Towards the Automatic Design of
More Efficient Digital Circuits

Vesselin K. Vassilev
South Bank University
London
Dominic Job
Napier University
Edinburgh
Julian F. Miller
The University of Birmingham
Birmingham
July 4, 2000

Evolving digital circuits ...

Space of all evolutionary

designs

e ... does not necessarily mean automatic design,
because evolution may not produce a functionally
correct circuit!

n * m -Bit Binary Multiplier

* Implements multiplication of two
binary numbers of n and m bits.

Three Three-Bit Binary Multiplier

three-bit binary numbers six-bit binary number

A, C>—
A, [>— Ps

Ao [>—

Multiplication

UU%UUU

\ B: >»——
B1 Co—

Bo >

o ... for Instance, the three three-bit multiplier (also
known as the three-bit multiplier) implements binary
multiplication of two three-bit numbers to produce a
possible six-bit number.

... evolving Binary Multipliers Is
an Interesting problem

* The multiplier is a fundamental building block.

e There i1s a well established conventional
methodology for design of binary multipliers.

e There are no conventional methods for building
multiplication, using other gates apart from AND,
OR, NOT, and XOR.

Circult evolution can be
considered as a search on
a fitness landscape

Features of Fitness Landscapes

o A fitness landscape is uniquely characterized by its:
— smoothness,
— ruggedness,
— and neutrality.

*Ruggedness

Number and distribution of local optima
Smoothness
*Size of the basins of attraction

*Neutrality
*Neighboring configurations with equal fitnesses

... these define the structure of landscapes

What do we know about landscape
neutrality and evolutionary search?

e 1) A connected subgraph of genotypes with equal
fitness values is referred to as neutral network.

 2) Landscapes neutrality: neutral networks or neutral
clusters?

 3) The neutral networks allow the population to
cross large landscape regions with lower fitness, and
thus, to investigate the space of all designs!!!

.. hmmm!?! If this Is true ...

 Why don't we define a neutral network that will
connect “all" functionally correct designs of an
arithmetic (or any other) function?

Neutral networks

_Human design space

Neutral bridge

Space of all designs

Cartesian Genetic Programming

« Evolution of programs represented by rectangular arrays
(graphs) rather than trees.

* This Is done via genotype- phenotype mapping that allows
landscape neutrality.

 An array of cells

/— outputs

ng

._._._. 1.

1

(&

TIT11

SRRE

1L

E
o
o

a

._._._:.._.
o

TITT

3

._._._...._.

.

“ .n
!)
1

TITT

internal connections

1L,

n

O
TrT1
ILLE,

n

o
T
JLLEL

-—
e

Q

TITIT

cells —/

representation

cﬂl‘l"l

P

C1

e
- ‘—‘-

node function

array outputs

Genotype-Phenotype Mapping
(example)
Phenotype

Cin = Coy
\ . .
B =

Genotype\
0|1 I].ﬂ 0 2.3 2

... the mapping introduces five sources of
landscape neutrality

1) Input redundancy
— Inputs of cells that are not used in the operating circuit.

2) Cell redundancy

— Cells whose outputs are not connected in the operating circuits.

3) Functional redundancy

— The case in which the number of cells of a digital circuit is higher than the
optimal number needed to implement the circuit.

4) Logic equivalency

— The case in which a (sub-)circuit can be substituted with another “logically"
equivalent (sub-)circuit that has the same number of gates.

5) Phenotype equivalency
— The possibility to encode a digital circuit in dierent ways.

The Evolutionary Algorithm Used

1) Initialize the population with a functionally correct circuit and
mutated copies of the circulit.

2) Evaluate fitness of genotypes, and size of corresponding circuit.

3) Copy the genotype of the smallest functionally correct circuit into a
new population (offspring).

... alternatively, If there are several genotypes of functionally correct

circuits with equal size, then select one of these at random and copy it
Into the new population.

4) Fill remaining places in the new population by mutated versions of
promoted best genotype.

5) Go to 2 until stop criterion is reached.

Results for the Three * Two-Bit
Multiplier

he evolved design ...

A, > p——

1 }—e — P,

A-|D_

—
— __J/
)
L~ DD e
1/
O

Length

... and 1ts optimality

34

30

26

22

18

14

(a) —

{b) e—

17

16

15

Number of gates used

14

13

... and some more results for the
Three * Two-Bit Multiplier

he usual evolved design

... and the unusual evolved design.

- D

A:D"- : :D o

z%

Results for the Three * Three-Bit
Multiplier

he evolved design

n =) = e
e x|
il
[H) o——
| e R B =
:’J :D—-—]D—L'jD L= P2
=T e =
FHO-

Length

80

76

72

68

64

60

56

52

48

44

40

... and 1ts optimality

30

29

28

27 26
Number of gates used

25

24

23

Results for the Four * Three-Bit
Multiplier

he evolved design ...

= =)
=g

My H

- @ D=
ﬁ:’}':q[} {}—m_t?——[}—
] ,

=t = L =h
=
— — =D =l

2 = |) |—4_]—_]E>_

e b =
- ="

1] I:!-—E — I

Length

... and 1ts optimality

L)

B

74

7l

{55

43 42 41 40

Number of gates used

Results for the Four * Four-Bit
Multiplier

he evolved design ...

