ EDGES with the same color 1.

2. GS(N) is the set of colors, which could be used to color the givennode SN. REMAINING_NODES(N)
are the set of non-colored nodes, and COLORS_USED(N) are the set of used colors.

3. In the operator, to increase the efficiency, the step e) of cutting-off before calculating GS(NN)
has been applied. As the candidates to color the selected node SN one can select the colors which
are different from colors used for nodes that are linked with SN by edges (step f) above).

4. In the moment of finding solution @S(NN) in node NN it is known that the minimial solution
needs at most as many colors as in COLORS_USED(NN). Therefore one can use only a subset
of COLORS USED(NN). In the Switch Condition for Branch one can thus remove from all
coordinates GS(N;) (for all nodes N; in the branch from Nj to the final node NN) the colors that
do not belong to COLORS USED(NN), since we are not interested in all possible colorings, but
only in the colorings with the accuracy to an isomorphism (i.e the minimum chromatic number
colorings).

5. Let us note that we have to deal here with two kinds of nodes: nodes of the graph, and nodes of
the search tree.

Example 5.1
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Q3(0)={(0.1),(1.2)}
CF(0)=2, SN=2
GS={1, 3)\45, 6}

VSIS

QS(={(01).(12) 2 1) Eqs(s):{ 02.1.2,23) ]
CF(1)=2, S CF(5)=3
GS(1)=(3, \4\5\6}
3 CUT-OFF proves that the
8?%23 =@ 1) (1 212} solution is Exact minimal

GS(1) {3 \4\5\6}

/3

QS(3)= {(0 1) (1 2),(2.1),(3.3),(5.3)}
CF(3)=3, SN=4
GS(3)={2, \4\5\6}

/2

QS(4)={(0.1),(1.2),(2.1),(3.3),(5.3),(4-2)}
CF(4)=3 SN=P, Gs(4)=

SOLUTION ISFOUND
Descriptors 4,5,6 removed from GS(i) in all tree

Figure 13: Tree Search for the Exact Graph Coloring Algorithm to Example 5.1

The tree for the graph from Figure 12 is shown in Figure 13. (For clarity, only some coordinates of the
state vector are shown).
The search process is executed as follows.

1. The initial pair of graph nodes is 0 and 1, which obtain colors 1 and 2, respectively.
2. Next graph node 2 can obtain one of colors {1,3,4,5,6}. Selected is 1.
3. Now graph node 3 can obtain one of colors {3,4,5,6}. 3 is selected.

4. This way, the first branch of the tree from Figure 13 is created.
After finding the first solution:
color 1 = {0, 2},
color 2 = {1, 4},
color 3 = {3, 5},
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we know that three colors are enough, and these colors are 1,2, and 3.

. All non-used colors are then removed from sets GS(3), GS(2), GS(1) and GS(0). Now backtrack

to node 3 of the search tree occurs.

. GS(3) = 0, so next backtrack is to node 2 of the search tree. Further, GS(2) = 0, so next

backtrack is to node 1 of the tree is done.

Now, G5(1) = 0, so next backtrack is to node 0 of the search tree is done.

. Now, G5(0) = {3} so as a result of execution of operator O(0,3) node 5 of the tree is created. In

this node, CF(5) = 3 and NODES(5) = {3, b, 4} # 0, so cut-off is executed and backtrack to
node 0 of the tree.

. Now GS(0) = 0 and the program terminates its operation with the coloring found in node 4 of

the tree. However, now we have also a proof that this is the exact minimal coloring.

QUESTIONS FOR SELF-EVALUATION

1.

How to modify the above algorithm to make smarter choices of successive nodes for coloring? Can
you use the node density or other local graph node-related parameters? Can you use the cycle
measures or other local graph cycle-related parameters?

How to modify the above algorithm to make an additional, secondary, requirement that the
numbers of nodes colored with the same color will be approximately equal?

How to modify the above algorithm in such a way that nodes not connected to other nodes remain
not colored at all? What would be the use of this property in Column Minimization Problem.

. How to modify the above algorithm to make it a Multi-Coloring Graph Coloring? By Multi-

Coloring we understand an algorithm in which a node can be colored with as many colors as
possible, but there is never a conflict between any two nodes, it means, sets of colors assigned
to any two adjacent nodes are disjoint. What would be the use of this property in Column
Minimization Problem? Write a pseudo-code of a program similar to one above.

. How to modify this algorithm that it will start from coloring large cliques and using them to

calculate the lower bound on the chromatic number?

How to use the algorithm to generate a set of relatively large, but not necessarily maximum,
cliques, and not all of them? This problem would have applications to the Encoding Problem in
Functional Decomposition.
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6 CLASSICAL APPROACHES TO COLUMN MINIMIZATION

In previous sections we discussed how to create efficient search procedures, and we gave examples
how Set Covering and Graph Coloring problems can be solved in our framework. How can we use these
methods in decomposition?

As we know, the Column Minimization Problem is very important to the success of a Functional
Decomposer, and most of the time of the calculations of a Decomposer are spent on the Column
Minimization. This problem can be solved by either Graph Coloring or Set Covering. Moreover, our
methodology teaches us that it is not only important to create an efficient solver, but it is also important
to reduce a problem to standard search problem in such a way that this standard problem will be of
the smallest possible dimension. When this cannot be done, we look for a non-standard problem of a
smaller dimension.

An attempt to create various algorithms using our methodology will be done in this and forthcom-
ing sections for the Column Minimization Problem. Next, the Variable Partitioning Problem will be
presented in the same framework. This should help the reader to be able to formulate other problems,
like this by himself. For instance, the Encoding Problem can be formulated in many ways using the
general methodology outlined by us above.

Obviously, there are many approaches to solve the functional decomposition problem. Some ap-
proaches are better than others with regards to particular problem requirements and worse with regards
to others. For example, one method may be very fast but may have a very large memory requirement.
So this method would be not practical for functions of many variables and terms. Another method may
be able to solve functions of many variables but will be very slow. Still other methods may be better
suited for highly unspecified functions.

Here, we want to understand, what is the role of the Column Minimization Problem in the overall
success of a Decomposer; especially, in terms of the calculation time, the memory usage, and the quality
of results. We want to investigate, how the answers to these questions depend on the type of data, for
instance on the percent of don’t cares, or on the density of graphs in question.

As the primary requirements for a decomposition program vary from one application area to another,
it is important to understand well the characteristics of every application when determining the best
method. Since our work is primarily concerned with Machine Learning applications where the functions
have an extremely high percentage of don’t care values, we take such functions into account here.
Presently the method introduced by Pedram et al with the best overall results in decomposing Boolean
functions ([48]) uses a BDD based approach using a Set Covering formulation of the problem. This
approach was designed with circuit-based applications in mind.

However, for Machine Learning applications it is believed that reformulating the problem from a Set
Covering formulation to a Graph Coloring formulation of the problem may significantly improve the
efficiency of the decomposition. It should be noted that the Graph Coloring approach, first introduced
for decomposition by Perkowski [58], is not a totally new idea in logic synthesis, but is often times
overlooked as an alternative approach to Set Covering and is actually a more suitable choice in many
problems.

What makes the approach of Pedram et al better than other approaches is perhaps a better combi-
nation of the following: choice of data structures, selection of free and bound sets, finding compatible
columns, encoding techniques, and eflicient programming. Perhaps, the choice of the data structure
for Boolean functions was the main single contributor to the success of their approach. Because the
problem of decomposing a functions has many parts, it seems very likely that only certain components
of the Pedram’s et al approach are more efficient than their counterparts in other programs. In fact,
we believe that there are other methods which would be more efficient overall if a better combination
of these techniques and data structures were used.
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6.1 PARTITION CALCULUS FOR FUNCTIONAL DECOMPOSITION
6.1.1 Main Theorem

H(A,G(B,C)) represents the decomposed function such that F = H(A, G(B,C)). The sets 4 and B
are the free set and bound set, respectively where AUB = X, and ANB = 0. The set C is some
subset of A when a nondisjoint decomposition is necessary, and is an empty set otherwise. It is called
a shared set of variables. P(A) is the input partition on the free set of input variables and P(B) is
the input partition on the bound set of input variables. Pr is the output partition on the set of output
variables.

Definition 6.1 Let B be a subset of the set of inputs X, an input partition generated by set B is
denoted as:

P(B) =[] P(=) (64)

z€eEB

where [| denotes the product of partitions. P(z) is a partition for variable z.

Definition 6.2 Let B be a subset of outputs set Y, the output-consistency relation associated with B,
i.e. Pr(B), is called a rough — partition ( r-partition ).

Based on the definitions of partition, Luba developed the decomposition theorems.
Example 6.1 .

For a truth table from Table 1 (this is a version of example from our Report [63], but for simplicity,
all cubes are disjoint here):

Xo X1 X2 YO Yl
0 1 0 0 0 1
1 1 0 1 0 1
4 - 1 1 0 -
5 - 1 0 0 0
6 0 0 - 1 0
Table 1: Truth table
The partitions of input variables are the following:
P(Xo) = (0,1,4,5; 4,5,6); (65)
P(X:1X2) = (0,6; 1,6; 5; 4); (66)
This is called the discernibility relation of input variables.
The partition of output signal is:
Pr = P(YoV:) = (4,5; 0,1,4; 6) (67)

This is called the consistency relation of output signals. As we can see from Pr, its sets are non-disjoint,
this relation is called a rough-partition (r-partition).
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Figure 14: Karnaugh Map for Function from Example function F; with numbers of cubes from Table 1

The corresponding Karnaugh map is shown in Figure 14. The numbers of rows (cubes) are shown for
each cube of the Kmap.

Sometimes this notation can lead to troubles. For example. Suppose we had a cube -01 with output
01 and cube 10- with output 10, because these two cubes intersect, there would be a conflict. We should
watch for this in the situation of having DC sets both in input and output. This must be taken care of
by the Reader Program that will read some files taken from other sources. We suppose that overlapping
cubes with no conflict can also make some approaches more difficult, so for time being we assume that
the cubes are all disjoint.

Theorem 6.1 Functions G and H represent a serial decomposition of function F, i.e. F = H(A,G(B,C))
if there ezists a partition Ilg > P(BUC) such that P(A)-Ilg < Pg, where all the partitions are over the
set of cubes and the number of two-valued output variables of component Ilg is equal to g = [log, L(Ilg)],
here L(II) denotes the number of blocks of partition II, and [z] denotes the smallest integer equal to or
larger than .

Here [log, L(Ilg)] gives us the number of output signals from function G.
For example, in Table 1, we have:

P(B) = P(X1X3)=(0,6; 1,6; 5; 4); (68)
P(A) = P(Xo)=(0,1,4,5; 4,5,6); (69)
if
I = (0,1,6; 4,5); (70)
then
P(B) < Ilg (71)
P(4) Te = (0,1; 6; 4,5) < Pr = (4,5; 0,1,4; 6) (72)

Therefore this is a feasible decomposition with bound set B = {X;, X5} and free set A = {X¢}. The
number of output signals from G is [log, 2] = 1.

The most important question, however, remains:
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e How to find the bound and shared set B, C?

One method for determining the bound/shared set is to use the r-admissibility test.

6.1.2 The r-Admissibility Test

Definition 6.3 r-Admissibility Test. Let P; be a partition induced by some input variables z;. The
set of partitions {p1,...,px} is called » — admissible with respect to partition Pg if there exists a set
{Pk+1, .-, 0r } of two-block partitions, such that:

P1-.-PkPet1-..-Pr < Pr (73)
and there exists no set of r — k — 1 two-block partitions which meet this requirement.

Given a set of input variables, this test helps us to know if function F' is decomposable. If so, how
many input variables the component H has.

Definition 6.4 Quotient partition. Let v be a partition and o be an r-partition, in a quotient parti-
tion which is denoted as v|o, each block of v is divided into a minimum number of elements being blocks

of v .

For example:

o=(1; 2,6; 3,6; 5,7; 4,5);

v=1(1,2,3,6; 4,5,7);

Ylo = ((1)(2,6)(3,6); (4,5)(5,7));

Theorem 6.2 For partitions v and o, such that o < v , let v|o denote the quotient partition and
n(7y|o) the number of elements in the largest block of y|o. Let [logan(vy|o)] denotes the smallest integer
equal to or larger than log, n(vy|o). (This is the lower bound of the multiplicity indez). Let II be the
product of partitions Py, ..., Py, and llp = I1- Pp. Then {Py,..., Py} is r-admaissible in relation to Pg,
with r = k + [log2(1I|TIF)].

Example 6.2

For function from Example 6.1 (Table 1), we select Xy as free set, we can test if this is feasible by
testing the r-admissibility.

P(Xo) | P(Xo) - Pr = ((0,1,4)(5); (4,5)(6)); (75)

r =1+ [log, 2] = 2, i.e. P(Xo) is 2-admissible, which means that the number of inputs to H is two,
and we know Xy is a free set, thus the number of outputs from G equals one, which is the same as what
we obtained before.

The r-admissibility has the following interpretation. If a set of partitions (P4, ..., P) is r-admissible,
then there exists a serial decomposition of F = H(A, G(B,C)) in which component H has r inputs: &
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primary inputs corresponding to input variables which induce Py, ..., Py and r — k inputs being outputs
of subfunction G.

A simple way to determine the admissibility is to solve the equation in Theorem 6.2 (i.e. 7 =
k + [logan(y | )] ). Where k is the number of variables in the input partition P(4) and n(y | o) as
defined in Theorem 6.2 is equal to the number of sub-blocks in the largest block of P(4) | P(4) - Pr.

6.2 PARTITION CALCULUS FORMALISM FOR DECOMPOSITION
6.2.1 Maximal Compatible Classes

Using the r-admissibility test, we can find a suitable set of input variables for component H. To find
the corresponding set of inputs for component G, we have to find P(B U C), such that there exists
II¢ > P(BUC) that satisfies Theorem 6.1. To solve this problem, consider a subset of primary inputs,
BUC, and the g-block partition P(BUC) = (B1, By, ..., By) generated by this subset. Then we use a
relation of compatibility of partition blocks to verify whether P(BUC)) is suitable for the decomposition
or not.

Definition 6.5 Compatibility relation: Two blocks B; and B; € P(B UC) are compatible ¢ff
partition P;j(B UC) obtained from partition P(B U C) by merging blocks B; and B; into a single block
satisfies P(A) - P;;(BUC) < Pr.

For example, in Table 1, we have :

P(B) = (0’6’ 1’6’ 5’ 4) = (BlaB2aB3aB4)a (76)

If we merge B; and B, together, we get:

P13(B) = (0,1,6; 5 4); (77)

P(A)- P12(B) = (0,1; 6; 5; 4) < Pp, (78)

therefore B; and Bs are compatible, denoted as By ~ Bs.

The same way we can check the compatibility relation of other blocks in P(B).
The result is: By ~ Bs, B3 ~ By.

A compatible class is called Maximal Compatible Class (MCC) if and only if it can not be properly
covered by any other compatible class.

Thus we have MCC1 = {By, By}, MCC2 = {Bs, Bs}. From this we can find the minimal cover,
i.e.{{B1, B2}, {Bs, B4}}, and Ilg = (0,1, 6; 4,5). We can easily see that Il corresponds to a l-output
function G. Therefore we have F = (Xo, G(X1, X2)).

6.2.2 Compatibility

Definition 6.6 Cubes: Two cubes are said to be ”compatible” if they belong to the same block of
the partition on the free set being considered and the same two cubes belong to the same block in the
output partition.
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Two cubes are said to be ”incompatible” if they belong to the same block of the partition on the
free set being considered and the same two cubes do not belong to the same block in the output partition.

Definition 6.7 Two blocks B; and B; of a partition II(B) are said to be compatible blocks if they
satisfy the requirement P(A) - (B; U By) < Pr.

The submap corresponding to some combination of input variables will be also called a cofactor. If
this is a combination of free variables, it will be also called a row - referring to a Kmap. If this is a
combination of bound variables, it will be also called a column.

Definition 6.8 Two columns of a Karnaugh Map are said to be compatible columns if every pair
of outputs in corresponding cells (i.e. outputs corresponding to the same combination of input variables
in the free set) are compatible. In binary single-output function, two outputs are compatible as long as
they are not complements of each other.

Definition 6.9 A Compatible Class (CC) is a set of partition blocks that any two of them are com-
patible.

Definition 6.10 4 Maximum CC (MCC) is a CC that cannot be covered by any other CC.

Definition 6.11 Columns that are not compatible will be called incompatible.

Definition 6.12 Decomposition Function Cardinality (DFC) is sometimes used as a measure to
evaluate the quality or effectiveness of a decomposition (where a lower DFC is desired). More specifically,
it is an integer value which is equal to

DFC = zn:fi x O;
=1

where I; and Ot are the number of inputs and outputs to block i and n is the total number of blocks.

6.2.3 Encoding of Compatible Classes

As the truth table of H is partially constructed of G block outputs and the G block outputs are nothing
but the codes allotted during the encoding process, it is very important to find the right code to reduce
the number of logic blocks needed to implement a truth table. Next, functions G and H are calculated,
(option) minimized, and realized.

In Table 2 the encoding problem is very simple; symbols A and B have to be encoded with 0 and 1.
Next it is very easy to find functions G and H from Table 2 with its binary code from the last column.

g = X1,Y0=X1Xo, Y1 =X

The circuit of this function is shown in Figure 15.
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6.3

| | XO Xl X2 | YO Yl | Gsymbolic | Gbinary

0] 1 0 0 0 1 A 0
1 1 0 1 0 1 A 0
4| - 1 1 0 B 1
5| - 1 0 0 0 B 1
6| 0 0 - 1 0 A 0

Table 2: Symbolic and binary function g to Examples 6.1 and 6.2

H

e Y
/

Figure 15: The Decomposed Circuit for Example 2

SET COVERING APPROACH TO COLUMN MINIMIZATION

Example 6.3

Given is the function described by the Karnaugh map in Figure 16, with the bound and free sets
{c,d,e} and {a,b}, respectively. The steps for the set covering approach are as follows:

Step 1:

Step 2:

Find all compatible pairs of columns. Compatible pairs are those columns which have the same
output values in corresponding positions of every row. Any one of the following pairs of cells
classifies as having the same values: (1,1),(1,X),(0,0),(0,X),(X,X). For simplicity let B;; denote
the compatible pair of columns B; and B;, denoted (B;, B;).

Let Cp be the set of compatible pairs:

Cp = (Bi2,Bi3, B4, Bis, Bi7, Bis,
By3, Bss, By, Bag, Baa, Bas, Bsg, Bar, Bsg, Bas, Bse, Bs7, Bss, Brs) (79)

This results in the Compatibility Graph from Figure 17 with the nodes corresponding to the
columns in the Karnaugh map and the edges between them indicating that the columns are
compatible.

Incrementally build CC’s (MCC’s-maximum compatible classes) from the compatible pairs of
columns found in step 1 until each column is present in at least one CC. For simplicity, only the
block number is used to denote each block (i.e. B; is shown as number 7).
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map.

cde

ab 000 001 011 010 100 101 111 110
1 8
o - 1/-10 -0 1]-
9 16
o - | - - 0| - 0|-
17 24
u-|-|/-]/1/-11]0]|0
25 32
P11 - - -0 - %
Coumn —> 1 2 3 4 5 6 7 8
reference numbers
Figure 16: Karnaugh Map for function F from Example 6.3 with numbers of columns shown below the
cci =1

Step 3:

Next, combine column 2 with the CC’s of the previous incremental step.
cCy; = (1,2)

Next, combine column 3 with the CC’s of the previous incremental step.
CCs = (1,2,3)

Next, combine column 4 with the CC’s of the previous incremental step.

It is found that column 4 is not compatible with column 2 and therefore a new CC must be
introduced which includes column 4 and not column 2.

CCy =4{(1,2,3),(1,3,4) }

Similarly, complete the CC’s until all columns have been included in at least one CC.

CcCs = {(1,2,3,5), (1,3,4,5) }

CCs = { (1,2,3,5), (1,3,4,5), (3,4,5,6) }
cCr ={(1,2,3,5,7), (1,3,4,5), (3,4,5,6) }
CCs = {(1,2,3,5,7,8), (1,3,4,5), (3,4,5,6) }

Find the minimum number of MCC’s which will completely cover all of the columns. The CC’s
in the last row of the previous step (C'Csg) form the MCC’s for this function on the given bound set.

MCC1 = (B, By, B, Bs, By, Bs)
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Step 4:

6.4

Figure 17: The Compatibility Graph for function F; from Example 6.3

MCC?2 = (By,Bs, By, Bs)

MCC3 = (Bs, By, Bs, Bg)

Therefore the minimal cover is:

((BlaB2aB3aB5aB7aBS); (B3aB4aB5aBG)) (80)

Finally, remove redundant columns from any of the MCCs of the minimal cover found in the
previous step (i.e. ((Bi, Bz, Br, Bs); (B3, Bs, Bs, Bg). This results in the partition IIg: where
e = ((B1, B2, Br, Bs); (Bs, Ba, Bs, Bs))

GRAPH COLORING APPROACH TO COLUMN MINIMIZATION

The following procedure uses the graph coloring approach from TRADE [75].

Execution of the Graph Coloring Algorithm

Step 1:

Step 2:

Find all incompatible pairs of columns. Incompatible pairs of columns are found in the same way
as in step 1 for the Set Covering approach. For simplicity let B;; denote the incompatible pair
(Bi, Bj) and Ip be the set of incompatible pairs.

Then Ip = (Bie, Bas, B2e, Bar, Bss, Ber, Bes)

The Incompatibility Graph is created as in Figure 18b with nodes corresponding to columns and
edges representing incompatibility between the columns. It can be verified that this Incompati-
bility Graph is a complement of the Compatibility Graph from Figure 18a.

Once the Incompatibility Graph has been constructed, start with the node which has the most
edges and color that node with color A. Node 6 has the greatest number of adjacent edges
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Step 3:

Step 4:
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Figure 18: Incompatibility Graph for Example Function 1

and therefore it is colored with color A. Color all other nodes connected to that node in the
Incompatibility Graph with the complement of A (denoted by A). Then remove all edges to node
colored with A. After this step has been completed, the graph appears as in Figure 18c.

Next, color the next node which has the most ”color-in-bars”. The ”color-in-bars” are the colors
that a node may not be colored with. If more than one node has the same number of ”color-in-
bars” then choose the node which has the most edges. If there is still a tie, evaluate the influence of
each color assignment, and then color the node which results in the minimum influence. Minimum
influence is defined as the color assignment to a node which results in the greatest decrease in
”color in bars”. Repeat this process until all nodes connected by edges have been colored. For
this example, the transitions from ¢ to d and from d to e in Figure 18 correspond to this step.

Remaining nodes may be colored with any color since they are compatible with all other nodes.
In this example, nodes 3 and node 5 can be assigned to any color — randomly the color A was
assigned to both of these nodes. This step corresponds to the transition from e to f in Figure 18.
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Step 5: Form the desired partition IIs by placing all columns with the same color in the same partitions.
This results in the following partition for Ilg:

II¢ = ((B1,B2,Br, Bg); (Bs,By,Bs,Bg)) (81)

Comments

1. In another approach, the Graph Coloring algorithm (presented in section 5) can be applied to the
Incompatibility Graph shown in Fig. 18b. The Reader may perform this coloring as an exercise.
In future, we plan to have several graph coloring algorithms: exact and approximate.

2. The Graph Coloring algorithm from TRADE, illustrated above, can be easily converted to a tree
search algorithm with backtracking, and still preserve the main advantage of its two heuristics:
”colors in bars” and ”order of coloring”.

6.5 POSSIBLE APPROACHES TO THE COLUMN MINIMIZATION PROB-
LEM

The following should be considered for Machine Learning applications:

1. What is the best strategy for solving the Column Minimization Problem? Should it be solved
together with Encoding, or separately? These issues are discussed in [64].

2. Assuming that the Column Minimization Problem is solved separately, is it better to use the
Column Compatibility Graph or the Column Incompatibility Graph?

3. Assuming that the Column Compatibility Graph is used. What is the best method to find the
groups of compatible columns?

(a
(b

) By reducing to Set Covering with Maximum Cliques?
)

(c) By reducing to iterative finding and removing the maximum clique?
)
)

By reducing to Set Covering with large cliques found using heuristics?

(d) By reducing to iterative finding and removing large cliques?

(e) By reducing to Graph Clique Partitioning?

In addition, for each of the above formulations, several strategies in the sense of tree search
strategies can be found, since each of the problems above, plus the problem of finding large or
maximum cliques are the tree search problems.

4. Assuming that the Column Incompatibility Graph is used. What is the best method to find the
groups of compatible columns (nodes)?

(a) By Graph Coloring?
(b) By finding Maximum Independent Set and iterating?

(c) By finding large (but not necessarily maximum) Independent Set and iterating?
We have programs for:
1. finding one maximum clique

2. finding all maximum cliques
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3. finding large clique
4. graph coloring
5. set covering

Some of these programs are already used in MULTIS. We plan to add other programs, and experiment
with various search strategies as well as combined variants.

Some other interesting oportunities arise by considering new ways of creating the Compatibility and
Incompatibility Graphs that will be introduced in section 7.

QUESTIONS FOR SELF-EVALUATION

1. Similarly as it was done in sections 4 and 5, write the pseudo-code of subroutines that collaborate
with Universal Search Subroutine for the method of solving Column Minimization Problem based
on iterative finding of large cliques.

2. Write the pseudo-code of subroutines that collaborate with Universal Search Subroutine for the
graph coloring method from TRADE, but with added backtracking.

3. Show how the problems from this section can be solved using the Graph Coloring algorithm from
section 5.

4. Solve in detail the problems outlined in Comments to section 6.4.
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7 NEW APPROACH TO COLUMN MINIMIZATION

While in the previous section we compared two classical approaches to Column Minimization, here we
will consider how they can be both improved by a new way of creating data for them. In subsection 7.1
another example function is solved, only this time a new formulation of the Graph Coloring problem
is compared against the Set Covering approach, in section 7.4 another example function is presented
to provide further illustration of the new approach that is presented in section 7.1, in section 7.5
comparisons are made between the new approach presented in step 1 of the Graph Coloring formulation
and the existing approach used in step 1 for the Set Covering formulations of the compatibility problem.

7.1 COMPARISON OF THE NEW APPROACH VERSUS FORMER APPROACHES:
FUNCTION F,

In this subsection a Multiple-Valued-Input Multi-Output function will be used to compare the new
approach to solving the ”"Column Compatibility Problem Combined with Graph Coloring” with the
standard Set Covering approach to column minimization.

Cube Xl X2 X3 X4 Yl Y2
1 0 0 2 0 1 1
2 3 0 - 1 0 0
3 3 1 0 - - 0
4 2 1 3 0 1 1
5 - 1 1 1 1 -
6 1 0 3 0 0 -
7 2 3 1 1 1
8 3 1 1 0 1 0

Table 3: Table for Example function F,

Table 7.1 describes the next example function, F5. The first column is the enumeration of cubes.
The input variables are denoted X; thru X4 and the output variables are Y; and Y;.
The multi-valued map corresponding to Table 7.1 is shown in Fig. 19.

7.1.1 Problem Description

The following are partitions for the variables describing the function represented in the table. The
blocks of each partition are formed by grouping together all cubes which have the same input values for
the variable under consideration (or in the case of the output partition Pg, cubes are grouped according
to common output classes).

Note: Semicolons are used to separate individual blocks of each partition.

P, = (1,5; 2,3,5,8; 4,5,7; 5,6)
P, = (1,2,6,7; 3,4,5,7,8)

P3 == (1a2a 2a3a 3 a6a7; 2a5a8)
Py = (1,3,4,6,8; 2,3,5,7)

Pr = (1,4,5,7; 2,3,6; 3,5,8)

Problem requirement: Find the decomposition H(A, G(B, C)) given the bound and free sets deter-
mined by the minimum admissibility.
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Figure 19: Multi-valued Map for Function F;

7.1.2 r-admissibility used to determine bound and free sets

The choice of the bound and free sets depends on the specific problem requirements — sometimes using
an estimate of the DFC as a measure. For simplicity, the only criterium used in this problem for deter-
mining bound and free sets was the minimum admissibility.

P, -Pr = (1,5; 2,3; 3,5,8; 4,5,7; 6)

P | P -Pr = ((1,5); (2,3)(3,5,8); (4,5,7); (5)(6)) (i.e. 2-admissible)
P,-Pr = (1,7; 2,65 3,5,8; 4,7)

P, | P,-Pr = ((1,7)(2,6); (3,5,8)(4,7)) (i.e. 2-admissible)
P3'PF = (1’ 2a3a 4a7a 2a6a 5’8)

Py | Ps-Pr = ((1)(2); (2,3); (2,6)(4,7); (2)(5,8)) (i.e. 2-admissible)
Py-Pr = (1,4; 2,3; 3,6; 3,5; 5,7; 3,8

Py Py- Pr = ((1,4)(3,6)(8); (2,3)(5,7)) (i.e. 3-admissible)

Similarly, one can find the r-admissibility for all combinations of bound and free sets, from which the

one with the lowest admissibility is chosen for the decomposition. As it turns out Py, Py, and Ps all yield
the lowest admissibility of 2. Randomly P; was chosen for the partition for the free set P(A4). Hence
the partition on the bound set P(B) is P, - P53 - P;. The following partitions are the assumed bound,
free, and output partitions used for the Set Covering approach as well as for the graph coloring approach.
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P(A) = P, = (1,5; 2,3,5,8; 4,5,7; 5,6) = (Ai,..., Ag)
P(B) = P;-P3-Py = (1; 4 3; 2; 5; 8 7; 6) = (B, ..., Bs)

Pp = (1,4,5,7; 2,3,6; 3,5,8) = (Pp,,..., Pr,)

7.1.3 Decomposition Using the Set Covering Approach

General description:

The basis of the following Set Covering approach by Luba et al [40] is to find all pairwise compatible
blocks from the bound set and then incrementally build MCC’s from the pairwise CC’s until all blocks
in the bound set have been assigned at least one MCC. Next, the minimum number of MCCs is selected,
which will completely cover the blocks of the bound set. Finally, the redundant blocks are eliminated
from the cover set to form the desired partition Ilg.

Specific problem description:

P(A) = P = (1,5; 2,3,5,8; 4,5,7; 5,6)
and
P(B) = P,-P3-Py = (1; 4; 3; 2; 5; 8, 7; 6) = (B1,..., Bn)
where blocks of P(B) are denoted B; for 1 < ¢ < n and
Pr = (1,4,5,7; 2,3,6; 3,5,8)
Execution of the Algorithm
Step 1: Find all compatible pairs of blocks from P(B) such that
P(4)-(B;UB;) < P

For simplicity let B;; denote B;UB;. The set of all such pairs of blocks that satisfy P(A)-B;; < Pg
is denoted H‘é.

H‘é = (B2, Bis, B1a, B1s, Bis, B17, B1s, B23, Baa, B2s, Bas, Bar,
Bsg, Bsa, Bss, Bse, Bsr, Bsg, Bar, Bas, Bse, Bsr, Ber, Bes, Brs) (82)

Figure 20 presents the respective Compatibility Graph with edges B;; from H‘é.

Step 2: Find the largest CC’s (MCC’s-maximum compatible classes) from the compatible pairs found in
step 2.
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Figure 20: Compatibility Graph for Function Fy

cci =1
cCy; = (1,2)
CCs = (1,2,3)

CCy = (1,2,3,4)

CCs = (1,2,3,4),(1,2,3,5)
CCs = (1,2,3,4),(1,2,3,5,6)
CCr = (1,2,3,4,7),(1,2,3,5,6,7)

CCs = (1,2,3,4,7,8),(1,2,3,5,6,7)

Step 3: Find the MCC’s which will cover P(B) completely. The CC’s in the last row of the previous step
form the MCC’s for this function on the given bound set.

MCC1 = (B, B3, Bs, Bs, By, Bs)

MCC2 = (B, B, Bs, Bs, Bs, Br)
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Therefore the minimal cover is:
((Bla B2a B3a B4a B7a BS), (Bla B2a B3a B5a BG, B7))

Step 4: Finally, remove any repeated blocks from any of the classes of the minimal cover found in the
previous step ((B1, B2, Bs, Ba, Br, Bg); (Bs, Bg)). This results in the partition Il which satisfies
the requirement P(A4)-Ilg < P(F),

where Il¢ = (1,2,3,4,6,7; 5,8) is the resulting partition of cubes.

Therefore the resulting function is F = H(z1, G(22, &3, 24)) where G is a single-output function.

Note: The DFC of the resulting decomposition is 32 as compared with the DFC of the non-decomposed
function which was 128.

7.2 A NEW APPROACH TO SOLVING THE COLUMN COMPATIBILITY
PROBLEM

In this subsection we will present a new approach to solve the Column Compatibility Problem that
combines the Partition-Based Method with the Graph Coloring method.

The new approach explained below finds exactly the same incompatible blocks of the bound set that
could be found using the approach from section 6. However, they are found now indirectly and at a
significant savings in the number of calculations executed. As an additional bonus, the new approach
can produce even more savings in computational cost when the non-disjoint decompositions are to be
performed.

In the Set Covering approach, the first set to be calculated is the set of ”compatible” pairs of columns
whereas in the Graph Coloring approach the first set to be calculated is the set of "incompatible”
relationship pairs between columns. The incompatible columns that must be calculated for the Graph
Coloring approach can be found in the same way as the compatible pairs of columns are found in the
Set Covering approach. However, there exists another way to calculate the incompatible columns which
significantly reduces the number of calculations required. This other way is the new approach that is
presented in the next section.

General description:

A brief explanation of the decomposition using this approach is as follows:

1) Find the cubes "within” each block of the partition on the free set P(A) which belong to the same
output class. Group them accordingly. Repeat seperately for each block of P(A4).

2) Using these incompatible classes of cubes, generate the corresponding incompatibility classes of
blocks. From these incompatible classes of blocks the incompatibility ”Block Graph” can be
formed.

3) Color the nodes of the incompatibility "Block Graph” with the minimum number of colors such
that no two incompatible nodes connected by an edge are given the same color.

4) Each color corresponds to a separate partition block of IIg. Assign all blocks which have the same
color to the same partition block.

Specific Problem Description For Function F;

Repeated below are the partitions for the free set, bound set, and and output partition.
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P(A) = P = (1,5; 2,3,5,8; 4,5,7; 5,6) = (Aq,..., 44)

P(B) = P;-P3-Py = (1; 4 3; 2; 5; 8 7; 6) = (B, ..., Bs)

Pp = (1,4,5,7; 2,3,6; 3,5,8) = (Pp,,..., Pr,)

Thus:

7.2.1

Al = (1, 5), A2 = (2, 3, 5, 8), A3 = (4, 5, 7), A4 = (5, 6)

Bi=(1); Ba=(4); Ba=(3); Ba=(2); Bs=(5); Bs=(8); Br=(7); Bs= (6)

Pr, = (1,4,5,7); Pr, = (2,3,6); Pr, = (3,5,8)

The Block Algorithm for Column Minimization by Graph Coloring

This algorithm is a new approach which greatly reduces the number of calculations required to determine
the column compatibility. Note that blocks of the free set and bound set are sometimes referred to as
the rows and columns, respectively. This is in reference to rows and columns of a Karnaugh map,
in order to provide an aid to the description of the approach. The basic idea of this approach is to
find pairs of incompatible classes of cubes and then replace these incompatible classes of cubes with
incompatible classes of columns (blocks of P(B)) which contain those cubes.

Algorithm 7.1

2)

Classify cubes within each block of P(A4) according to output classes they belong to (i.e. Vi Vj let
A; - Pp, = I;;, where I;; is a class of cubes from block A; that are elements of the same output
class Pr;). Each of these classes, extracted from within each row A;, are incompatible with each
other, and are therefore referred to as incompatible classes.

L,'j = Ai . PFJ- fOT all L,'j

Part b) is executed only for multi-output decompositions. If multi-output functions are split into
multiple single-output functions then this part would be by-passed. However, if the option to split
up a multi-output function is not chosen, then the following procedure should be used.

Find all cubes which are incompatible with the "repeated cubes” (i.e. find all I,, where I,
denotes the class of cubes which are incompatible with the repeated cube ry). Repeated cubes
are cubes which appear in more than one output class. This is accomplished as follows:

Let 7, denote repeated cubes and let R;. denote the set of cubes which belong to at least one class
I;; which cube 7, also belongs to. (R;, represents the set of all "care” cubes which are compatible
with cube 7y in row 7).

i) For each row i, find ry & R;,.. All repeated cubes r; can be found by taking the intersection
of each pair of output blocks for all combinations. This results in the repeated cubes r; = 3
and r; = b5 as can be seen from Pp. For R;,: Vj if ry € I;j then R;, = R;, UL (Riy is
initially empty).
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)

d)

ii) For each row i with » = ry, if R;, # 0, do the following: check Vj if 7, ¢ I; then
I, = I, U((Iij N R;x) @ I;) where I,, denotes the class of cubes which are incompatible
with 7.

For decompositions where multi-output functions are not split up into single-output functions,
remove the repeated cubes from all incompatible classes I;;. Otherwise, don’t make any changes
to Iij.

For each pair of incompatible classes of cubes (I,;, Iix) € I., generate the corresponding pair of

incompatible classes of columns (Ig ,IZ) € Ig(where Ip is the set of pairs of incompatible classes

of columns generated from I.). This is done by identifying all blocks in P(B) which have at least
one cube in common with a particular class of incompatible cubes and then placing them together
in a class Ig. This is done for all classes in I.. If we let I;; denote each of the individual classes
within I.. Then Ip is found accordingly:

ViVjVk if I;; N Bx # 0 then add By to class I

7.2.2 Step by Step Execution of Algorithm 7.1 on Example Function F;

a) For A; = (1,5) we have:

i = (1,5), Lz =0, Iz = (5).

For A; = (2,3,5,8) we have:

Iy = (8), Iz = (2,3), I.s = (3,5,8).

For As = (4,5,7) we have:

Isn = (4,5,7), Is2 = 0, Izz3 = (5).

For A4 = (5,6) we have:

Iy = (5), Iy = (6), Iz = (5)

b) Execution of the algorithm for this step results in the following:

For cube 3 we have:

Ri3 =10,

Ry = (2, 3,5, 8),
R3z3 =0,

R43 == @

For cube 5 we have:
Ris = (1,5),

Ros = (3,5, 8),

Rss = (4,5,7),

Rys = (5).
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ii) For cube r; = 3, we find that R;3 = 0 for i = 1,3 and 4. This means that cube 3 is not an
element of rows A;, Az or A4 and therefore cannot be incompatible with any cubes in these
rows. Since Ry = (2,3, 5,8) we know that cube 1 = 3 is an element of row A; and that it
is only compatible with cubes 2,3,5, and 8. There are no other cubes besides the compatible
cubes 2,5 and 8 in row Aj, therefore there are no incompatible cubes with cube 3 in row A,
as well as in rows A;, A3 and A4;. What does this mean? It means that since there are no
incompatible cubes with cube 3 in within any row that it occupies, we are guaranteed that
cube 3 will not be a factor in preventing any columns from being combined.

However, for cube r, = 5, we find that Rys = (3,5, 8) and since cube 5 is not an element
of Is3, then any cubes in Is; which are not contained in Rjs are incompatible with cube
5. It turns out that cube 2 is an element of I3 but not an element of Ry5 and is therefore
incompatible with cube 5. Similarly in row A4, we check membership in the classes I,; and
we find that cube 5 is incompatible with cube 6. Therefore using the formula above for I,
we were able to find that cubes 2 and 6 are incompatible with cube 5. These incompatible

cubes form the pairs ((5),(2)) and ((5),(6)) or ((5),(2,6)), which is of the form ((rx), (-, ))-

c¢) In this example, it was decided to use a multi-output function in order to illustrate all parts of
this approach. Therefore, the following is the set of incompatible classes I;; after the repeated
cubes (cubes 3 and 5) were removed.

For A; = (1,5):

I1=(1) Ii;=0 ILiz=0

For A; = (2,3,5,8):

I21 == @ I22 = (2) I23 = (8)

For Az = (4,5,7):

Iy = (4,7) Isp=0 I3z=90

For Ay = (5,6):

Iin=0 Iio=(6) Iiz=0

Now pair all combinations of incompatible classes corresponding to each row (ignore pairs con-
taining an emptyset as one of its two classes). Each pair is of the form (1;;, Iix).