Ay &4_[} LD7 '—)—D F.
) jL
A — s,
— =1
A i, =l — H——— > = e —
—) L S Ly |
LA -
=) LDE} :
— JHoHED—
_ = A)

1900

i
)

lslslv]slele

L=

Lenoth

120}

115

110

1035

106

L5

i)

... and 1ts optimality

:[1_|| —a—

il (atl)

Mumber of gates used

59

... Perhaps multiplication can be carried
out in a more efficient way

100

90

80

70

)

60

50

40

Improvement (%o

30
20]

:ﬂ - \

0

2x2 3x2 3x3 4x3 4x4
Multiplier

* The percentage of improvements in terms of number of two-
Input gates attained for the binary multiplier circuits.

... although fast, the evolutionary design
of large circuits is time consuming even on
the”neutral bridge"

=

—_— — —_— —_—
o T e S T S R Y
| T | T T

Time (seconds)

= B T = e I =
I

2x2 Ix2 3x3 4x3 4x4
Multiplier

e The time consumed by Pentium
200MHz computer to perform 10,000
generations with a population of 5
elements for various multiplier
circuits.

... the evolution of large circuits requires
millions of generations

» The number o
of generations !
required to oo |
evolve the g 1000 f
reportec B0
circuits. o

]

3x:
Multiplier

Conclusions and Concerns

1) Embedding landscape neutrality, one could build a “bridge" in the
space of all solutions between the conventional and other more
efficient designs.

2) The technique allows the automatic design of “better" circuits, in

which a functionally correct solution is guaranteed!
... however, how to ensure the existence of the “neutral bridge".

... furthermore, how to tackle the problem of scale.
3) Examples of very efficient multiplier circuits have been shown.

Does it mean that the techniques used in the conventional design are
not sufficient.

Why the design of more efficient circuits was possible.

Scalability Problems of Digital
Circuit Evolution: Evolvability and
Efficient Designs

Vesselin K. Vassilev
South Bank University
London
and
Julian F. Miller
The University of Birmingham
Birmingham

Digital Circuit Evolution:
Concept and Final Goal

e ... by evolving novel designs ... to discern
generalizable principles of design that
may allow automatically to produce large
and efficient electronic circuits.

Why not “evolving" large and efficient
CIrcults ...

e To evolve large and efficient circuits Is a
difficult thing to do.

* The major problem is ... the very fast growth
In the number of gates used In the target
circuit as the number of inputs of the evolved
logic function Is increased.

* This is referred to as the problem of scale.

A possible way to go ...

.. to 1dentify suitable building blocks that are

hlg
e Per

ner functions rather than two-input gates.

naps, such blocks can be identified by

looking at other evolved designs of smaller
functions.

Evolving circuits and modules

* An evolved three-bit multiplier circuits and the possible
building blocks (modules).

Embedding the
new building
blocks within
the genotype

Maodule 10

Module 6=7=10

Module £y

= >

:

The Evolutionary Algorithm used

1) Randomly Initialize a population of genotypes.
2) Evaluate fitness of genotypes.

3) Copy the fittest genotype into a new population
(offspring).

... alternatively, If there are several equally fit

genotypes, then select one of these at random and
copy It into the new population.

4) Fill remaining places in the new population by
mutated versions of promoted best genotype.

5) Go to 2 until stop criterion iIs reached.

Evolvability in the scaled evolutionary design

|_]_ 1 T T L | T T ™ T L} L | T L} L | T T LI | T T L |
(a) -
l.{}ﬁ B :h_] ——

——— e =

- R
0.95 f 1
0.9 .

“-Hf‘ B)ﬂ‘gﬁ .
- ;
0.8 #
e

0.75 e

Best fitness

0.7 SE .

0.65 fu-—t -

["Iﬁ 1 i " 'l | i i 1 i i 'l | " 'l | i i
| 10} 1OMD | (D LR LMD | e+HDb le+07
Generation

« Typical evolutionary runs for the scaled and the nonscaled scenarios
of evolving the three-bit multiplier circuit.

Why Is easy to evolve ...

e Two possible reasons:

—1) The underlying fitness landscapes are
easler for evolutionary search.

—2) The building blocks are bigger.

The structure of circuit evolution landscapes

1) The both, scaled and non-scaled scenarios, induce
landscapes with similar characteristics.

... therefore, the principles of evolving digital circuits
discovered In the original scenario are valid when evolving
with bigger building blocks.

2) The subspaces associated with the functionality of the
array In the scaled scenario are slightly smoother than those
Induced by the evolution of two-input gates.

... therefore, by using building blocks inferred from evolved
designs one may improve the evolutionary search.

The structure of
circuit evolution
landscapes: s ol

e Correlation landscape

The structure of
circuit evolution
landscapes:
Information
structure

H1{epsilom)

epstlon

Why is difficult to evolve very
efficient designs ...

Evolution does not care about blocks.

Evolution builds the three-bit multiplier by
assembling

the building blocks again disregarding the
fact that these

are already available.
... perhaps, the building blocks used are not
the right ones?!1?

« example of overlapping and strange reuse

Conclusions and Some Thoughts

1) The principles of evolving digital circuits are scalable.

2) To evolve circuits using bigger building blocks is
easler.

3) ... However, the evolution of digital circuits with bigger
building blocks does not produce very efficient designs.

4) To define suitable modules for the evolutionary design
of some circuits such as the binary multiplier might be a
very difficult task.

... perhaps, the most efficient multiplier is a basic
computational unit ???