Then include all pairs from all rows together to form the list of incompatible pairs of classes I.
(also include the pairs from part b) if there are any, and treat the same as other pairs (I;, Iix)).
Pairing all the classes (I, Iix) we find only one pair ((2),(8)) which does not include §. The
following is the resulting list of incompatible pairs of classes:

Lo = (((2),(8)), ((8),(2))s ((5),(8)))-
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Figure 21: Incompatibility Graphs for function F,

d) This step results in the following pairs of incompatible columns:

These incompatible pairs of columns represent the Incompatibility Graph shown in Figure 21. For
this simple example, there is only one column in each class. However, for larger examples, classes
will often times have several columns within each class. It is important to note that every column
in one class is incompatible with all columns in the opposite class within a pair of classes.

7.3 CONTINUATION OF THE COLORING APPROACH FOR FUNCTION
F,

The next two steps of the Graph Coloring Approach include:

1. Coloring the Reduced Incompatibility Graph (this can be done with an adaptation of any of the
discussed previously graph coloring algorithms).

2. Elimination of redundant blocks (optional).

Actually, skipping this step allows much greater flexibility for the encoding. However, algorithms
for encoding must be modified to ensure an equivalence relation between the original function and
the decomposed function.

Coloring the Reduced Incompatibility Graph. Color the reduced incompatibility graph with the
minimum number of colors such that no two nodes connected by an edge are given the same color. The
number of colors required corresponds to the number of partition blocks in IIgz. Assign all columns
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with the same color to the same partition. Finally, assign the remaining blocks (the blocks which are
not connected by any edges in the incompatibility graph) to any of the partitions already established.
Using an algorithm for Graph Coloring such as the ones from sections 5 and 6, we find that nodes
corresponding to columns 4 and 8 may be assigned the same color and nodes 5 and 6 may be assigned
another color different than the color which nodes 4 and 8 are colored with.

Elimination of Redundant Blocks (optional).
Eliminate any redundant blocks from the partitions to form the desired partition Ilg.

II¢ = ((Ba, Bs,...); (Bs, Bs, --.))
or
Ile = ((Bs, Bs, By, Bz, Bs, Br); (Bs, Be, B1, Bz, Bs, Br))

In the case of this example, several choices for I1g are available. Which choice is the best, it is very
difficult to determine in general, as it requires ”looking ahead” to the next decomposition. Shown below
are the possible choices for I1g after redundant blocks have been removed and the remaining blocks are
replaced with the cubes that were elements of these blocks.

Possible choices for IIg are:

e = ((2,6,..); (5,8,...))

e = ((2,6); (5,8,1,3,4,7))

e = ((2,6,1,3); (5,8,4,7))

e = ((2,6,1,3,4,7); (5,8))
7.4 ANOTHER EXAMPLE ILLUSTRATING THE NEW APPROACH

The following are the partitions of the free set, bound set and output set corresponding to function
F3 shown in Figure 22. Each number corresponds to a minterm in the figure.

P(4) = ((2,3,5,6,7,8) (11,13, 14, 16) (17, 19, 22, 24) (28,29, 32)
(33,34, 35, 38, 40) (42, 44, 48) (53, 54, 55) (58,59, 60, 62)) = (A; ... Asg) (83)

P(B) = ((8,17,33) (7,34,42,58) (6,11, 19, 35,59) (5, 28, 44, 60) (13,29, 53)
(3,14,22, 38,54, 62) (2,55) (16, 24,32,40,48)) = (B;...Bs) (84)
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Figure 22: Karnaugh Map for Function F3

Pr = ((2,6,8,11,13,28,29,33,34, 35, 44, 53, 55, 58, 60)
(3,5,7,14,16,17,19, 22, 24, 32, 38, 40, 42, 48, 54, 59, 62)) = (Pr, Pr,) (85)

Step By Step Execution of Algorithm 7.1 for function Fs.

Algorithm 7.1 is executed as follows.
Find the pairs of incompatible classes of columns for the function described by the above partitions:

a) Classify cubes within each block of P(A) according to output classes they belong to(ie. ViVj I;; =
A; - Pp; where I;; is a class of cubes from block A; that are elements of the same output class PFJ)
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Ly = (2,6,8), Ly = (3,5,7),
Ly = (11,13), Iz = (14,16),
Iy = (17,19,22,24),  Isy =0,

Iy = (28,29), Iy = (32),

Is1 = (33,34,35), Is; = (38,40),
Iy = (44), Isy = (42,48),
Iy = (53,55), Iy = (54),

Iy = (58,60), Iz = (59,62).

Skip part b) since this is a single output function.

Now pair all combinations of incompatible classes corresponding to each row (ignore pairs con-
taining an emptyset as one of its two classes) to form the list of incompatible pairs of classes I..
Each pair is of the form(I;;, I;x). The following is the resulting list of incompatible pairs of classes:

I =
(((2,6,8), (3,5,7)),
((11,13), (14,16)),
((28,29), (32)),
((33,34,35), (38,40)),
((44), (42,48)),
((53,55), (54)),
((58,60), (59,62))).

For each pair of incompatible classes of cubes (I, Iix) € I., generate the corresponding pair of

incompatible classes of columns (Ig, Iﬁ;) € Ip (where Ip is the set of pairs of incompatible classes

of columns generated from I.). This is done by identifying all blocks in P(B) which have at least
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one cube in common with a particular class of incompatible cubes and then placing them together
in a class Ig .

This is done for all classes in I.. Ip is found accordingly:

ViVj Vk if Iij N By # 0, then add By to class I}

IZ = (7,3,1), IB, = (6,4,2),
I = (3,5), I3 = (6,8),
If = (4,5), I = (8),
IB =(1,2,3), IE = (6,8),
1§ = (4), I = (2,8),
I = (5,7), I, = (8),
I = (2,4), I, = (3,6),

Note that pair ((IZ), (I5)) is not included because it would be a nonsense to have columns that
are incompatible with an empty set.

Therefore Ip =
(((7,3,1), (6,4,2)),
((3,5), (6.8)),
((4,5), (8)),
((1,2,3), (6,8)),
((4), (28));
((5,7), (6)),
((2,4), (3:6)))-

Note that each column in a pair of classes is incompatible with all columns in the opposite class.
Each of these pairs represents the sets of columns which have a conflicting output in a particular
row and therefore cannot be combined. Also, each of these pairs of classes could be broken down
into pairs of incompatible columns in an extra step if desired (i.e. ((3,5), (6,8)) could be broken
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down into the pairs ((3),(6)), ((3),(8)), ((5),(6)), and ((5),(8)). However, this is not necessary.
In fact, the larger classes can actually help speed-up the coloring process in the next step.

The coloring step is executed as follows.
The following graph coloring description is based on the approach by Wei Wan [75].
Color the columns with the minimum number of colors needed.
Recall that the minimum number of colors corresponds to the minimum column multiplicity and hence
the minimum number of partitions required for the sub-function Ilg.

1. Start by coloring the column which has the greatest number of edges color A.

2. Then for each class in which that column appears, color all columns included in the opposite class
with A.

3. Once a column has been assigned a new color, it is removed from that class as soon as the columns
in the opposite class have been colored with it’s ”color-in-bar”.

4. Check all the remaining classes for occurences of the column that was assigned color A.

5. When an occurrence of this column is encountered, color all blocks in the opposited class A and
remove the occurrence of the column colored with color A.

6. Similarly, repeat for the remainder of the columns (until no more colors are required): color the
column which cannot be colored with any of the previous colors with a new color and color all
columns which appear in classes opposite this column with it’s ” color-in-bar”.

7. If more than one column cannot be colored with any of the previous colors, then assign the next
new color to the column which has the greatest number of edges.

8. If there are more than one column which has the same number of edges, then color the column
which results in the minimum influence (the minimum influence is defined as the color assignment
to a column which results in the greatest decrease in ”color-in-bars”).

See Figure 23 for a breakdown of the steps in the graph coloring process for this example. Note that
columns which have not been assigned a color before the minimum number of colors have been assigned,
can be assigned to any of the colors for which they do not have the corresponding ”color-in-bar”. For
simplicity, assign the columns which can be assigned to more than one color, to any of the color options
available. Since each color corresponds to a separate partition block, the color assignment for this
example results in the following partition:

Pe = ((6,8)(2,5)(1,3,5,7)(4,5))

The Elimination Step (this step is optional). Redundant columns are eliminated from the
partitions formed in the previous step to form IIg. For simplicity, the redundant columns are removed
from the largest partition blocks resulting in the desired partition Ils.

Il = ((Ga 8)(2’ 5)(1’ 3, 7)(4))
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Steps shown for color assignment of columns

Columns

Step 1 2 3 4 5 6 7 8
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(O = First column assigned to a specific color
D = Columns with only one color choice

K1 = Columns with more than one color choice

Figure 23: Breakdown of steps in Graph Coloring
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7.5 ANALYSIS OF THE NEW GRAPH COLORING APPROACH VERSUS
THE SET COVERING APPROACH USED BY LUBA

In this section we will perform an analysis of the new approach introduced in the Graph Coloring
example (section 7.1) versus the corresponding approach used with the Set Covering formulation of the
compatibility problem.

The following are expressions used in each approach for finding column compatibility and the worst
case formulas used to determine the number of calculations (intersection and union operations) required
by each.

Note: The following analysis is done only for single output funtions. The reasons for this are:

1) because any multiple-output function may be replaced by multiple single-output functions

and

2) because the formula for single-output functions for the new approach is much simpler to work
with.

For step 1 using the Set Covering approach of Luba et al, [40], the expression for finding pair-wise
column compatibility is:

P(4)-(B;UB;) < Pr (86)

or more specifically,

Ap - (Bz U Bj) < PFm (87)

and the number of required calculations is:

AEP = Rx0x(5) (88)

where

n!

) = (89)

For step 1 using the new approach, the expression for finding pairs of incompatible classes of columns
is:

rl (n—7r)!

P(A)- Py - P(B) (90)

or more specifically,

Ay - Pp,_ - B; (91)

and the number of calculations required is:

New = RxOxC (92)

Variables defined:

AFEP = stands for "approach existing previously”
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Figure 24: Plots of the two approaches represented by the formulas AEP and New for a constant total
number of variables(N)

Aj = individual blocks of the free set P(A4),
By, = individual blocks of the bound set P(B),

Pr_ = individual blocks of the output set P,

m

| A| = number of variables in the free set,

| B | = number of variables in the bound set,
C = 2Bl = number of columns in the bound set,
R = 2l4l = number of rows in the free set,

Y = number of output variables,

O = 2Yl = number of blocks in the output partition.

Figure 24 presents plots of the two approaches represented by the formulas AEP and New for a
constant total number of variables (V) with varying numbers of variables in the bound and free sets.
Note that when the number of variables in the bound set is much larger than the number of variables
in the free set, there exists a several orders of magnitude difference in the number of calculations
(intersections and unions) required.

Similarly in Figure 25, we see several orders of magnitude difference in the number of calculations
when the number of variables in the bound set are much greater than the number of variables in the
free set.
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Figure 25: Plots of the two approaches represented by the formulas AEP and New when the number of
variables in the bound set are much greater than the number of variables in the free set

Concluding, the worst case analysis of the two approaches compared in sections 6 and 7 illustrates
dramatic differences in the number of calculations required by each of the approaches. Though, it can
be expected that actual results for computation time required for each approach would not differ as
dramatically as for the worst case number of calculations illustrated. The comparisons made do however
suggest a potential for significant savings using the new approach introduced in this section. The
variants of this approach for Graph Coloring and for Set Covering should be created and evaluated on
very large and sparse functions. A further analysis will be required in order to determine a more accurate
assessment of the potential for the new approach. This would include implementing the algorithm in a
program and comparing the results on numerous benchmark examples (which is currently being done
by us).

The proposed approach can be used with Set Covering as well as with Graph Coloring. However,
using the new approach with Set Covering requires an additional cost in converting from incompatibil-
ity classes to compatible classes. Though not every single comparison is calculated for each graphical
approach, the shear number of comparisons that can be calculated, indicate that there are far more
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calculations required in more steps using the Set Covering approach than in the Graph Coloring ap-
proach. However, the Graph Coloring approach and the Set Covering approach need to be analyzed
more carefully in the context of numerous Machine Learning examples to determine the impact on the
overall cost of each approach.

QUESTIONS FOR SELF-EVALUATION

1. Complete the decomposition of function Fs from this section to the stage of final decomposition
and circuit.

2. Do the same for function Fs.
3. Perform the decomposition of function Fy using classical decomposition approach. Compare.

4. Perform the decomposition of function Fy using classical decomposition approach. Compare.
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8 VARIABLE PARTITIONING SEARCH STRATEGY THAT IMPROVES
THE TRADE STRATEGY

In previous sections we learned how tree search strategies and related methodologies can be used for
the Column Minimization Problem in Functional Decomposition.

Another very important and difficult problem in functional decomposition is that of finding the sets
of bound, free and shared variables. This is called the Variable Partitioning Problem. Various variable
partitioning algorithms were implemented in TRADE, DEMAIN and GUD as component decomposers
of MULTIS. In this and next section we will present several approaches to the Variable Partitioning
Problem.

Finding a good bound set of input variables is one of the most important problems to be solved
in Ashenhurst/Curtis decomposition (both disjoint and non-disjoint), and also in the generalized de-
compositions, such as those discussed by Steinbach, Luba, and Perkowski. The variable partitioning
problem can not be solved exhaustively, since it is exponential or super-exponential (depending on the
formulation of the decomposition problem). Therefore, different authors are looking for good variable
partitioning heuristics. Especially remarkable are the methods proposed by Tadeusz Luba, Bernd Stein-
bach, Craig Files [15], and Haomin Wu [78]. In our final report we will compare the above, and also
other methods, and we will create a new method that will take into account particular ideas of most of
these methods.

In this section, the emphasis will be on comparing current methods of variable partitioning, and we
will suggest a few possible new methods and combinations of old methods to produce a smarter and
quicker method of Variable Partitioning.

8.1 COMPARISON OF CURRENT METHODS FOR VARIABLE PARTITION-

ING
Don't | m |, | Number | Node Search Possible
MethOd Cares Ut valy Of Bond SeleCtIOI’l Strategy |mpr0vernent5
Sets Tested| Cost
Luba
Yes
r-admis + |+ All good no not sure
. i Best bound
CraigFiles No | - |- | NOD 1 uB) o | hildimbing | some
2 mismatches | (no backtr.)
SGrygiel No | - |7 | various | good best bound Some
inform.th.
1)Best Bound
+| + Usq ) u(B) for 2)Depth First Best
MULTIS| Yes Specified | free set and | aysreatn Firs
Parameter | pond set 4)Ordered Search
5)Above variants
Wei Wan| Limited | - | - 4orless Cacl:glﬁis No Some

Figure 26: Comparison of Variable Partitioning Strategies

There are currently several ways to find the best partitions as shown in Figure 26. In the first row of
Figure 26 the r-admissability test [63] of Luba has shown the ability to work well with don’t cares, for
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multi-output, multi-valued simple functions. The r-admissability method has, however, the following
properties:

e this method is totally useless for binary, single-output functions, since it always evaluates the
multiplicity index of such functions to be not more than 2. This is a too rough evaluation of the
lower bound.

e the method can be modified by not only counting the number of elements in the largerst block,
but also, the avarage size of blocks, number of blocks of size 1, number of blocks of size 2, and
other global measures that may be useful to create a more accurate evaluation of the multiplicity
index.

e it has no "smart” searching.

The overall evaluation at this point is that the method should and can be improved, but that it handles
don’t cares better than the rest, especially for multi-otput, multi-valued functions.

The second row of Figure 26 shows the method of Craig Files from [15]. It does not work with
don’t cares, but uses smart searching to find solutions, and therefore gives very good results for small
completely specified functions. It’s failure to deal with don’t cares keeps it from becoming the method
used in MULTIS, where the existence of don’t cares is the single most important factor of finding the
minimized solution. The method has the following properties:

e its search idea - successive evaluation of single variables is good, but it can be further generalized
and improved using the tree searching methods outlined in previous sections. Instead of Hill
Climbing approach, any other strategy can be used.

e the most important is to find certain quality function for evaluating single variables, and subsets of
variables. The approach used by Craig Files cannot be directly extended to incomplete functions,
but perhaps some other methods of this type can be created. For instance, a total of lower bounds
for Incompatibility Graphs created for bound and free sets. This can be done using the maximum
cliques or large cliques of these graphs. The method of Haomin Wu has some similarities to this
method, but handles don’t cares better.

Next, the third row of Figure 26 shows the information theory method [41]. Such methods have
been used for years in Machine Learning applications to build Decision Trees. They are also used to
construct Decision Diagrams. This method uses no smart search, but can be adapted to don’t cares. It
can be also adapted for smart search, but some good heuristics must be found.

The fourth row of Figure 26 shows the Pair Weighting method of Wei Wan from TRADE [75]. This
The Variable Partitioning Pair Wetighting is a high quality heuristic method used in TRADE to find the
best partition of input variables into the bound set and free set, where the bound set is the collection
of variables forming the columns of a decompostion chart and the free set is the collection of variables
forming the rows of a decomposition chart. The Pair Weighting method was developed by Wei Wan
[76] to avoid the very time consuming testing of all possible sets of bound variables, which becomes
impractical for large numbers of input variables in the input function, given the current limitations and
speed of computer technology. The method has the following properties:

e can handle only a small percent of don’t cares,
e it uses no smart searching.
e it is not perfectly clear why this method work and how well it works indeed.

The method from DEMAIN is difficult to compare and it is not in table. This is basically, in the
worst case, a full search method. It sorts variables heuristically and next creates all subsets with &
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elements, going next from k one variable up and one variable down, if possible, for instance, 5, 6, 4, 7,
3,8,2,9, 10, 11, ... This is done for all subsets of k elements until multi-output Curtis decomposition
is found. This strategy is basically blind, since the sorting of variables is done once and is not very
useful to improve results. Concluding, all these methods need improvements, and all can be combined
into one high-quality method.

Unfortunately, we were not able to find any papers dealing with comparison of variable partitioning
approaches in the literature. Theoretical analysis seems also difficult. Therefore we plan to do the
following:

1. Implement the methods as they are given in the literature and compare them in GUD. The Variable
Partitioning Subroutine in GUD will have several algorithms implemented and will be able to use
with any decomposition steps and encoding algorithms. We will be then able to compare various
variable partitioning approaches for a broad spectrum of decomposition algorithms.

2. Implement a general tree-searching framework based on universal strategies, such as those from
previous section. Apply these strategies to evaluate single variables, pairs of variables, triples of
variables, etc.

3. Use different heuristics to evaluate variables and groups of variables. In particular, use the methods
from the literature and their variants.

8.2 NEW METHODS FOR VARIABLE PARTITIONING

One approach to develop Variable Partitioning methods is to find good variable orderings, and next
the best cuts in the sorted sequence of variables. These methods were applied in TRADE, and also in
the BDD-based decomposer of Pedram et al. There is a guess that such an approach gives good results,
so an experimental comparison to other strategies should be performed. Especially, comparison to the
exact and full search strategies should be done.

There is also much room for improvement of the variable ordering methods used in TRADE, and the
BDD-based method by Pedram et al. The ideal method would allow large amounts of don’t cares, use a
smart heuristic multistrategy tree searching, and should run fast. One of the possible approaches would
be to concentrate on adding smart searching to the Pair Weighting Variable Partitioning method, and
estimate its overall effect on the decomposer.

The method presented here improves on the TRADE algorithm. It consists in adding searching and
backtracking to the Pair Weighting algorithm. This will add some time to calculations, but the time
will be very minimal compared to "dumb search” from DEMAIN, and the increased performance of
TRADE should far outweight any loss of extra time needed for backtracking.

There are two fundamental methods of tree searching to which heuristics can be added: breadth first
searching, and depth first searching. The breadth-first searching, used in DEMAIN, always finds the
shortest path to a goal node (assuming the shorter bound sets are better). But it takes up large amounts
of time and memory in doing so. The strategy of DEMAIN has basically no information, and searches
nearly totally blindly. It also assumes that the smaller bound sets are better than ones with more
variables, which heuristic may be good for CLBs in Xilinx, but is not generally good for decompositions
that attempt at minimizing the DFC. It is for that reason that the Depth-First searching is better suited
for improving TRADE. The Depth-First searching is fast and goes deeply into the desired search space.
The main problem is to find some good heuristics for ordering new nodes, another problem is telling
the search subroutine when to stop going deeper and start backtracking, this is especially important in
very deep trees.

Listed below is the Pseudo-code for Variable Partitioning from TRADE.

variable partitioning() {
repeat for ON-Y, ON-N, OFF-Y, and OFF-N Tables

{
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create the Relationship Factor Table;
sort the Relationship Factor Table in a decreasing order;
bond_set := first pair in the queue;
while (| bond set | < mazimum_bond_set_number)
bond_set = bond_set U a pair in the next position;

}

As we see, the procedure uses the Relationship Factor Table as a heuristic to find correlations of
pairs and next larger groups of variables. Another observation is that it creates a sequence of increasing
bound sets, but actually returns only the last one of them.

In the presented depth-first searching algorithm, the forming of the ”best” partitions would be altered
to include depth-first searching. An example algorithm for this type of depth-first searching is shown
below.

depth_first_search( )
{
OPEN := {variable;, variable;};
/*initialize list with two random variables*/
CLOSED := {;
while OPEN # /*nodes remain*/
do
remove leftmost node from OPEN, call it X;
if for partition X there exists Curtis decomposition
then return ("success'": partition X) /#goal found*/
else
{
generate children of X. Each child is generated by adding one variable;
calculate (or evaluate heuristically) multiplicity index for each child.
put X on CLOSED;
eliminate children of X with small cost /*1loop check*/
/* these are children with high multiplicity index or r-admissibility
*/
put remaining children on the left end of OPEN; /¥ OPEN is a stack*/

}

return(failure) /*no tree nodes left*/

}

This strategy has very little heuristics, it blindly searches the increasing sets of variables; its only
heuristics is to eliminate children of X with small cost. One can use r-admissability or maximum clique
to evaluate heuristically the multiplicity index instead of actually calculating it. Thus, the algorithm
could be run several times. In the first run all bound sets could be found that would have the smallest
value of rough evaluation of the multiplicity index - for instance using the r-admissability. In the second
run the algorithm would go through these bound sets and would find all that would have the smallest
value of a more accurate evaluation of the multiplicity index - for instance using the maximum clique
of the Column Incompatibility Graph as a lower bound. Finally, in the last run, the real value of the
multiplicity index would be calculated using the Graph Coloring or Set Covering algorithms.

In another variant, all these runs can be combined in a simple loop.

An algorithm of this type would take over in the code of TRADE right after the ON-Y, ON-N,
OFF-Y and OFF-N triangle tables have been filled according to the methods discussed in [76] to form
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the final "best” partitions. The state space being searched would be the third item of the 3-tuple list
from the previously generated Relationship Factor Table.

Another similar idea related to depth-first searching the state space of the triangle tables is just
simple backtracking of all similar weighted values of the third item of the 3-tuple list to find the best
bound set. The original method from TRADE has no way of checking similar weighted values of the
triangle tables, so any addition of backtracking couldn’t hurt, it could only help. A more descriptive
form of depth-first backtracking algorithm is shown below.

backtracking( )

{

STATELIST := {Start};

NEWSTATELIST := {Start};

CURRENTSTATE := Start; /* initializations */

while NEWSTATFELIST # 0 /*while there are states to be searched*/

do
{
if search_end conditions are satisfied
then return(best_bound_sets(STATELIST);
/* when search terminated, evaluate all sets of variables found */
if CURRENTSTATEFE has no children
(excluding nodes already on STATELIST, NEWSTATELIST)
then {
while STATELIST not empty
and CURRENTSTATE = first element of STATELIST
{

remove first element from STATELIST; /* backtrack */
remove first element from NEWSTATELIST,;
CURRENTSTATE .= first element of NEWSTATFELIST,;

}
add CURRENTSTATE to STATELIST

}
else {
place children of CURRENTSTATE,
STATELIST, or NEWSTATELIST) onto NEWSTATELIST;
sort and filter NEWSTATELIST heuristically, according to method from section 2;
CURRENTSTATE := first element in NEWSTATFELIST,;
add CURRENTSTATE to STATELIST
}
}
return FAIL; *state space has been exhausted*

}

With proper modification and incorporation, either of the two algorithms listed above could be used
to better search similarly weighted values. For example, the triangle table in Figure 27a has three
possibilities for it’s last weighted item for 1 of (a,d,1), (b,c,1), or (c,e,1). Instead of just stopping at the
first set (a,d,1), backtraking methods described above can be used to further check the state space and
use them for the final comparison of best bond sets. This will take up exponentially larger amounts of
memory, so code will also have to be written to allocate large amounts of space for running of the code,
or the number of times backtracking is used must be limited. The inclusion of backtracking is shown in
Fig. 27b for the traingle table next to it. First a goal of say (a,d,1) is found from say the ON-Y Table
and compared with the three other ON and OFF tables, then using backtracking as shown in Fig. 27b
another goal of (b,c,1) is found than compared again as before.
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Figure 27: TRADE Approach: Triangular Table for pairs of variables, and Search with Backtracking

This whole process can be repeated a number of times for extremely large input functions, or it could
be built into the code to limit the number of backtracking searches for large input functions.

The additional comparisons created from backtracking should result in ”better” partitions for vari-
able ordering, without having to test all possible decompostion charts. This in turn will improve
TRADE (or any algorithm that uses TRADE’s approach to variable partitioning), which will in turn
improve MULTIS, that together with new methods, mborrows also all variable partitioning methods
from TRADE.

The depth first searching method is just one of many possible ways of making variable ordering
better in MULTIS. All other approaches to strategies presented before can be also used. The method
developed by Craig Files will then become just one special case of the best bound search, but we will
be able to search a larger space by using backtracking on top of his approach. What is most important
is to combine the r-admissability approach of Luba, which gives good results for incompletely specified
functions. This will be done in the next version of the MULTIS system.

QUESTIONS FOR SELF-EVALUATION

1. In sections 2-4 (and especially in section 3) we described methods to generate subsets of a set. How
to create a variable partitioning strategy that will be analogous to these methods? For instance,
generating the subsets of the set can be done: (1) starting from the smallest set of variables, (2)
starting from the largest sets of variables, (3) starting from sets with certain number of elements,
(4) starting from sets that are the closest to some subset of variables evaluated heuristically as
good.

2. Compare the heuristics for the bound set selection from TRADE [75] and from ASH [15]. Create
one more powerful heuristic that will include those from TRADE and ASH as its special cases.
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9 UNCERTAINTY ANALYSIS APPROACH TO MULTI-VALUED FUNC-
TION VARIABLE ORDERING

Below we present a new Variable Partitioning method that has been adapted to multiple-valued
logic decomposition from the area of general system analysis. The method is explained here only in its
application to Binary Decision Diagrams ordering, which is the same as disjoint partitioning, because
having a well-ordered diagram, the bound set is the set of variables above the min-cut of the diagram,
and the (disjoint) free set is the set of variables below the min-cut. Having thus a minimal tree, the
tree is factorized to a diagram by recursively combining the isomorphic nodes, and next the min-cut is
found. This method can be applied only for partitioning with disjoint sets of free and bound variables,
i.e. empty set of shared variables C.

As it will be shown in the forthcoming paper, an extension of this method can also be used for non-
disjoint decompositions. Moreover, actual creation of the tree or diagram structure as a data structure
is not necessary, and the selection of several good candidate sets of (possibly overlapping) free and
bound variables can be done during the creation of successive cofactors of the input function. It will
be also shown that the method can be applied to:

e single-output and multiple-output functions,
e binary, multiple-valued and fuzzy functions,

e completely and incompletely specified functions.

general Ashenhurst/Curtis decomposition and special ”gate-type” decompositions.

9.1 ELEMENTS OF SYSTEM ANALYSIS

Definition 9.1 A system S is a set of elements (state variables) V', and relations R:

S ={V,R} (93)

where:

V= {Vla V2a ] Vn}

The state of a system is a point in n-dimensional discrete space where n is equal to the number of
state variables. If the set R is empty then each variable V; may take any value from permissible for it
set of values.

For instance, if a system can be described by two state variables A and B, taking n, and n;, values:

A={a1,03,...,an,}

B = {blab2a"'abnb}

and relation set is empty (R = @) then the system has n, - np states. Relations between state variables
introduce constraints to the system and may be defined as subsets of original (full) state space of the
system. For a two-variable system:

Ryp CARB (94)

Relation R4p consists of a set of tuples (a;, b;) where each of possible values of a;, b; must show up at
least once in the set. For example if n, = np, = 2 and each then one of the possible relations is:

R4 = {(a1, b1), (az, b2)}
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Set {(a1,b1), (a1, b2)} cannot be considered as a relation because az didn’t show up in the set.

The observations on the system may be represented by a contingency table, n-dimensional table which
every cell contains the information about the number of cases a given value of the state of the system has
been observed. Our two-variable system contingency table is a two-dimensional one and has n, - n; cells.

An important notion in system analysis is uncertainty or entropy of a system.

Definition 9.2 An uncertainty or entropy of a system, for a two-variable case, is defined as follows

(Shannon [70]):

Z Zp ai b;)logy p(as b;) (95)

where:
p(a; bj) is the probability of variable A taking the value of a; and variable B taking the value of b;

and
> > plas bj) =1
]
Conditional uncertainty of variables A and B is equal to:
u(A | B) Z p(b;) > p(as | b;)logs plai | b;) = u(AB) — u(B) (96)

where:
p(a;|bj) is the probability of variable A taking the value of a; given variable B taking the value of b;.
Those equations can be easily extended to any number of system state variables.

The uncertainty as defined above is a measure of the system variety, it is maximum if all the prob-
abilities are equal (there is no privileged state of a system, there is maximum freedom of choice). The
uncertainty is equal to zero if the system remains in one state only (one privileged state, no freedom of
choice).

9.2 SYSTEM ANALYSIS AND MULTI-VALUED FUNCTION DECOMPOSI-
TION

Let us consider an n-valued function f of k inputs and m outputs:
f:D=U

D={0,1...n— 1} ={Dy,..., D}
U={0,1...n—1}" ={U4,...,Un}

Union of the function domain and the function range may be interpreted as a set of system state
variables V = DUU, and the function mapping as a set of relations Rpy. Each element of the set R is
a correspondence between an element of the function domain and element of the function range. Each
state variable may take one out of n values (n = 2 for binary function). Probabilities in equations (95,
96) are defined using classical definition of probability:

Ng

pla) = — (97)

n
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where:
n is the number of possible outcomes,

n, 1s the number of outcomes that are favorable to the event a.

From the system’s point of view, function decomposition consists in forming a partition P of the
function domain D, where a partition is a collection of mutually exclusive subsets whose union equals
D.

The partition is then used to separate the input variables into different functions to form a decom-
posed circuit.

Let us consider a decision tree (DT) representation of a multi-valued function. Decision tree com-
plexity strongly depends on the function variable ordering. The problem of finding variable ordering
which would minimize DT complexity is a key issue of many partitioning algorithms.

This problem may be addressed by means of calculating uncertainty of function taking certain output
value given the value of an input variable(s) w(Q | T), @ = Uy...Un, T = D;...D;. The value of
uncertainty represents a degree of unimportance of a given input variable for the function output
determination. The smaller variable uncertainty is, the bigger is the contribution of the variable in the
determination of the function output. Such variables are to be placed close to the DT root.

To determine the optimal variable ordering however, u(Q | T') must be calculated for every possible
T. Calculation complexity of such procedure is O(2*), which means exponential increase of calculations.
Calculation complexity may be reduced to O(k?) by applying the following heuristic procedure.

Algorithm 9.1 1. Calculate uw(Q | D;), 1 =1,2,...k.

2. Given u(Q | D,) is the minimum value from the previous step, calculate u(Q | DyD;), © =
1,2,...k, 1 #£a.

3. Given u(Q | DyDy) is the minimum value from the previous step, calculate u(Q | DoDyD;),
1=1,2,...k,14a, i #b.

4. Continue until there is only one possible D; to evaluate.

This procedure corresponds to building DT from the root (top). A similar procedure may be used
to start building the tree from the leaf nodes (bottom). In this case however, the maximum, instead
of minimum, uncertainty value is to be considered from step to step. Another approach is to consider
both maximum and minimum uncertainty values, which corresponds to building the tree from both top
and bottom.

Example 9.1
Given the following 3 input binary function [15]:

F(A,B,C) = 01010111

which is described by the truth table from Table 4 and Karnaugh Map from Figure 28. Find the decision
tree of minimal complexity.
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Table 4: Table for Example 9.1
C

ABN 0 1
00| 0] 1
01 0] 1
1111 1
10| O] 1

Figure 28: K-map for Example 9.1

The decision tree for ABC' variable ordering is shown in Fig. 29.

The results of applying equation (96) to the function f is shown in Table 5.

Conditional uncertainties calculated for every single input variable A, B and C show how much
uncertainty each of them introduces to the output variable determination. Since uncertainty due to the
variable C is the smallest one, C is the best candidate for being placed in the root of the tree. Variables A
and B when paired with C give the same uncertainty value which is smaller then uncertainty calculated
for pair AB. Therefore the best variable order is CAB or CBA. The trees for each of these cases are
shown in Fig. 30, 31.

As a comparison, the minimal tree obtained for the same function using ASH algorithm described
in [15] is shown in Fig. 32.

Example 9.2

For the function from the previous example we will repeat the tree construction method, but the
evaluation of variables will be done in a different way. For every variable we calculate the evaluation as
follows.

A A

N o Ty
AN AN /N VA NN

0 1 0 1 0 0 1 0 1 0 1

Figure 29: The decision tree for ABC variable ordering
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| Structure | Uncertainty

D 0.9544
D|A 0.9056
D|B 0.9056
D|C 0.4056
D | AB 0.7500
D | AC 0.2500
D | BC 0.2500
D | ABCD | 0.0001

Table 5:

Figure 30: Tree for order CAB

EVAL(V;) =] (ev(V})) — ev(vi) |=| (num 1in(V;) — num_O_in(Vi))—(nu,m_l_in(vi) — nu,m_O_in(Vi)) |
(98)
The formula calculates the difference gv(Vi) of the numbers of true and false minterms inside the
positive literal V; and the difference ev((V;)) of the numbers of true and false minterms inside the
negative literal V;. Next it calculates the absolute value of these two differences. Let us observe that
EV AL(V;) is the measure of absolute separation of care minterms by variable V;.

From Karnaugh Map we get:

EVAL(C) =| (4—0)—(1-3) |= 6

Figure 31: Tree for order CBA
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Figure 32: Tree for order found by ASH algorithm

EVAL(A) =| (3-0)—(2—2) | = 3

EVAL(B) =| (3—-0)—(2-2) | = 3

Therefore, variable C' is the selected as the root. Now the Karnaugh Map is separated to two
Karnaugh Maps, one for C' and one for C, which means, we calculate cofactors for C and C.

The number of maps on lower level is 2" where r is the number of variables in the set of already
selected variables. In our case there is one selected variable C. For each of the new maps that correspond
to the set of selected variables (to all cofactors of this set), we calculate the total costs:

Total_Cost = Z EV AL(cofactor;) (99)

cofactor; € Cofactors(set)

for all remaining variables. In this case, the remaining variables are: A and B.
In this particular case the total costs are equal and lead to the same solutions as those found in the
previous examples.

QUESTIONS FOR SELF-EVALUATION
1. What are the main concepts in the presented variable partitioning method?

2. How can the presented variable partitioning method be generalized to:
- multiple-valued variables,
- incompletely specified functions,

- multi-output functions,

3. Find a more accurate cost function for the last method presented above.
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10 APPLICATION OF R-ADMISSIBILITY IN VARIABLE PARTITION-
ING

We discussed already the use of r-admissibility in Column Minimization. Here we will discuss its
application in variable partitioning. This time, we will do this for multiple-valued functions.

10.1 THE R-ADMISSIBILITY TEST

Direct application of Theorem 6.1 to find functions G and H would make the problem computationally
intractable. To overcome this difficulty, we present conditions that allow us to check if, for a given set
of input variables A C X, function F is decomposable so that component H has a given number of
input variables, and variables in A directly feed H. These conditions are based on the concept of
r-admissibility of a set of partitions.

Let P; be a partition on M induced by some input variable X;. The set of partitions {Px,..., Py} is
called r-admissible with respect to partition Pg if there exists a set {Pgy1, ..., Pr } of two-block partitions,
such that:

Py - .Py-Pepy-...- P, < Pp, (100)

and there exists no set of r - k - 1 two-block partitions which meets this requirement.

The r-admissibility has the following interpretation. If a set of partitions { Py, ..., Px} is r-admissible,
then there exists a serial decomposition of F' in which component H has r inputs: k primary inputs
corresponding to input variables which induce { P4, ..., Px} and r-k inputs being outputs of G. Thus, to
find a decomposition of F' in which component H has r inputs, we must find a set of input variables
which induces an r-admissible set of input partitions.

To formulate a simple condition that can be used to check whether or not a given set of partitions is
r-admissible, we introduce the concept of a quotient partition.

Let 7 be a partition and o an r-partition, such that 7 > ¢. In a quotient partition of 7 over o,
denoted 7 | o, each block of 7 is divided into a minimum number of elements being (not necessarily
disjoint) blocks of o.

For example, if

o = (1; 2,6; 3,6; 5,7; 4,5)

T = (1,2,3,6; 4,5,7)
then we have quotient partition 7 | o:
Tlo = ((1)(2,6)(3,6); (5,7)(4,5))
The following theorem can be applied to check whether or not a set of input partitions is r-admissible.

Theorem 10.1 For partition o and T, such that o < 7, let o|T denote the quotient partition and n(7|c
the number of elements in the largest block of T|o. Let ((7|c) denotes the smallest integer equal to or
larger than logan(T|o), i.e. {(7|o) = |logyn(T|o)|. Let II be the product of partitions p1,...,pr and
IIp =11 P,. Then, p1,...,pr is 7 — admissible in relation to Pr, with r = k + ((II|IIF).

Example 10.1
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Xy Xo X3 X4 Yo Y
10 000 00O
200011010
300 101-0
40120011
50121001
60 1 30- 10
770100001
811000 - -
991110000
11120100
111 3 10 11
121130 - 1-
131 00 1001
41011- -0
151 01 0/100

Figure 33: Table to Example 10.1

The following set of partitions on M = {1,...,15} represents the function F of three two-valued
variables, X1, X2, X4, and one four-valued variable, X3, as shown in Table from Fig. 33.

P, = (1,2,3,4,5,6,7; 8,9,10,11,12,13, 14, 15)

P, = (1,2,3,13,14,15;4,5,6,7,8,9,10,11,12)

Py = (1,7,8,13; 2,3,9,14,15; 4,5,10; 6,11,12)

P, = (1,3,4,6,7,8,9,10,12,15; 2,5,11,13, 14)

Pr = (1,8,9,14; 2,6,8,12, 14; 3,6,12, 14; 3,10, 14, 15; 4,8,11,12; 5,7, 8,13)
By examining the admissibility of {P;} we obtain:

P, -Pp = (1; 8,9,14; 8,12,14; 5,7; 8,13; 2,6; 4; 8,11,12; 3,6; 10, 14, 15) (101)

Py | P, -Ppr = ((1)(2a 6)(3a 6)(4)(5a 7); (8a 13)(8a 9, 14)(10a 14, 15)(8a 11, 12))' (102)
Hence, r = 1 + | logs 5 | = 4, i.e. {P1} is 4-admissible. Also, as:
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Y, Y, Y
Y, Y, Y, 12 Y3

Figure 34: Two decompositions of function F with single-output functions G

Pr-Ps| Py-Pa-Pe = ((1)(7); (8,13); (2)(3); (9,14)(14,15); (4)(5); (10); (6); (11)(12)), (103)

{Py, Ps} is 3-admissible. Similarly, we can show that {Ps, P4} is 3-admissible. Therefore, F =
H(Xl, X3, G].(Xz, X4, Cl)) with C; C {Xl, Xg} or F = H(Xg, X4, Gz(Xl, Xo, Cz)) with Cy C {Xg, X4},
where both G; and G are single-output functions - as shown in Fig. 34.

However, if we calculate the admissibility of {P,, Ps}:

Py-Ps | Py - Py Pr = ((1)(13); (7,8); (2,14)(3,14,15); (9); (4)(5)(10); (6,12); (11)(12)), (104)

we will conclude that decomposition of F' with the set A = {X5, X3}, where G is single-output function,
does not exist. This is because r(P;, P3s) = 4, and the only possibility for decomposition of F is with
the two-output function G.

Therefore we can conclude that taking into considerations the following subsets of input variables:
{X1, X3}, {Xs, X4}, {X2, X3}, the disjoint decomposition F = H(A, (G(B)), if only exists, includes the
following subsets of variables: {X;, X3} and {X3, X4}. In other words, the analysis of r-admissibility
makes it possible to select some interesting subsets of variables for which the best disjoint decomposition
can exist, however to be sure of this fact, the sufficient condition for existence of the decomposition
( 6.1) should be verified next. This is, however not done here, and we only use r-admissibility only for
variable paritioning.

Sometimes it is more reasonable to unify the term & in r-admissility formula (i.e. » = k + (Il | Pr),
with respect to the total number of binary signals, b, which represent the set A:

b= Y llom | Vi,

e, €A

(105)

Then a binary admissibility, ry, can be used to estimate the size of the set A. For the variables from
example 10.1 we have:
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Tb(Xl) = 4
Tb(Xl,Xg) = 4

Tb(Xz, Xg) =5
and it is easier to comprehend, that the decomposition with the set 4 = {X3, X3}, i.e. F = H(X3, X3, G(X1, X4))

is not reasonable, since the number of equivalent binary input signals to block H matches the ”binary
equivalent”, b., of the set X = {X, X2, X3, Xa}:

4
b = Z |logs | Vx, | | = loga2 +loga2 + logad + log22 = 5 (106)

=1
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11 USE OF SYMMETRY IN VARIABLE PARTITIONING

In this section we will present one more approach to variable partitioning that makes advantage of
symmetry of Boolean functions, a simple but effective approach for disjoint decomposition of symmetric
functions.

Although the recently proposed Boolean decomposition methods are intended for general multi-level
network synthesis and are used for both symmetric and nonsymmetric functions, there is no special
treatment for symmetric functions and the results for those functions are still quite inferior to the best
designs.

For example, by analysing the quality of circuits designed by various design automation systems it
was was found that the designs for totally symmetric functions had on average more than twice as many
literals as the best designs, while the designs of nonsymmetric functions had on average only 20% more
literals.

Taking advantage of symmetry, we will create a method particularly suitable for symmetric function
synthesis, while some parts of the decomposition procedure will be simplified.

If the function is strongly unspecified then it is very likely that we are able to find many symmetric
variables in it.

11.1 BASIC DEFINITIONS AND THEOREMS FOR SYMMETRY

Definition 11.1 A Boolean function f(Xq,...,X,) is symmetric in X; and X; if the interchange of
X; and X; leaves the function identically the same.

Lemma 11.1 A Boolean function f(X1,...,X,) is symmetric X; and X; if and only ifinXj = inXj.

However, Lemma 11.1 is mostly suitable for the symmetry detection of completely specified functions.
For the functions with don’t cares, there is a theorem states as following:

Theorem 11.1 f = (ON,OFF, DC) is symmetric with respect to A = {X;, X;} if and only if:
(ONx,x, MOFFgx =0) and (ONg.x, NOFFyy, = 0 (107)

Detection of larger symmetry sets of completely specified functions is relatively easy, for it is an
equivalence relation on the variables of symmetry.

Theorem 11.2 f = (ON,OFF, DC) is symmetric with respect to {X;,X;, X} if and only if f is
pairwise symmetric with respect to {X;, X;},{X;, Xx}, {Xs, X}

A maximum clique of variables that are pairwise symmetrical is the set of symmetric variables of a
function.

11.2 APPROACH TO USE SYMMETRY

One of advantages of our approach is to use symmetry of functions to increase efficiency of partition-
based and cofactor-based decomposition methods. It is well known that if f is totally symmetric then
the output of f depends only on the weights of the input vectors. This can be carried over to multi-
output functions: if F' is symmetric with respect to A, then every single-output function f; in F depends
on the A-part weights of input vectors. This weight dependency suggests the disjoint decomposition.

F(X) = HHX-XG(\)=H(A,Z) (108)
where G = {g1, g2, .. .} is the multiple-output function totally symmetric on A.
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One difficult problem in functional decomposition is to choose bound set. But for a symmetric func-
tion, our conjecture is that there exists at least one optimal disjoint decomposition using the symmetric
variables as the bound set.

Following is the procedure.
Algorithm to find symmetric variables.

1. Using cofactors Fy, 3, Figzp) find all pairs (a,b) of symmetric variables of function

F.

2. Create a graph called Symmetry Graph with nodes corresponding to variables and edges
corresponding to pairs of symmetric variables: if variables @ and b are symmetric,
the edge (a,b) exists in the graph.

3. Find maximum cliques in the graph.
4. For each maximum cliques create a bound set B;.
5. For each bound set B;, let A4; = X — B;.

6. To the partitions of each set A;, do the r-admissible test, calculate the value of
;.

7. Determine the number of outputs of the recoder function G(Bi), k, which equal to r—
| Azl

8. Create Function G(B;).

9. Determine the image function H for this decomposition.

10. Select best B;.

There are two methods to create function G(B).

e The first method performs standard decomposition with set B of bound variables, calculates the
multiplicity index and executes encoding.

e The second method knows the multiplicity index and which columns to combine from previous
symmetry calculations.

It can either find function G' and next do encoding, or knowing the symmetry type directly find
recoder functions by special synthesis method for symmetric functions, in case of smaller functions
lookup table approach can be used.

In the second case, according to the value of k, certain recording functions are chosen.
For instance, if k = 2, choose G(B) as

91(X:, X;) =X + X
92( X, X5) = X - X;

We can also benefit from the symmetry properties in a function if we need to perform encoding. As
shown in the example.
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X1 Xo X3 X4||vy
1 0 0 0 0 0
2 0 0 1 1 0
3 0 0 1 0 1
ilo 1 1 oo
5 0 1 0 0 0
6 1 0 1 0 0
7 1 0 0 0 0
8 1 1 1 0 1
g 1 1 0 1 1

Table 6: Table for Example 11.1.

X1X2 X1X 2
Xpg. 00 01 11 10 X\ 00 01 11 10
o ol ol -1|fo) 00| 1| 5 (7]
o1| - || - 1} - 01 9
1] Of - - - 11| 2
0 1o 1o 0 34 86
a) b)

Figure 35: Kmaps to Example 11.1: (a) K-map with cofactors X; X, and X; X, shown, (b) K-map
numbers of rows from Table 7.11

Example 11.1 An ezample of a binary function is given in Table 6 and also in Figure 35.
As we can see, in this ecample, the variables X1 and X5 are symmetric variables, so we select these
two variables as the bound set.

Do the partition on X; and X3:

P(X1)=11,2,3,4,5 6,7,8,9}

P(X;)=11,2,3,6,7; 4,5,8,9}
The partition of bound set {X1, X3} is:

P(B) = P(Xl’Xz) = {1a2a3; 6,7; 4,5; 8a_9}

The partition of free set A = {X3, X4} is:

P(A)={1,5,7; 2; 3,4,6,8 9}

The output partition is:

P(F) = {1’ 2’ 4’ 5’ 6’ 7; 3’ 8’ 9}
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Since, because of symmetry of variables from the bound set there must exist a disjoint decomposition,
we can go directly to the r-admaissibility test.

P(A)|P(A)- P(F) = {(1,57); (2); (9); (3,8)(4,6)}
r=2+1log:2 =3
k=1
Encoding:

We can benefit from symmetry in a function when performing the compatibility test. As in this
ezample, if we group the two equivalent cofactor blocks of P(B) together, we can get the corresponding
partition Ilg, from which the image function H can be derived together with P(A) and P(F).

Group the blocks in P(B) into two blocks. (1,2,3,8,9), (6,7,4,5)

P(A)-P(B)=(1; 2; 3,8,9; 7; 4; 6)
Assign (3,8,9) as 1, we can get the image function H which is consistent with the original function y.
It is clear if we try another grouping: (1,2,3,6,7); (4,5,8,9)

P(A) : P(B) = (1a7; 2; 3,6; 5; 8a9)
which can not lead to a solution.

Depending on the type of symmetry, if there are two variables in the bound set the multiplicity
index is either 2 or 3. Since multiplicity index of three requires two wires, this decomposition would
reduce the number of columns from 4 to 3 and will not qualify for Curtis decomposition. In case of
both symmetry and antysymmetry:

(ONXinl_lOFFXvin :@) and (ONXinl_lOFFXin) =0 (109)

the multiplicity index equals 1 and there exist Curtis decomposition. The case of two variables is a
special case. As we can see, in case of three variables in the bound set the multiplicity index is at most
4. Then 2 wires are needed on output of G, versus 3 on input, so the Curtis decomposition exists.
In case of 4 variables in the bound set, in the worst case there the multiplicity index is 5, so 3 wires
are needed and Curtis decomposition exists. In general, with m variables in bound set the multiplicity
index in the worst case is m + 1, so for m > 2 the Curtis decomposition exists.

Even if a set of nodes of a graph of variables with relation of symmetry as edges has no clique, a
dense subset is a good choice for bound set in variable partitioning. By a dense subset we mean one
which is nearly a clique and has only few edges missing to be a clique.

Example 11.2 This second ezample will be very similar to the first one, we added only one row, number
10. This single care causes the columns X1 X, and X1 X, are no longer compatible. This is to make
a point that the r-admissibility for single output binary functions has the component coming from G
always at most 2, and is thus useless.

An ezample of a binary function is given in Table 7.

As we can see, in this ecample, the variables X1 and X5 are symmetric variables, so we select these
two variables as bound set.

Do the partition on X; and X3:
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X1 Xo X3 Xy|ly
1 0 0 0 0 0
2 0 0 1 1 0
3 0 0 1 0 1
ilo 1 1 oo
5 0 1 0 0 0
6 1 0 1 0 0
7 1 0 0 0 0
8 1 1 1 0 1
g 1 1 0 1 1
10 0 0 0 1 0

Table 7: Table of a binary function to Example 11.2.

P(X:)=11,2,3,4,5,10; 6,7,8,9}

P(X,) = {1,2,3,6,7,10; 4,5,8,9}
The partition of bound set {X1, X3} is:

P(B) = P(XlaX2) = {1a2a3a 10; ﬁ; 4a_5; 8a_9}

The partition of free set A = {X3, X4} is:

P(A) ={1,5,7; 2; 9,10; 3,4,86,8}

The output partition is:

P(F)={1,2,4,5,6,7,10; 3,8,9}

Since there must exists a disjoint decomposition, we can go directly to r-admissibility test without
check the condition stated in Theorem 11.1.

P(A)-P(F) = {1,5,7; 3,8; 9; 10; 2; 4,6}
P(A)|P(A)- P(F) = {(1,5,7); (2); (3,8)(4,6); (9); (10)}
r=2+1log:2 =3
k=1

As we see, in this case r-admissibility is of no help. On the other hand, it is easy to find a mazimum
clique of the Incompatibility Graph with 3 nodes, which is a good evaluation of the multiplicity indez.
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12 AUTOMATIC LEARNING OF SEARCH STRATEGIES

The ideas of Artificial Intelligence, being ther learning and neural networks, as well as methods
mimicking humans while solving problems [52, 61] can be used to program a functional decomposer.

This report proposes such an approach. Since the problems of the constrained logic optimization
class, such as NP-hard ones, will be always difficult to solve, one tries to find good heuristics that take
into account the peculiarities of real life data in order to maximize the efficiency of execution. This can
be done even at the cost of sacrificing the human’s understanding why this or other technique works well.
When a problem of developing a new algorithm is encountered, the logic theorist/program developer has,
based on his experience and a large collection of similar problems, to find an appropriate tree-searching
algorithm and the corresponding heuristics. A software system plus the outlined methodology should
help the designer in this task.

The program should help the user to choose values for several parameters that all together define
the searching strategy These parameters are: depth-first, ordered search, branch-and-bound, and other
search heuristic routines.

The developer learns strategies and heuristics in the process, but he cannot test by hand too many
examples. He cannot also perform very many experiments using the computer program, because making
changes in source code and recompiling takes time. Therefore, we want to automate at least partially
this computer-based experimentation process. This way, the program designer will be able to quickly
evaluate the usefulness of his various ideas; and particular, how much each of them contributes to the
success of the tree search.

Therefore, some of the parameters will also be used to select a combination of the learning methods.
By the learning methods we will mean the methods that change some strategy parameters in order to
improve the future behavior of the program, as the result of previous experience of it runs on categories
of data.

Two learning methods will be proposed in this report. The first method learns criteria of selecting
good operators by using a weighted evaluation function and learning its weight coefficients. The same
approach is used for selecting nodes as well, where the coefficients of the evaluation function for solution
tree nodes are learned. Another variant of this method observes the fact that a search strategy in a
program can be described by a set of subroutine flags that are used to connect or disconnect the
respective subroutines from the main tree-searching program. The subroutine with a flag taking values
0 < p < 1 is connected with a probability of p. The probability coeflicients of the flags can be learned
in a similar way that the coefficients of the evaluation function are learned. Analogous approaches have
been successfully applied in game playing programs and pattern recognizers [4, 5, 9, 21, 39, 42, 45,
67, 68, 69, 71, 81] but to the best of our knowledge, they have never been used to solve the class of
combinatorial design problems considered by us here.

The second approach is an original one. It is used in Branch-And-Bound strategies and determines the
Stopping Moment - such a moment of search in which backtracking can be terminated, because a better
solution is very unlikely to be obtained in future. In several problems a strategy can be constructed
that quickly leads to a minimal solution, however, it takes a very long time for the computer to prove
that the solution is really the minimal one. Therefore, it is important to know the moment when the
further backtracking can be terminated. The method uses a normalized shape diagram to determine the
stopping method. The diagram plots the cost function values to the number of subsequently generated
solutions. It is assumed, that these shapes are the same for combinatorial data of the same type.

The predictions of the stopping moment are calculated for some estimated probability of not loosing
the optimal solution.

Section 12.1 presents the evaluation function learning method and illustrates with the set covering
problem from section 4. Section 12.2 presents the backtracking stopping learning method, and section
12.3 illustrates this approach with a linear assignment problem. We are interested in this problem
because it finds application to the Encoding Problem in decomposition, However, it has also several
applications in: VLSI layout, logic synthesis, operations research, production scheduling, marriage
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Figure 36: Collaboration of the Learning Methods with the Problem Solver

counseling, economics, communication networks, personnel administration, clustering, psychometrics,
and statistical inference [1, 10, 17, 18, 23, 24, 27, 33, 34, 43, 65, 72, 79]. It is closely related to
the traveling salesman problem [37]. Interestingly, the same "linear assignment” problem finds also
applications to create general-purpose efficient heuristic learning schemes.

The conditions, relations, sorting functions, selecting functions, and strategy parameters, all together
describe some ”personalized” solution tree searching method and respective strategy. The possibility of
dynamic modification of flags and coeflicients used in them is the basic principle of learning in program.
Fig. 36 presents schematic diagram of our approach. The Problem Solver in the top left corner is the
tree searching one described in the previous sections. Its strategy is specified by a Strategy Vector -
an ordered vector of numerical coeflicients called Strategy Parameters (in general, real numbers,
often zeros and ones or numbers from [0, 1]). Each value of the Vector describes one search strategy
that can be realized by the Problem-Solver. Assuming r coordinates of the vector, and each of them
with w values, one can realize w” strategies. The sub-vectors of the System Vector (subsets of Strategy
Parameters) are created by four Learning Schemes:

1. Learning Scheme # 1 - learning the Operators Evaluation Function.

2. Learning Scheme # 2 - learning the Tree Nodes Evaluation Function.
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3. Learning Scheme # 3 - learning the moment when to stop the searching.

4. Learning Scheme # 4 - learning the probabilities of calling various subroutines and using param-
eters.

Strategy Defining Subroutines.

The user can set the initial values of all Strategy Parameters and some of them cannot be modified
by learning. The Strategy Vector Generator checks the consistency of parameters. Certain subroutine
flags are conditionally disjoint. For instance, there can be three subroutines, SS1, §52, and 5§53, all
used to perform the sorting of operators. They use three different methods with different comparison
criteria to be used in a node of the tree. Since only one of them can be used at given time, selecting SS1
(flag for $S1 enabled) will disable flags for $S52 and SS3. Let us observe, that the sum of probabilities
for parameters SS1, $52 and SS3 does not have to be equal one, since in any case, selection of one of
the subroutine flags will disable the other ones from the group. In general, the Ezclusion Conditions
can be of the form: Si A Sj or Sk A SIA Sf— —=Su A —Sv which means that if flags S¢ and
Sj or flags Sk, SI and Sf have been selected then the flags Su and Sv must be disabled. The four
learning schemes have their local memories that store sets of pairs [ partial vector sample, its cost ]|,
or other similar data. The costs are provided by the calculations of some solution parameters, such as,
the values of the cost function, the total solution times, the solution cost improvement times, the sizes
of the used memory. All these methods are "orthogonal” (independent) and can be applied separately
or together. For strategies #1, 2, and 4, the improper learning, or the lack of the convergence cannot
result in non-minimal solutions, but the lack of convergence will cause the program to take more time
to obtain the optimal solution.
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12.1 THE FIRST METHOD: LEARNING THE EVALUATION FUNCTION

Several studies lay the stress on the importance of selecting an appropriate Evaluation Functions
(Quality Functions) while searching a tree [71, 46]. This section considers only Branch-And-Bound
strategies, or mixed strategies, that combine the Branch-And-Bound and Ordered-Search Strategies.
This principle is used in Learning Schemes # 1, 2, and 4.

Let the measure of the intelligence of the system be the number of nodes which have to be generated
to find the optimal solution. It is easy to observe that this number depends on how quickly the program
will encounter the appropriate branch (it means one that terminates with the optimal solution) and this
will in turn depend on the good selection of evaluation functions for operators and nodes. For instance,
in program the quality function for operators can be defined in a form

M
¢ fi =CT . F (110)
2=0
where
FT = (f1, far s fn) (111)
is a vector of partial quality functions and
CT = (c1, €2, ooy Cn) (112)

is a vector of wetight coefficients. For each new problem, or even particular set of data for this problem,
there is a question of how to select the vector CT. The program can automatically learn CT while
solving the given problem or a set of examples. The learning problem can be formulated as follows.
On the basis of the already searched part of the solution tree, and the information gathered from the
previously solved examples of the same set, select such C7T that if a subsequent searches of the same
tree were executed, the program would directly extend the branch leading to the best of the solutions
selected until now, opening only those nodes, which are on the branch from the initial state of the tree.

Let us denote by N any node on this path, except the solution, and by NN one of its successors on
this path. Let O(N) be the operator transforming N to NN on the best branch from all the previously
searched branches, and let O;(N) stands for all other operators in N.

To solve the formulated above problem we need to select such vector CT that the following set of
inequalities be satisfied:

(v N)[CT - F(O(N)) > T . F(O;(N))] (113)

or, after transformation

(3 N)[CT(F(O(N)) — F(O:;(N))) > 0]. (114)

Such set is usually inconsistent, so the problem of learning is reformulated to the problem of selecting
CT which satisfies the greatest possible number of inequalities from the above set.

For illustration, let us consider a two-dimensional case (Fig. 37a).

Let us assume that in some node there are 7 operators, for which the quality vectors can be rep-
resented as in Fig. 37a. Let us also assume that after finding the next solution the vector 4 is best.
Using 114 we create then the difference vectors (F(O) — F(O;)) . We can observe that no vector C
exists in Fig. 3.1b that would satisfy the set of equations 114.

Let us, therefore, reformulate the learning problem in the following manner: Select such a vector C
for which as many as possible of the inequalities from the set of equations 114 are satisfied. As it can
be noticed, this problem is equivalent to the problem of calculating such a hyperplane running across
the coordinates system center, that as many as possible of the differences (F(O(N)) — F(O;(N))
are located on one side of this hyperplane, and as few as possible on the other side. In the case of
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Figure 37: Two-Dimensional Case to Illustrate the Learning Method

n-dimensional space this problem is time consuming to solve, so we have implemented an approximate
solution according to [71]. A hyperplane will be considered optimal, when

Z ¢t . D; = maz, (115)
=1

where | C' | = 1 and

D; = - (116)

is a normalized vector of differences.
The normalized vector

C = i=1 (117)
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is taken as the solution. Whenever new solution is found or when a backtrack occurs, the new inequalities
are added to the learning procedures databases and the Learning Schemes #1, 2, and/or 3 are called
in order to update the values of respective vectors C, using the above formulas.

An algorithm using the above principles is very fast and gives satisfactory results. Application of this
type of learning increases the time (in the learning phase) by about 20% - 30%, but reduces the tree
size by about 15%- 20%.

12.1.1 Experimental Results of the Set Covering Problem.

This problem was discussed previously. Now we will only discuss the learning aspect of it. It has been
found by us in past on another applications, that the application of each of the equivalence conditions,
dominance conditions, or indispensable conditions in the covering problem reduces the search space by
about 2 to 3 times. The joint application of all the conditions brings about a reduction of approximately
50 to 200 times of the generated space. The influence of learning method on solution efficiency has been
investigated. The computation time was increased in the learning phase by 20% to 30%. The vector of
coeflicients obtained in this learning was: C' = [-0.85, 0.25, -0.35]. This vector brings next 15% - 20%
decrease in the generated solution space size, as compared with the initial vector: C' = [ -1, 0, 0].
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12.2 THE SECOND METHOD: LEARNING THE STOPPING MOMENT

The stopping process can be explained using an "tmprovement curve” in a diagram where the z-axis
is a solution time expressed as a number of expanded nodes and the y-axis is a value of the cost function
of the best of the solutions found until then.

f

ny Ny N, =Nopt NC

Figure 38: Improvement Curve for the Second Learning Method. Dependency of the cost function on
the number of expanded nodes.

An example of an improvement curve is shown in Figure 38.
The solution process can be in this case terminated after expanding ng nodes, while the further expansion
will not bring any cost function improvements. A question can be thus raised ”“can one construct a
system that would learn to predict the effects (or, specifically, lack of effects) of the further solution
space expansion ?”. A positive answer to this question would additionally improve the solution space
method efficiency.

A new approach to this problem will be proposed below. It takes the following assumptions:

1. There exist combinatorial problems for which for all examples from some set of data the improve-
ment curve shapes are similar.

2. There exists a statistical dependency (proportionality) between the number of nodes which have
to be expanded in order to find successive, better solutions, i.e., ni, ng, ns, .... (See Fig. 38.).

In order to establish this proportionality, a sufficiently large number of examples must be tested. Also,
it is necessary to introduce certain "normalization” that would make possible comparison of various
improvement curves.

Let us introduce the concept of the dimension of the problem with the respect to the i-th improvement,
or i-th dimension for short, as the number of nodes that must be expanded in order to obtain the i-th
improvement of the cost function value. It will be denoted by n;. By n;; we will denote the number
of nodes to obtain the i-th improvement in the j-th problem’s sample. In Fig. 38 the dimension with
respect to the first improvement is n, with respect to the second is ny, and so on. For the given search
strategy, the dimension sequence determines a unique improvement curve for this problem. Various
problems can have sequences of dimensions of various lengths.

Solution of each example by a computer creates some number of pairs

(ni, nopt) (118)
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In the discussed example the pairs (ny1, ns), and (n2, ng) are created. Each pair is reduced to a standard
dimension N, by multiplying both its coordinates by a factor of N/n;. The following pairs are obtained

(N, Nopt * N), (119)
n;

where N is a fixed coefficient.
The second coordinate of each pair determines the standard number of nodes N,; that results from the
i-th dimension and which also has to be expanded in order to find the optimal solution. By disposing
several improvement curves for many examples, one can calculate average standard numbers of nodes
N,; as weighted averages, while the weight of each result N,; grows with the value of the :-th dimension
n;. It is based on the assumption that with an increase of example dimension the results obtained
from the example are more reliable, i.e. they are characterized by a smaller expected value of standard
deviation. Hence:

ki ki
. 1Noij < N Zleopt
i= i=
g S VI & S (120)
k; ki
nij > mij
j=1 7j=1

where k; is a number of already solved examples that have the i-th dimension. The standard deviations
of the obtained results are as follows:

ks
Z:lnij‘(Noij — Ny)
o= | = (121)

ks
> mij
7j=1

In order to assure a sufficiently high probability that the space expansion would be not terminated
before obtaining the optimal solution, a width of the half-interval of confidence with some coefficient is
added to the calculated values of N,;:

N; oz = Noi + m - o (122)

Coefficient m = 3 assures the 99,7% probability of assuming the normal probability density of the
results. Therefore, N; ;4 determines the maximal standard number of nodes - calculated with respect
to the i-th dimension - which should be expanded in order to find the optimum solution.

The calculated values are applied as follows. Having found the first solution by expanding n; nodes,
the maximum number of nodes ni, 4. (already not the standard one) is calculated,

N .
= Mimae ' (123)

Nimae N
If a better solutions is not found after expansion of ni,,,, nodes, the system stops. However, if
after expansion of ny < n1,,,, nodes a better solution is found, then the value of ny,,,, is calculated
according to the formula:

n _ (kl * Mlmaz + k2 ° NZ’”W)G : n2) (124)
2maz  — (kl + kz)
where k; and k; determine number of examples which have been used to calculate the values of Ny, .,
and Nj,,,.- The system behavior after generating next solutions is based on the same principles.

116



Na Np Ne NC

Figure 39: The Effect of Concurrent Application of Both Learning Methods, (a) without learning the
quality function coefficients, (b) with learning the quality function coeflicients.

The method described above bypasses several difficulties related to the normalization of several
individual properties of the problems, such as different numbers of improvement curve steps, or various
values of quality function decrements. It can be observed that this method collaborates well with the
one to learn quality functions coefficients, and gives better results when the other method produces
better results.

Fig. 39 presents schematically the effect that can be obtained by concurrent application of the both
learning methods. Without learning, n. nodes should be expanded. By applying the learning method
from this section one would need ny nodes while applying additionally the method from section 12.3
one would need only n, nodes.

12.3 EXAMPLE OF APPLICATION OF THE SECOND METHOD: THE LIN-
EAR ASSIGNMENT PROBLEM

This problem, similarly to the previous one, has several CAD applications, most importantly here,

for encoding.

Problem Formulation.

Given is n machines and n workers and the productivity of the worker ¢ on machine j is denoted
by w;;. The assignment of machines to workers is sought that maximizes the total productivity of all
workers. The assignment matrix W,xn = [w;;] is given from which n elements must be selected in
such a way that any two of them are taken from a different row and column and the sum of the elements
is maximum. Since program looks for a minimum, the problem is reformulated as below.

Each object has n properties. The value of property z; determines the column number from which
the element from row ¢ has been selected. In order to simplify the program the elements of the matrix
are selected in the following order: first an element from row one is chosen, next an element from row
two, and so on. In this case the operator is a number specifying only the second coordinate of the
selected element w;;, and the first coordinate is specified by the depth of the node in the tree. Secondly,
the list AS(N) of nodes specifying the state of the object in node N becomes in this case unnecessary,
while it would contain the set of non-selected rows, and this set is already specified by the depth of the
node in the tree. For instance, in such description, the solution

<3,1,2>

for a 3 x 3 problem means that elements wi3, w21, wsz have been selected from matrix W. The

description of the initial state is as follows:
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QS(O) =0,
GS(0) = set of numbers of all columns.

Operation of operator O(N, 7;) can be described as follows:
[
QS(NN)=QS(N) U {r; },
GS(NN)=GS(N) \ {n}.
]
The solution condition is GS(NN) = 0.

The specification of the quality function values for operators is in this case obvious - they are
the negated values of the respective elements w;; of the matrix. The value of cost function for states
is equal to the sum of negated costs of operators on the path from the initial state to the given state.
A heuristic quality function for nodes, that specifies the minimal cost of the path from the given
node to the solution is also useful. It is defined as follows:

h = § Ws;, min
[t

where summing is extended over the non-selected rows, and w;, yin denotes the least element of the
i-th row among the elements from the non-selected columns.

a) NC b) T c d
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Figure 40: The dependence of (a) number of nodes and (b) the processing time on the problem size for
strategies: a - Breadth First, b - Depth First, ¢ - Branch-and-Bound, d - Ordered Search

Experimental Results.
The influence of the search strategy on the solution efficiency has been investigated. Fig. 40. presents
the statistical dependency of the solution time and the number of nodes expanded with respect to the
problem’s dimension, for various strategies. The Ordered-Search strategy has been the most efficient
one for this problem. It is due to the usage of a very accurate heuristic function which permitted for
cutting branches at small depth of the tree.

This problem is one for which the Stopping Learning Method gives good results, because it is char-
acterized by a improvement curve with sufficiently large number of steps. (For instance about 4-10
steps for Branch-And-Bound strategy and n < 14). Additionally, it was verified that about 30% of
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the solution tree was expanded ”redundantly” after finding the first optimal solution. Using the above
method permitted to decrease this part of tree by about 40%. For instance, when the entire space
generated by the system included, on average, 600 nodes and the optimal solution was found after 420
nodes, by using this method it was sufficient to expand on 530 nodes.
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13

TESTING OF TRADE

The improved TRADE program was tested on the ”circuit design benchmarks” from MCNC and
ISCAS. The shell scripts required for this testing will be presented. The testing was performed assuming
various parameters as the number of inputs to the block. The tests were done on both the old and the
new version of TRADE. This may explain some differences in tables.

13.1 BASIC STAGES OF TRADE

The term TRADE stands for TRAnsformation and DEcomposition. Cube Calculus is used in
TRADE for all operations. TRADE reads the input in Espresso (.type fr) format and outputs in
BIiff format with the input variables of each node less than or equal to five. In new version there is no
any constraint of this type.

The basic steps in TRADE are as follows:

Read in the input file written in Espresso ”.type fr” format.

Select an output. Perform partition analysis(the number of bound set variables is fixed to five) to
obtain the best partitions and the Additional Partitions. Additional Partitions are the partitions
whose bound sets consist of the variables that are the input varaibles of some CLBs in the CLB
Pool, and these variables of the current decomposition. The CLB Pool is a list of all CLBs
previously generated by the program.

Execute decompositions using the best and Additional Partitions. Encode the bound set and try
to use as many CLBs from the CLB Pool as possible. From the program it is observed that the
Graph Coloring Technique is applied at this stage to get a quasi-optimum don’t care assignment.
Select a partition which results in the smallest Cover Ratio. The Cover Ratio of the number of
newly created CLBs over the difference of the input variables before and after decomposition. At
this stage, if the functions happens to be non-decomposable, then perform the local transformation
to make it decomposable.

Repeat the last two steps for the blocks left until all decomposed blocks are with five or less
inputs.

Repeat the last three steps for all Modifying Functions which were created by local transforma-
tions.

Repeat the last four steps for all outputs.
Merge all possible nodes into the FG mode CLBs.

TRADE()

{

read._input_file(); /*read in input file*/
for (1 = 0; i < number_of primary_outputs; i++)
{ /*loop for all output functions*/
do
{
variable partitioning(); /*find best partition*/
create_incompatibility graph();/*create inompatibility graph */
graph _coloring();/* quasi-optimum don’t care assignment */
if ( decomposable # true )
local_transfomation(); /*make decomposable */
bound_set_encoding();/* encode bound set */
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CLB reusing(); /*use CLBs in CLB Pool*/
} while (function(s) from local transformation == true)

}
CLB MERGing(); /*merge nodes into FG mode CLBs */

output_result(); /*output results*/
The syntax of the command line for running the TRADE is:

trade [-r] [-m] bound-input bound -output file-name

bound-input is the allowed maximal number of input variables to each subblock. The range of its
value is from 2 to 5.

bound-output is the allowed maximal number of output variables from each subblock. It must be no
more than the value of bound-input.

-r By default, trade processes each output of a multi-output function according to the complexity of
each output. It starts to process from the simple output to the complex output. -r option reverses
this order, making trade to start to process from the complex output to the simple output.

-m By default, trade merges the possible nodes into FG mode CLBs of Xilinx architecture. -m op-
tion prohibits the merging process, making it possible to apply trade to non Xilinx architecture
applications.

13.2 TESTING TRADE WITH BENCHMARKS

In the testing with benchmarks the following parameters generated by TRADE were analysed.

The Number of CLBs generated by the TRADE program for various benchmarks is compared for all
possible acceptable combinations of options. There are 10 combinations of acceptable bound-input and
bound-output with bound-input ranging from 2 to 5 and bound-output taking a value that is no more
than the value of bound-input.

Also, the ‘r’ and ‘m’ option can be combined to form 4 possible combinations.

xx No options are given.

rx ‘r’ option alone active.
oy .

xm ‘m’ option alone active.

rm both ‘r’ and 'm‘ option active.

The execution time is computed in seconds for all the possible combinations.

The DFC measures is compared for the multi-output examples of the MCNC benchmarks. The DFC
measure is sum of DFC measures of blocks. DFC of block = 2* « M, where k is the number of inputs
to block and M is the number of outputs of the block.

The TRADE program is tested for various MCNC benchmarks for multiple output functions. The
program is tested for all acceptable combinations of options for the each example. A comparison is
made for the number of CLBs, number of levels, the execution time and the DFC for all various MCNC
multi-output examples.

The TRADE program transforms the input logic into a network of minimum number of sub-blocks.
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13.2.1 Testing on special functions

The first test uses a short test file of 10 inputs and 3 outputs. The program run time, total CLB’s and
levels, and cardinality are listed. All tests were done assuming no CLB merging.

As shown above the lowest number of CLB’s and/or levels is not necessarily the best solution ac-
cording to DFC scores. In this case the 4 input one output blocks (16) with a 4 level structure is the
cheapest according to DFC by far, with a score of 174 compared to the next lowest score of 264. Thus
depending on what the user’s design constraints, the "best” solution could be based on program run
time, number of CLB’s, number of levels, or lowest cardinality.

The program will work with the number of bound outputs specified at greater than or equal to the
number of bound inputs. However, in the case where the two are equal, the program cannot always
find a solution (see 3 in’s and 3 outs, and 2 in’s and 2 outs above).

In comparison with the above test file, whose number of inputs and outputs are small, a larger file
standard, duke2.w was also tested with the following results:

Again, the "best” solution depends on the desired design parameters. Duke2.w has 22 inputs and 29
outputs.

We wanted to find out which affected TRADE more, higher number of inputs, or outputs. Thus the
next set of tests use two test files; temp.w has 6 inputs and 30 outputs and temp2.w has 30 inputs and
6 outputs.

Though the sample is not large enough for statistical analysis, it can be easily seen that the number
of CLB’s in a case with fewer inputs the number of CLB’s is much greater than in a case with more
inputs. In this example the number of CLB’s in the case with fewer inputs is four time that of the case
with more inputs. This will also drive up cardinality on the cases with fewer inputs, indicating that
finding a good minimal solution is more difficult in this case.

13.2.2 Number of ONSET in INPUT

time trade -m 5 4 filename

The output was composed of 40% onset, 40% offset, and 20% DC’s. The input was made up of the
onset percentages shown in the table with the balance split evenly between Offset anf DC’s. There were
20 input variables, 5 output variables and 20 cubes per file. Times are in seconds and are an average
of two runs.
File Onset CLB’s Levels CPU Kernal Elapsed %CPU

tl.w 10% 257 15 61.1u 1.7s 1:16 82%
t2.w 30% 37 5 7.3u .28 :11 68%
t3.w 50% 22 3 4.4u .28 :08 58%
t4d.w 80% 23 4 1.8u .3s :04 57%
t5.w  100% 5 1 .du s :01 16%

13.2.3 Number of OUTPUT VARIABLES

time trade -m 5 4 filename
The input was composed of 30% onset, 35% offset and 35% DC’s. The output was composed of 40%
onset, 40% offset, and 20% DC’s. There were 20 input variables and 30 cubes per file. The number of
output variables varied. Times are in seconds and are an average of two runs.
File Output CLB’s Levels CPU Kernal Elapsed %CPU

t7.w 5 63 6 13.4u .3s :16 83%
t14.w 1 11 5 2.2u Os :02 81%
t15.w 10 144 9 32.9u 4s :39 84%
t17.w 20 453 12 167.3u 1.2s 3:06 90%
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13.2.4 Number of INPUT VARIABLES

time trade -m 5 4 filename
The input was composed of 35% onset, 35% offset and 30% DC’s. The output was composed of 40%
onset, 40% offset, and 20% DC’s. There were 5 output variables and 30 cubes per file. The number of
input variables varied. Times are in seconds and are an average of two runs.
File Inputs CLB’s Levels CPU Kernal Elapsed %CPU

t20.w 5 5 1 0.0u .28 :01 18%
t21.w 10 91 7 13.5u 3s 117 78%

t7.w 20 63 6 13.4u .3s :16 85%
t22.w 30 59 5 6.7u .1s :09 80%

13.2.5 Number of DON’T CARES in INPUT

time trade -m 5 4 filename
The output was composed of 40% onset, 40% offset, and 20% DC’s. The input was made up of the
DC percentages shown in the table with the balance split evenly between Offset anf Onset. There were
20 input variables, 5 output variables and 30 cubes per file. Times are in seconds and are an average
of two runs.
File DC’s CLB’s Levels CPU Kernal Elapsed %CPU

t30.w  30% 32 4 9.0u 1s :11 82%
t31l.w 10% 18 3 3.6u 1s :05 68%
t35.w  40% 171 11 43.Tu .8s :50 87%

13.2.6 Number of CUBES in INPUT FILE

time trade -m 5 4 filename

The input was composed of 30% Onset, 35% Offset, and 35% DC’s. The output was composed of
40% onset, 40% offset, and 20% DC’s. There were 20 input variables and 5 output variables. Times
are in seconds and are an average of two runs.
File Cube’s CLB’s Levels CPU Kernal Elapsed %CPU

t6.w 10 16 5 2.7u .3s 112 29%
t2.w 20 37 5 7.3u 4s :15 50%
t7.w 30 63 6 13.2u .bs :23 61%
t8.w 50 125 9 35.3u .6s 51 1%
t10.w 60 201 12 75.5u .9s 1:25 89%
t1l.w 65 385 13 327.2u 1.9s 5:40 97%
t12.w 70 289 12 165.1u 1.2s 2:53 96%

13.2.7 Number of CLBs

The Number of CLBs generated by the TRADE program for various benchmarks is compared for all
possible acceptable combinations of options. There are 10 combinations of acceptable bound-input and
bound-output with bound-input ranging from 2 to 5 and bound-output taking a value that is no more
than the value of bound-input.

Also, the ‘r’ and ‘m’ option can be combined to form 4 possible combinations.

xx No options are given.
rx ‘r’ option alone active.

xm ‘m’ option alone active.
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rm both ‘r’ and 'm‘ option active.

Figures 1 to 4 give the values for the number of CLBs for the different combinations.

13.2.8 Number of levels

The Number of levels is computed for all possible combinations for bound-input, bound-output, r and
m. Figure 5. gives the values for the number of levels. If the values are represented by slashes, then the
values are different for the four different combinations of xx/xm/rx/rm given in sequence. The values
represented in bold represent the same value for all the 4 different combinations.

13.2.9 Execution time

The execution time is computed in seconds for all the possible combinations. Figures 6 to 9 give the
execution time on running the TRADE program for various MCNC benchmarks on a Sparc 10.

13.2.10 Comparison of DFC measure

Figures 10 - 13 gives the DFC measures for the various combination of options.
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Var Bound input - Bound output

# Examples

i/pp/p| 2-1 | 3-1 | 32 | 41 | 42 [ 43 | 5-1 | 52 | 53 | 54
1 bxpl 7110 63 30 25 14 12 13 11 11 11 11
2 9sym 91 83 27 13 11 8 8 11* 7 6* 6*
3 Zbxpl 10| 84 31 26 14 12 13 11 11 11 11
4 adr2 413 5 3 3 2 2 2 2 2 2 2
5 bl2 1519 | 55 25 20 17 17 17 20 18 18 18
6 bw 5128 140 55 48 31 31 31 27 27 27 27
7 cc 21120 35 22 20 23 23 23 24 23 23 23
8 clip 915 | 258 68 69 45 34 36 60 49 37 38
9 duke2 22129 853 | 243 | 365 | 157 | 179 | 234 | 170 | 224 | 248 | 253
10 f51m 88| 48 25 21 13 12 8 12 11 9 9
11 inc 719 118 40 37 26 21 22 18 19 19 19
12 misex2 25|18 69 41 41 31 30 30 33 31 31 31
13 rd53 513]| 15 5 4 5 5 5 3* 3* 3* 3*
14 rd73 713 41 15 11 10 7 8 5 5 5 5
15 rd84 84| 67 24 16 14 9 10 14 10 11 11
16 sao2 104 | 271 75 70 37 30 25 37 33 30 30
17 squarb 5181 31 14 12 8 8 8 7 7 7 7
18 t481 161 ] 11 25 12 6 6 6 13 9* 9* 9*
19 vg2 25| 8 | 521 | 147 | 256 83 89 87 126 | 123 78 83
20 xorH 5(1 2 2% 2% 2% 2% 1% 1% 1% 1% 1%

Figure 41: Number of CLBs for no option.
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Var Bound input - Bound output

# Examples

i/pp/p| 2-1 | 3-1 | 32 | 41 | 42 [ 43 | 5-1 | 52 | 53 | 54
1 bxpl 7 (10| 124 | 58 56 25 24 22 14 14 14 14
2 9sym 91| 165 | 46 27 15 12 12 11* 8 6* 6*
3 Zbxpl 10| 163 60 56 25 24 22 14 14 14 14
4 adr2 413 9 6 3 3 3 3 3 3 3 3
5 b12 15(9 | 103 51 44 35 29 29 29 20 20 20
6 bw 5 (28| 271 | 109 | 104 | 64 64 64 28 28 28 28
7 cc 21120| 64 37 34 37 36 36 29 29 29 29
8 clip 915 | 500 [ 135 | 150 83 72 65 64 59 39 38
9 duke2 22129] 1629 | 487 | 822 | 295 | 383 | 496 | 217 | 261 | 277 | 276
10] f51lm 818 93 49 48 25 23 14 13 14 12 12
11 inc 719 228 83 87 49 43 43 22 22 22 22
12 misex2 25|18 137 | 81 97 60 57 57 45 39 39 39
13 rd53 513 30 10 8 8 8 3 3* 3* 3* 3*
14 rd73 73| 80 25 17 17 12 12 6 6 6 6
15 rd84 84| 131 48 31 26 16 18 15 11 12 12
16 sao2 10{ 4 | 530 | 158 | 158 60 52 44 44 38 31 31
17] squarb 518 | 57 27 28 16 16 16 8 8 8 8
18 t481 161 ] 21 53 35 7 8 8 15 9* 9* 9*
19 vg2 25| 8| 989 | 297 | 576 | 148 | 178 | 166 | 150 | 138 82 86
20| =xorb 5(1 4 2% 2% 2% 2% 2% 1% 1% 1% 1%

Figure 42: Number of CLBs for ‘m’ option alone
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Var Bound input - Bound output

# Examples

i/pp/g 2-1 | 3-1 | 3-2 | 41 |42 | 43 | 51| 52 | 5-3 | 54
1 5xpl 7 (10| 64 31 26 16 16 14 13 13 13 13
2 9sym 9(1] 83 27 13 11 8 8 11* 7 6* 6*
3 Zbxpl 7 [10] 82 30 26 16 16 14 14 14 14 14
4 adr2 413] 5 3 3 2 2 2 2 2 2 2
5 b12 151 9] 47 25 25 20 21 20 20 18 18 18
6 bw 5 (28] 134 | 53 42 29 32 32 27 27 27 27
7 cc 21120 31 22 20 23 24 23 23 23 23 23
8 clip 95| 193 | 83 75 45 51 42 45 38 28 29
9 duke2 22129 711 | 241 | 329 | 150 | 170 | 262 | 159 | 243 | 250 | 289
10] f51lm 88| 66 25 23 18 15 13 14 13 13 13
11] inc 719] 95 42 39 24 20 23 18 18 19 19
12] misex2 ([25]18| 62 37 39 31 30 30 33 32 32 32
13] rd53 53] 16 5 4 4 4 3* 3* 3* 3*
141 rd73 73] 46 15 4 10 7 5 5 5 5 5
151 rd84 84| 70 22 8 15 8 8 13 10 8 8
16] sao2 101 4] 254 | 70 56 42 26 32 44 32 27 27
171 squarb 58] 27 16 13 8 8 8 7 7 7 7
18] t481 16]1] 11 25 12 6 6 6 13 9* 9* 9*
191 vg2 25| 8| b55 | 157 [ 161 [ 98 | 118 | 196 | 95 | 132 [ 134 | 146
20] =xorb 5111 2 2% 2% 2% 2% 2% 1% 1% 1% 1%

Figure 43: Number of CLBs for ‘r’ option alone.
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Var Bound input - Bound output

# Examples

i/pp/p| 2-1 | 3-1 | 32 | 41 | 42 [ 43 | 5-1 | 52 | 53 | 54
1 5xpl 7 (10| 125 61 57 28 30 25 16 16 16 16
2 9sym 91| 165 | 46 27 15 12 12 11* 8 6* 6*
3 Zbxpl 10| 159 59 57 28 30 24 17 17 17 17
4 adr2 413 9 5 5 3 3 3 3 3 3 3
5 bl2 1519 89 54 53 40 35 34 34 20 20 20
6 bw 5128 259 | 105 96 62 65 65 28 28 28 28
7 cc 21120| 56 37 34 37 37 37 29 29 29 29
8 clip 95| 380 | 154 | 162 86 88 72 49 45 29 29
9 duke2 22129| 1356 | 485 | 765 | 275 | 375 | 539 | 197 | 274 | 278 | 310
10] f51lm 88| 124 | 50 49 30 27 24 17 16 15 15
11 inc 719 183 88 89 46 47 44 22 22 22 22
12 misex2 25|18 124 | 74 84 59 60 60 45 40 40 40
13 rd53 513 31 10 8 7 7 7 3* 3* 3* 3*
14 rd73 713 91 27 8 16 12 8 6 6 6 6
15 rd84 84| 140 | 44 16 27 15 15 14 11 9 9
16 sao2 10 4 | 501 | 141 | 131 68 47 53 52 37 27 27
17] squarb 58| 52 31 29 16 16 16 8 8 8 8
18 t481 161 ] 21 53 35 7 8 8 15 9* 9* 9*
19 vg2 25| 8 | 1054 | 324 | 338 | 167 | 240 | 373 | 111 | 147 | 139 | 148
20| =xorb 5(1 4 2% 2% 2% 2% 2% 1% 1% 1% 1%

Figure 44: Number of CLBs for both ‘r’ and ‘m’ option
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Var

Bound input - Bound output

# Examples

i/pp/H 2-1 3-1 3-2 4-1 4-2 4-3 5-1 5-2 5-3 5-4
1| sxp1 7 lio|8/8/9/9| s 6 3 4 3 2 2 2 2
2 9sym 911 13 7 7 3 4 5 3 4 3 3
3| zsxpl |7 [0 9 5 e/6/7/7| 8 |3/4/4/4|4/3/3/3| 2 2 2 2
4 adr2 413 4 2 2 1 1 1 1 1 1 1
5| bi2 159 |8/8/7/7| s 5 a4 |3/3/4743/3/4/3| 3 3 3 3
6 bw 5 128 7 3 4 2 2 2 1 1 1 1
7 cc 21 |20 5 4 4 3 3 3 2 2 2 2
8| clip 9o |sil/11/12/42 7 9 5 |s/5/6/6|6/6/7/7| 4 4 4 4
9| duke2 [22[2ap/16/15/15 9 16 7 9 1%/15/14/18/5/6/6| 7/7/6/6| 9/9/8/8| 10
10 fs51m 8 |8 |8/8/9/9|6/6/5/5 |6/6/8/8] 4 4 3 3 3 3 3
11| inc 719 |9/9/8/8| s 7 4 4 5 2 2 2 2
12| misex2 |25[18)0/10/9/96/6/7/7|8/8/7/7| B 5 5 4 4 4 4
13 rd53 513 6 3 3 2 2 2 1 1 1 1
14 rd73 713 8 4 4 3 4 3 2 2 2 2
15 rd84 8|4 10 6 6 3 3/3/4/4 4 3 3 3 3
16| saoc2 10|ap/13/12/12 7 $/9/10/19 5 5 |s/5/8/8|4/4/5/5| 4 | 4/4/3/3|4/4/3/3
17| squars |5 |8 6 3 4 2 2 2 1/1/2/1 1 1 1
18 t481 161 7 9 8 4 4 4 4 4 4 4
19[ vg2 25|8| 16 Pp/9/10/up/16/13/13 7  p/o/10/1@/10/14/4a 7 | 8/8/7/7| 8/8/9/9%/8/10/14
20 xorb 511 4 2 2 2 2 2 1 1 1 1

Figure 45: Number of Levels for xx/xm/rx/rm options in sequence. The value in bold represent the
same levels for all combinations.
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Var Bound input - Bound output

# Examples

i/pp/p| 2-1 | 3-1 | 32 | 41 | 42 [ 43 | 5-1 | 52 | 53 | 54
1 5xpl 7 (10| 23.8 | 12 82 | 76 | 72 | 6.6 | 5.6 | 3.6 | 3.6 | 4.4
2 9sym 9(11]39.8]149 | 6.5 1.3 6 35 | 123 | 44 | 2.6 | 2.6
3 Zbxpl 10| 264 | 11.7| 88 | 76 | 92 | 7.7 | 6.6 | 3.7 | 3.9 | 4.1
4 adr2 413 2 1.2 1.4 1.4 1.5 1.9 16 [ 04 | 04 | 0.6
5 b12 1591178 | 109 [ 7.5 | 8.1 7.1 | 6.1 96 | 59 | 5.5 6
6 bw 5(28(51.2 | 26.1 | 14.7 | 12.8 | 12.6 | 13.2 [ 11.3 | 4.6 | 4.0 | 6.2
7 cc 21120 149 (103 ] 79 | 9.7 (112 | 89 | 11.1 | 5.8 | 6.2 | 5.8
8 clip 9(5|84.6 | 36 24 | 44.1 | 17.3 | 10.5 | 63.4 [ 204 | 10.3 | 8.2
9 duke2 22129 381 | 143 | 202 | 164 | 136 | 574 | 308 | 145 [ 122 | 124
10] f51lm 8(8(16.6 | 93 |105 | 54 | 6.1 | b5 | 48 | 2.8 | 2.2 | 2.3
11 inc 719357 ]133 183 (116 ] 94 | 7.1 6.1 | 43 | 43 | 4.5
12 misex2 25|18 27.4 | 15.2 | 14.1 | 154 | 11.2 | 14.6 | 27.1 | 11.7 | 11.5 | 11.7
13 rd53 5(31] 49 | 21 1.9 1.9 1.6 1.9 1.5 1.5 | 0.4 | 0.5
14 rd73 731139 ] 65 | 2.6 | 6.1 3.8 | 3.3 | 3.1 24 | 22 | 2.8
15 rd84 8(4(33.7]266 | 75 [229 ] 78 | 6.3 |223 |11.2 | 4.9 5
16 sao2 10{4189.1 1342|257 (279 | 15 | 905 [ 348 | 13.4 | 85 | 8.2
17] squarb 5(8 (119 ] 7.2 | 5.1 3.7 1 35 | 39 | 3.3 1.2 1.1 1.1
18 t481 16/ 1| 130 | 482 | 169 | 78.6 | 786 | 78.8 | 778 | 87.1 | 86.9 | 87.4
19 vg2 25| 8| 843 | 169 | 562 | 131 | 85.9 | 77.2 [14867| 99.5 | 76.6 | 72.6
20| =xorb 511 70 0.7 | 07 | 0.6 | 0.7 | 0.9 1.1 0.3 | 0.2 | 0.2

Figure 46: Execution time for no option in seconds
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Var Bound input - Bound output

# Examples

i/pp/p| 2-1 | 3-1 | 32 | 41 | 42 [ 43 | 5-1 | 52 | 53 | 54
1 5xpl 710 89 | 64 | 44 | 5.1 | 45 | 3.1 | 49 | 33 | 3.3 | 3.2
2 9sym 9(1(1239 116 49 (119 ] 5.1 | 2.8 [11.3 ]| 44 | 24 | 2.4
3 Zbxpl 10| 104 | 5.7 | 3.4 | 5.3 | 49 | 4.9 5 33 | 3.3 | 3.2
4 adr2 4(3] 06 | 056 | 0.5 1 1 0.7 1 0.4 [ 04 | 04
5 bl2 1519 5.7 | 5.9 3 6.6 | 46 | 45 | 76 | 53 | 5.2 | 5.2
6 bw 5 (28| 16.6 | 13.4 | 6.1 98 | 83 |102 | 73 | 36 | 35 | 3.6
7 cc 21120 5.7 | 48 | 34 | 74 6 7.7 | 86 | 6.1 5.5 | 5.5
8 clip 915|458 23.7 152 | 38 |[145 | 9.7 | 565 (195 | 98 | 7.8
9 duke2 22129 210 | 108 | 140 | 140 [ 111 | 150 | 289 | 139 | 255 | 119
10] f51lm 88| 63 | 56 | 3.1 | 45 | 36 | 29 | 39 | 24 | 21 | 21
11 inc 7191]12.3] 10.1 5 10.7 | 5.1 | 49 | 6.4 | 41 | 41 | 4.2
12 misex2 25|18 104 | 98 | 6.9 | 146 | 10.7 | 10.9 | 149 | 11.2 [ 11.2 | 11.2
13 rd53 5(3] 1.6 | 0.9 | 0.6 1.2 1 1.3 [ 0.7 | 04 | 04 | 0.4
14 rd73 73] 6.7 | 3.7 | 1.6 4 25 [ 23 | 26 | 22 | 21 ] 22
15 rd84 841219235 6.1 [216] 6.2 | 5.9 [21.3 ] 11 5 5
16 sao2 10{4 1626 | 223 | 13.3 | 19.7 | 9.7 | 95 [ 322 | 13 8.2 | 8.4
17] squarb 58| 85 | 2.9 1.9 | 2.3 1.8 | 2.7 1.9 1.1 0.9 1.2
18 t481 161 1| 128 | 1976 | 166 | 78.6 | 78.1 | 78.4 | 3b7 | 407 | 87 87
19 vg2 25|81 292 | 138 | 334 | 124 | 75.6 | 67.6 [ 1350 | 98.6 | 75.4 | 71.8
20| =xorb 5(11] 1.1 02 [ 05 | 04 | 06 [ 04 ] 02 ] 02]02]|02

Figure 47: Execution time for ‘m’ option alone in seconds.
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Var Bound input - Bound output

# Examples

i/pp/p| 2-1 | 3-1 | 32 | 41 | 42 [ 43 | 5-1 | 52 | 53 | 54
1 5xpl 7 (10| 10.3 | 11.7 | 6.1 6.8 | 45 | 42 | 5.3 | 56 | 6.5 | 6.1
2 9sym 9(1(295 142 71 (122 ] 49 | 3.1 (121 ] 5.3 | 3.9 | 2.9
3 Zbxpl 10| 18.7 | 12.3 5 6.5 | 4.1 4 6.1 74 | 5.8 | 6.1
4 adr2 4(3] 1.8 | 0.7 | 0.6 1 0.5 1 0.8 | 09 | 3.6 1.1
5 b12 1591108 72 | 43 | 89 | 3.8 | b4 8 6.8 | 7.5 | 6.7
6 bw 5(28(34.2 1198 | 11.1 [ 12.8 ] 9.1 | 11.6 7 6.2 [ 116 | 9.1
7 cc 21120| 10.2 8 7 96 | 53 | 7.5 | 104 | 11.5 | 11.9 | 10.2
8 clip 9(5[51.9 ] 33 |[21.2|48.2 |20.1 | 14.1 | 49.7 | 24.9 | 12.2 | 8.7
9 duke2 22129 498 | 149 | 152 | 163 | 106 | 161 | 263 | 164 [ 151 | 190
10] f51lm 88114 ] 99 | 67 | 6.2 | 55 | 3.5 6 48 | 5.1 | 4.2
11 inc 7(9| 18 | 157 83 | 93 | 73 | 7.3 | 5.4 | 56 | 54 | 5.1
12 misex2 25|18 12.2 | 17.6 | 12.1 | 14.8 | 10.2 | 11.7 | 20.2 | 13.4 | 15.9 | 15.1
13 rd53 513 19 | 25 1.3 1.3 1.4 | 1.2 1.1 14 1.7 | 11
14 rd73 713 9.8 6 2.3 | 5.1 2.6 | 2.1 33 | 2.8 | 3.2 3
15 rd84 842771244 | 63 (222|156 | 76 |[21.7 ]| 124 | 5.9 | 6.3
16 sao2 10( 4 ] 45.8 | 27.2 | 19.4 | 26.9 | 12.7 8 45.1 | 16.1 9 1.9
17] squarb 5(8( 37 | 84 | 35 [ 62 | 36 | 24 |11.2| 1.9 2 2
18 t481 16/ 1| 128 | 481 | 168 | 78.9 | 789 | 786 | 368 | 93.2 | 87.5 | 87.5
19 vg2 25| 8 | 475 | 236 | 181 | 122 | 142 | 168 | 285 | 209 | 280 | 149
20| =xorb 5(11 06 |03 |04 |04 ]07 )05 |04 ] 04] 07|04

Figure 48: Execution time for ‘r’ option alone in seconds.
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Var Bound input - Bound output

# Examples

i/pp/p| 2-1 | 3-1 | 32 | 41 | 42 [ 43 | 5-1 | 52 | 53 | 54
1 5xpl 7110|215 89 | b7 | 7.5 [ 136 | 3.3 | 5.5 | 5.4 5 4.6
2 9sym 91| 38 |36.1 | 12 13 49 | 74 | 123 | 49 | 25 | 2.7
3 Zbxpl 10]21.7 | 187 | 56 | 74 | 5.2 | 45 | 5.5 | 5.7 | 4.9 8
4 adr2 4(3] 1.2 | 09 [ 0.7 1.7 | 0.9 1.1 1.1 1.2 | 0.9 [ 0.7
5 b12 15911371123 | 116 | 116 | 42 | b3 | 76 | 73 | 6.6 | 6.3
6 bw 5 (28| 37.7 | 277 | 13.2 [ 10.2 | 11.9 | 156 | 7.1 | 21.7 | 6.7 7
7 cc 21120 142 | 7.7 | 6.1 59 (113 108 | 83 | 86 | 81 [ 7.9
8 clip 9(5(53.8]44.1 295 (506|199 | 158 [41.2]31.1] 9.6 | 8.2
9 duke2 22129 259 [ 178 | 200 | 207 | 155 | 172 | 281 [ 207 | 144 | 171
10] f51lm 88176 | 152 | 10.1 | 9.7 | 45 | 49 | 42 | 42 | 3.6 | 3.1
11 inc 7(9(24.7 119|109 (139 ] 6.3 | 6.0 5 5 4.6 | 5.7
12 misex2 25|18 19.8 [ 24.3 | 18.8 | 12.8 | 10.8 | 13.8 | 15.3 | 23.8 | 15.1 | 13.8
13 rd53 53| 4.6 16 (22 | 09 |146 | 1.3 | 08 | 0.9 [ 0.8 | 0.6
14 rd73 7(3]11.6 | 5.5 | 5.5 5 26 | 2.7 | 26 | 3.1 25 | 2.6
15 rd84 84345 | 254 | 157 246 | 65 | 6.1 [24.8]|21.1 | 5.8 | 5.5
16 sao2 10{4]166.3 1271 |31.3 344|115 | 89 (387|189 | 96 | 8.6
17] squarb 5(8| 6.1 |19.7| 5.8 | 23 |19.7] 35 | 25 | 2.4 1.8 1.7
18 t481 161 1| 129 | 489 | 347 | 81.9 | 92.8 | 80.5 | 357 | 94.5 | 87.3 | 87.2
19 vg2 25| 8 | 550 | 300 | 232 | 152 | 155 | 185 | 310 | 167 | 289 [ 141
20| =xorb 511109 (07 |05 )04 |05 |04 ] 06 |03] 03] 02

Figure 49: Execution time for both ‘r’ and ‘m’ option in seconds.
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Var Bound input - Bound output
# Examples
i/pp/p| 2-1 | 3-1 | 32 | 41 | 42 [ 43 | 5-1 | 52 | 53 | 54

1 bxpl 7110| 506 | 428 | 378 | 342 | 290 | 310 | 286 | 286 | 286 | 286
2 9sym 91| 662 | 366 | 206 | 242 | 178 | 194 | 354 | 206 | 178 | 178
3 Zbxpl 10 642 | 444 | 386 | 342 | 290 | 310 | 286 | 286 | 286 | 286
4 adr2 43 ] 42 46 46 42 42 42 42 42 42 42

5 bl2 15191 398 | 372 | 324 | 402 | 392 | 392 | 562 | 502 | 502 | 502
6 bw 5128|1082 | 820 | 780 | 816 | 816 | 816 | 920 | 920 | 920 | 920
7 cc 21120 284 | 236 | 224 | 448 | 452 | 452 | 476 | 476 | 476 | 476
8 clip 9115|1879 970 | 1060 | 1102 | 920 | 914 | 1812 [ 1348 | 1102 | 1166
9 duke2 2212916071 | 3339 | 5407 | 3700 | 4694 | 6333 | 4802 | 6340 | 7216 | 7496
10] f51lm 88| 376 | 3b2 | 328 | 334 | 282 | 174 | 294 | 266 | 214 | 214
11 inc 719 876 | 578 | 602 | 584 | 562 | 594 | 542 | 558 | 558 | 558
12 misex2 25|18 | 576 | 578 | 686 | 690 | 740 | 740 [ 940 | 920 | 920 | 920
13 rd53 513 | 126 78 62 106 | 106 | 106 | 102 | 102 [ 102 | 102
14 rd73 713|324 | 198 | 142 | 270 | 166 | 190 | 142 | 142 | 142 | 142
15 rd84 8|4 | 528 | 352 | 244 | 336 | 224 | 264 | 400 | 284 | 336 | 336
16 sao2 10] 4 | 2030 | 1066 [ 1132 | 904 | 730 | 688 | 996 | 928 | 880 | 880
17] squarb 58 230 | 214 | 204 | 192 | 196 | 196 | 204 | 204 | 204 | 204
18 1481 16| 1| 80 368 | 210 | 102 | 106 | 106 | 310 | 214 | 214 | 214
19 vg2 25| 8 | 3598 | 2110 | 3681 | 1898 | 2336 | 2276 | 3628 | 3524 | 2238 | 2458
20| =xorb 51 18 18 18 22 22 22 34 34 34 34

Figure 50: DFC measures for no option
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Var Bound input - Bound output
# Examples
i/pp/p| 2-1 | 3-1 | 32 | 41 | 42 [ 43 | 5-1 | 52 | 53 | 54

1 bxpl 7110| 506 | 428 | 378 | 342 | 290 | 310 | 286 | 286 | 286 | 286
2 9sym 91| 662 | 366 | 206 | 242 | 178 | 194 | 354 | 206 | 178 | 178
3 Zbxpl 10 642 | 444 | 386 | 342 | 290 | 310 | 286 | 286 | 286 | 286
4 adr2 43 ] 42 46 46 42 42 42 42 42 42 42

5 bl2 15191 398 | 372 | 324 | 402 | 392 | 392 | 562 | 502 | 502 | 502
6 bw 5128|1082 | 820 | 780 | 816 | 816 | 920 | 920 | 920 | 920 | 920
7 cc 21120 284 | 236 | 224 | 448 | 452 | 452 | 476 | 476 | 476 | 476
8 clip 9115|1879 970 | 1060 | 1102 | 920 | 914 | 1812 [ 1348 | 1102 | 1166
9 duke2 2212916071 | 3339 | 5407 | 3700 | 4694 | 6333 | 4802 | 6340 | 7216 | 7496
10] f51lm 88| 376 | 3b2 | 328 | 334 | 282 | 174 | 294 | 266 | 214 | 214
11 inc 719 876 | 578 | 602 | 584 | 562 | 594 | 542 | 558 | 558 | 558
12 misex2 25|18 | 576 | 578 | 686 | 690 | 740 | 740 [ 940 | 920 | 920 | 920
13 rd53 513 | 126 78 62 106 | 106 | 106 | 102 | 102 [ 102 | 102
14 rd73 713|324 | 198 | 142 | 270 | 166 | 190 | 142 | 142 | 142 | 142
15 rd84 84| 528 | 352 | 244 | 336 | 224 | 400 | 284 | 336 | 336 | 336
16 sao2 10] 4 | 2030 | 1066 [ 1132 | 904 | 730 | 688 | 996 | 928 | 880 | 880
17] squarb 58 230 | 214 | 204 | 192 | 196 | 204 | 204 | 204 | 204 | 204
18 1481 16| 1| 80 368 | 210 | 102 | 106 | 106 | 310 | 214 | 214 | 214
19 vg2 25| 8 | 3598 | 2110 | 3681 | 1898 | 2336 | 2276 | 3628 | 3524 | 2238 | 2458
20| =xorb 51 18 18 18 22 22 22 34 34 34 34

Figure 51: DFC measures for ‘m’ option alone
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Var Bound input - Bound output
# Examples
i/pp/p| 2-1 | 3-1 | 32 | 41 | 42 [ 43 | 5-1 | 52 | 53 | 54

1 5xpl 7110| 502 | 456 | 390 | 390 | 382 | 320 | 320 | 350 | 350 | 350
2 9sym 91| 662 | 366 | 206 | 242 | 178 | 194 | 354 | 206 | 178 | 178
3 Zbxpl 10 636 | 428 | 394 [ 390 | 382 | 328 | 320 | 320 | 320 | 320
4 adr2 43 ] 42 38 38 42 42 42 42 42 42 42

5 bl2 1519 | 358 | 376 | 350 | 484 | 506 | 486 | 554 | 530 | 530 | 530
6 bw 5128|1042 | 796 | 730 | 764 | 840 | 840 | 920 | 920 | 920 | 920
7 cc 21120| 252 | 236 | 224 | 448 | 468 | 468 | 476 | 476 | 476 | 476
8 clip 9|5 |1488 [ 1152 | 1138 | 1170 | 1196 | 972 | 1260 | 1052 | 760 | 800
9 duke2 22129 5045 | 3365 | 4867 | 3396 | 4520 | 7208 | 4476 | 6956 | 7138 | 8496
10] f51lm 88| 474 | 352 | 318 | 380 | 324 | 338 | 374 | 334 | 326 | 326
11 inc 719 702 | 616 | 636 | 572 | 578 | 618 | 542 | 542 | 558 | 558
12 misex2 25|18 | 528 | 540 | 616 | 674 | 784 | 784 | 912 | 908 [ 908 | 908
13 rd53 513 130 78 62 90 90 90 102 | 102 | 102 | 102
14 rd73 73] 370 | 214 70 254 | 166 | 122 | 142 | 142 | 142 | 142
15 rd84 84| 568 | 320 | 124 | 352 | 208 | 224 | 368 | 284 | 236 | 236
16 sao2 1014 [ 1927 | 978 | 918 | 1028 | 634 | 812 | 1166 | 900 | 800 | 800
17] squarb 58| 214 | 214 | 216 | 196 | 196 | 196 | 204 | 204 | 204 | 204
18 1481 16| 1| 80 368 | 210 [ 102 | 106 | 310 | 214 | 214 | 214 | 214
19 vg2 25| 8 | 3869 | 2276 | 2244 | 2258 | 3126 | 5246 | 2710 | 3764 | 3784 | 4252
20| =xorb 51 18 18 18 22 22 22 34 34 34 34

Figure 52: DFC measures for ‘t’ option alone
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Var Bound input - Bound output
# Examples
i/pp/p| 2-1 | 3-1 | 32 | 41 | 42 [ 43 | 5-1 | 52 | 53 | 54

1 5xpl 7110| 502 | 456 | 390 | 390 | 382 | 320 | 350 | 350 | 350 | 350
2 9sym 91| 662 | 366 | 206 | 242 | 178 | 194 | 354 | 206 | 178 | 178
3 Zbxpl 10 636 | 428 | 394 [ 390 | 382 | 328 | 320 | 320 | 320 | 320
4 adr2 43 ] 42 38 38 42 42 42 42 42 42 44

5 bl2 1519 | 358 | 376 | 350 | 484 | 506 | 486 | 554 | 530 | 530 | 530
6 bw 5128|1042 | 796 | 730 | 764 | 840 | 840 | 920 | 920 | 920 | 920
7 cc 21120| 252 | 236 | 224 | 448 | 468 | 468 | 476 | 476 | 476 | 476
8 clip 9|5 |1488 [ 1152 | 1138 | 1170 | 1196 | 972 | 1260 | 1052 | 760 | 800
9 duke2 22129 | 5045 | 3365 | 4867 | 3396 | 4520 | 7208 | 4476 | 6956 | 7138 | 8498
10] f51lm 88| 474 | 352 | 318 | 380 | 324 | 338 | 374 | 334 | 326 | 702
11 inc 719 702 | 616 | 636 | 572 | 578 | 618 | 542 | 542 | 558 | 558
12 misex2 25|18 528 | 540 | 616 | 674 784 | 784 | 912 | 908 | 908 | 908
13 rd53 513 130 78 62 90 90 90 102 | 102 | 102 | 102
14 rd73 73] 370 | 214 70 254 | 166 | 122 | 142 | 142 | 142 | 142
15 rd84 84| 568 | 320 | 124 | 352 | 208 | 224 | 368 | 284 | 236 | 236
16 sao2 1014 [ 1927 | 978 | 918 | 1028 | 634 | 812 | 1166 | 900 | 800 | 800
17] squarb 58| 214 | 242 | 216 | 196 | 196 | 196 | 204 | 204 | 204 | 204
18 1481 16| 1| 80 368 | 210 | 102 | 106 | 106 | 310 | 214 | 214 | 214
19 vg2 25| 8 | 3869 | 2276 | 2244 | 2258 | 3126 | 5246 | 2710 | 3764 | 3784 | 4252
20| =xorb 51 18 18 18 22 22 22 34 34 34 34

Figure 53: DFC measures for both ‘r’ and ‘m’ option
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small.w | bound_in bound_out | time CLB’s level DFC
5 6 :01 9 3
5 5 :01 9 3 292
5 4 :01 9 3 292
5 3 :01 9 3 292
5 2 :01 9 3 292
5 1 :01 13 4 268
4 4 :01 21 6 308
4 3 :03 21 6 308
4 2 :01 19 5 264
4 1 :02 16 4 174

Table 8: Small function with different inputs and outputs of bound set

duke2.w | bound_.in bound_out | time CLB’s level
5 6 1:55 270 9
5 5 1:56 270 9
5 3 2:01 272 9
4 3 2:07 481 13
3 1 2:00 508 7
Table 9: Function duke.2

temp.w | bound.in bound_ out | time CLB’s level
5 6 :08 99 2
5 3 :08 99 2
4 3 :09 133 4

temp2.w | boundiiin bound_out | time CLB’s level
5 5 :10 24 4
5 3 :09 24 4
4 3 :06 22 4

Table 10: temp and temp2
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13.3 TESTING VARIOUS VARIABLE PARITIONING STRATEGIES IN TRADE
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TRADE: Variable Partitioning Test.
CLB: 5 inputs, 3 outputs
number in the 1-st line of description = number of CLBs
number in the 2-nd line of description = number of levels
number in parenthesis (if any) = number of EXOR decompositions

Stanislaw Grygiel
July 19, 1995

full full full+ get_part | get_part | add_part | get_part | get_part | add_part

orig | mod | lrand48 +lrand48 add_part | pick_clb | pick_clb
bw.w 27 27 27 27 27 27 27 27 27
i= 5, 0=28 1 1 1 1 1 1 1 1 1
bench.w 16 16 16 16 18 18 16 16 17
i=6,0=8 2 2 2 2 2 2 2 2 2
fout.w 26 26 26 26 26 26 26 27 26
i= 6, 0=10 2 2 2 2 2 2 2 2 2
bxpl.w 11 11 11 18 19 16 16 11 11
i= 17, 0=10 2 2 2 2 2 2 2 2 2
rd73.w 5 5 5 7 7 7 7 5 5
i=7,0=3 2 2 2 2 2 2 2 2 2
zdml.w 4 4 4 8 7 8 8 4 4
i=7,0=4 2 2 2 2 2 2 2 2 2
f51m.w 9 9 9 15 12 13 13 9 9
i=8,0=8 3 3 3 3 3 3 3 3 3
misex1l.w 14 15 16 15 16 15 15 15 15
i=8,0=7 2 2 2 2 2 2 2 2 2
rd84.w 11 11 11 12 12 12 12 11 11
i=8,0=4 3 3 3 3 3 3 3 3 3
root.w 21 21 22 27 32 23 22 25 23
i=8,0=5 4(1) | 4(1) 4(1) 4(2) 4(2) 4(1) 3(1) 4(2) 4(1)
testl.w 68 70 65 74 70 73 73 68 69
i= 8, 0=10 4 | 4(5) 4(4) 4(7) 4(4) 4(7) 4(6) 4(6) 4(6)
9sym.w 6 6 6 7 7 6 6 7 6
i=9,0=1 3 3 3 3 3 3 3 3 3
9symml.w 6 6 6 7 6 6 6 7 6
i=9,0=1 3 3 3 3 3 3 3 3 3
clip.w 37 38 29 48 32 40 40 42 40
i=9,0=5 4(2) | 4(2) 4(1) 4(3) 3 4(2) 4(2) 4(3) 4(2)
alu2.w 22 23 21 25 44 38 24 23 21
i=10, o= 8 3 3 3 3 5(2) 5(1) 3 3 3
sa02.w 34 33 32 29 36 39 29 34 34
i=10, 0= 4 5(1) | 4(1) 4 4(1) 5(1) 5(3) 4(1) 4(1) 4(1)
b9.w 39 29 46 46 59 50 35 43 33
i=16, 0= 5 6(1) 4 6(3) 5(2) 7(5) 6(5) 4 7(2) 3
duke2.w 246 | 235 259 280 360 292 264 253 266
i=22, 0=29 | 9(11) | 9(8) 9(11) 8(14) 8(24) 8(13) 9(9) 8(10) 9(11)
misex2.w 31 31 32 38 42 45 38 31 40
i=25, 0=18 4 3 3 3 4 4 3 3 4

Table 11: TRADE: Variable partitioning test.
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14 COMPARISON OF TRADE and DEMAIN option in MULTIS

Table 12: Comparison of DEMAIN and TRADE

Program DEMAIN TRADE
Benchmark CLB5/3 CLB5/1 CLB5/3 CLB5/1
name in | out | cubes || cells | time(s) | cells | time(s) || cells | time(s) | cells | time(s)
9sym 9 1 158 3 1.2 13 69.6 6 2.3 11 10.3
rd84 8 4 51b 4 3.0 13 2.7 11 5.3 14 21.0
rd73 7 3 274 2 1.2 9 1.1 5 2.0 5 2.1
sao2 10 4 133 14 395.0 31 579.8 30 7.8 39 28.6
clip 9 5 271 19 1656.5 42 1972.8 37 9.5 57 40.5
bxpl 7 10 143 7 3.5 18 4.1 11 2.8 11 2.7
b12 15 9 72 20 1387.7 17 7691.4 17 4.0 18 3.9
f51m 8 8 154 8 59.3 18 11.2 9 1.7 12 2.1
bw 5 28 97 1 - 28 1.0 27 0.4 27 0.5
duke2 22 29 406 2 - [2] - 244 122.6 153 179.4
cc 21| 20 96 || [2] T2 24 3.7 | 24 3.6
misex1 8 7 40 5 1.0 19 1.4 15 2.1 14 2.2
cu 14 8 1150 10 2.3 28 80.7 13 3.1 14 2.7
misex2 | 25 | 18| 101 | [2] @ 31 99| 31| 102
il 25 16 69 3 - 3 - 18 4.4 18 4.5
c8 28 18 166 3 - 3 - 35 9.5 35 10.0
aluz 10| 6| 315 3 Y 69| 327 79| 1807
9symm1 9 1 165 3 1.1 13 70.6 6 2.3 11 11.0

1 : Command terminated abnormally.
2 : Table inconsistent.

3 : Could not be completed.

All benchmarks used for DEMAIN and TRADE are Espresso format. .type fr sets the logic inter-
pretation of the character matrix of output array. (1: ON set, 0: OFF set, -/ : no meaning)

141



Table 13: Comparison of Demain and Trade - new variants

Program DEMAIN TRADE
Benchmark CLB5/3 CLB5/1 CLB5/3 CLB5/1
name in | out | cubes || cells | time(s) | cells | time(s) || cells | time(s) | cells | time(s)
9sym 9 1 158 3 1.0 13 70.0 6 2.3 11 10.3
rd84 8 4 51b 6 5.6 19 62.5 11 5.3 14 21.0
rd73 7 3 274 2 1.3 10 13.2 5 2.0 5 2.1
sao2 10 4 133 14 108.0 64 240.7 30 7.8 39 28.6
clip 9 5 271 9 153.1 b4 349.8 37 9.5 57 40.5
bxpl 7 10 143 6 3.4 28 13.3 11 2.8 11 2.7
b12 15 9 72 12 10.5 33 30.0 17 4.0 18 3.9
f51m 8 8 154 7 4.0 18 21.6 9 1.7 12 2.1
bw 5 28 97 1 - 28 1.0 27 0.4 27 0.5
duke2 22 29 406 2 - [2] - 244 122.6 153 179.4
cc 21| 20 96 || [2] T2 24 3.7 | 24 3.6
misex1 8 7 40 6 0.9 23 7.9 15 2.1 14 2.2
cu 14 8 1150 9 2.3 27 128.7 13 3.1 14 2.7
misex2 | 25 | 18| 101 | [2] @ 31 99| 31| 102
il 25 16 69 2 - 2 - 18 4.4 18 4.5
c8 28 18 166 2 - 2 - 35 9.5 35 10.0
alu2 10| 6| 315 [3 3] 69| 327 79| 1807
9symm1 9 1 165 3 1.1 13 70.6 6 2.3 11 11.0

If the number of output is greater than the number of CLB’s output, do parallel decomposition. [1]
Command terminated abnormally [2] Table inconsistent. [3] Still running without result.
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15 CONCLUSIONS

In this report, first we presented a general methodology to create search strategies for combinatorial
problems encountered in a general-purpose Functional Decomposer.

We demonstrated that the method to create such strategies is general enough to solve several com-
binatorial problems that we have to deal with in functional decomposition. These problems include the
following:

e set covering for Column Minimization.

e graph coloring for Column Minimization.

e set covering for combined Column Minimization and Encoding.
e set covering for combined Column Minimization and Encoding.
e argument selection for parallel decomposition.

e Variable Paritioning.

e encoding.

We hope, that our readers, including the first-year graduate students at PSU, will be able to use
the text, its examples, and also the problems given in sections ” Questions for Self-Evaluation” to learn
our approach well enough to be able to apply it to other combinatorial problems that we already found
must be solved in the decomposer, or we will find in the future.

We used a similar approach extensively in the past: the multipurpose programs [49, 51, 52], designed
over the years, have been used to prototype several CAD programs including implicant generation, cov-
ering and covering/closure problems, layering, placement and partitioning problems, state assignment
of FSM’s, microprogram transformation, multi-output TANT network minimization [49], state mini-
mization [55], concurrent state minimization and state assignment [38], optimization of asynchronous
FSMs [53], PAL minimization [44], and column minimization in FSM [57]. It allowed to prototype
algorithms quickly. For some problems we found a good algorithm without much effort, and next the
corresponding optimized code in C was written. The presented approach allows for the creation of
both optimal and approzimate algorithms. Access to the optimal algorithm allows one to evaluate the
approzimate algorithms (since the optimal cost is known for each small size data) and to improve them.
The way in which the developer transforms a problem formulation to a ready and running program
is shorter and more straightforward. The approach systematizes and uniformizes the problem-solving
and optimization methods as well as their applications to different problems that are of interest to us.
In this way, these methods are founded on standard fundamentals that provide a general development
methodology.

It is our goal now to implement all the versions that have not yet been implemented to gain prac-
tical understanding on the role of strategies and heuristics in combinatorial problems of functional
decomposition.

This will allow us to answer the most important questions for construction of decomposers, to which
answers cannot be found in the literature:

e What is the role of variable partitioning as compared to column minimization, to encoding in a
decomposer?

How much effect is gained by various entire decomposition strategies?

e How much effect is gained by various variable partitioning strategies?

How much effect is gained by various Column Minimization strategies?

e How much effect is gained by various Encoding strategies?
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