Operating and available power gain circles

Operating power gain

$$G_P = \frac{P_L}{P_{IN}} = rac{ ext{power delivered to load}}{ ext{power input to network}}$$

and it is independent of source impedance.

potentially unstable transistors. Design procedure is simple for both unconditionally stable and

Unconditionally stable bilateral case:

$$G_P = \frac{1}{1 - |\Gamma_{IN}|} |S_{21}|^2 \frac{1 - |\Gamma_L|^2}{|1 - S_{22}\Gamma_L|^2} \tag{2}$$

$$G_P = |S_{21}|^2 \frac{(1 - |\Gamma_L|^2)}{\left(1 - \left|\frac{S_{11} - \Delta \Gamma_L}{1 - S_{22}\Gamma_L}\right|^2\right) |1 - S_{22}\Gamma_L|^2} = |S_{21}|^2 g_p$$
 (3)

$$g_p = \frac{1 - |\Gamma_L|^2}{1 - |S_{11}|^2 + |\Gamma_L|^2(|S_{22}|^2 - |\Delta|^2) - 2\text{Re}(\Gamma_L C_2)} \tag{4}$$

$$C_2 = S_{22} - \Delta S_{11}^*$$

5

gain circles as before. Final result: G_P,g_p functions only of $[S],\Gamma_L$. Procedure for obtaining const.

Circle radius:

$$R_p = \frac{\left[1 - 2K|S_{12}S_{21}|g_p + |S_{12}S_{21}|^2 g_p^2\right]^{1/2}}{|1 + g_p(|S_{22}|^2 - |\Delta|^2)|} \tag{6}$$

distance from origin:

$$d_p = \frac{g_p|C_2^*|}{|1 + g_p(|S_{22}|^2 - |\Delta|^2)|}$$

Angle: g_p is a real number. Looking at expr. for center of the circle (eqs. not given), the direction (angle) of the centers will be determined by \mathbb{C}_2^* .

$$C_p = \frac{g_p C_2^*}{1 + g_p(|S_{22}|^2 - |\Delta|^2)}$$

 ∞

As our intuition tells us, g_p will have its max. for $R_p = 0 \Rightarrow$

$$g_{p,max}^2 |S_{12}S_{21}|^2 - 2K|S_{12}S_{21}|g_{p,max} + 1 = 0$$

$$g_{p,max} = \frac{1}{|S_{12}S_{21}|} |(K - \sqrt{K^2 - 1})$$
 (10)

$$\Rightarrow G_{P,max} = \frac{|S_{21}|}{|S_{12}|} (K - \sqrt{K^2 - 1}) \tag{11}$$

that with direction of C_2^* gives Γ_L for $G_{P,max}$ $G_{P,max}/|S_{21}|^2$, and plug it into eq. for d_p (eq. 7). Intersection of $G_{P,max}/|S_{21}|^2$, i.e. calculate $G_{P,max}$ from eq. 11, find $g_{p,max}$ Given G_P we select Γ_L from constant operating power gain circles. In order to get max. G_P , Γ_L is selected at distance where $g_{p,max}=$

give $G_{P,max}$ are identical to Γ_{Ms},Γ_{ML} from source $\Rightarrow G_{T,max} = G_{P,max}$. Note that values of Γ_s, Γ_L that Max. output power obtained if input is conj. matched, i.e. $\Gamma_s =$ \mathbb{I}_{IN}^* ; in this case the input power is equal to max. available power

©B. Pejcinovic

Procedure

- ullet Specify G_P ; radius, center and angle are given in eqs. above
- ullet Select the desired Γ_L
- For given Γ_L max. output power is obtained by conjugate matching on input, i.e. with

$$\Gamma_{s} = \Gamma_{IN}^{*} = S_{11} + \frac{S_{12}S_{21}\Gamma_{L}}{1 - S_{22}\Gamma_{L}}$$

to GP_{max} . $G_P=G_{P,max}$ is specified at the beginning, G_T will be equal This value of Γ_s produces the transducer gain $G_T=G_P$ (if

Example 3.8.1. Design for $G_p = 9 dB$.

- $|S_{21}|^2=4.235$ or 6.27 dB. $g_p=G_p/|S_{21}|^2=1.875.~K,\Delta,C_2$ calculated before (ex. 3.7.1)
- calculate $R_p=0.431$ and $C_p=0.508 \angle 103.9^\circ$
- select some Γ_L point, say pt. A where $\Gamma_L=0.36/47.5^\circ$ (note the resistance!)
- calculate Γ_s from known $\Gamma_L \Rightarrow \Gamma_s = 0.629/175^\circ$

3.24, $R_{p,max} = 0$, $C_{p,max} = 0.718/103.9^{\circ}$ Same procedure can be used to find $G_{p,max}$ (for simultaneous conjugate matching) \Rightarrow different circle (actually point): $g_{p,max} =$

 $\Gamma_{s,max} = 0.762 \angle 177^\circ \Rightarrow$ same as Γ_{Ms}, Γ_{ML} from before This leads to values for $\Gamma_{L,max}=0.718/103.9^{\circ}$. Use it to find

Constant available power gain circles

$$G_A = rac{P_{AVN}}{P_{AVS}} = rac{\mathsf{P} \ \mathsf{avail.} \ \mathsf{from \ network}}{\mathsf{P} \ \mathsf{avail.} \ \mathsf{from \ source}}$$

(13)

$$G_A = \frac{1 - |\Gamma_S|^2}{|1 - S_{11}\Gamma_S|^2} |S_{21}|^2 \frac{1}{1 - |\Gamma_{OUT}|^2}$$

 $2, 2 \rightarrow 1, L \rightarrow S$. Derivation analogous to operating power gain case: exchange 1
ightharpoonup

$$g_a = \frac{G_A}{|S_{21}|^2} \quad C_1 = S_{11} - \Delta S_{22}^* \tag{15}$$

$$R_a = \frac{\left[1 - 2K|S_{12}S_{21}|g_a + |S_{12}S_{21}|^2g_a^2\right]^{1/2}}{\left|1 + g_a(|S_{11}|^2 - |\Delta|^2)\right|} \tag{16}$$

$$C_a = \frac{g_a C_1^*}{1 + g_p(|S_{22}|^2 - |\Delta|^2)}$$

(17)

obtained for conjugate matched load so that produce desired G_A . With Γ_s known, max. power on output is By plotting const. available gain circles a Γ_s can be picked up to

$$\Gamma_L = \Gamma_{OUT}^* = \left(S_{22} + \frac{S_{12}S_{21}\Gamma_s}{1 - S_{11}\Gamma_s}\right)^*$$

(18)

For
$$\Gamma_L = \Gamma_{OUT}^* \Rightarrow G_T = G_A$$
.

Potentially unstable bilateral case

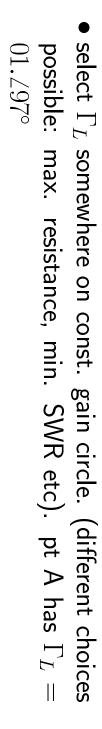
We have to worry about stability! Procedure is still the same:

- specify G_p and draw const. operating gain circles. (calc. $R_p,C_p)$
- draw output stability circle (calc. r_L, C_L ; remember that they give Γ_L -s for which $|\Gamma_{IN}|=1$)
- choose Γ_L in stable region (stay away from circle)
- ullet draw input stability circles (calc. r_s, C_s).
- ullet calculate Γ_{IN} and see if $\Gamma_s=\Gamma_{IN}^*$ is in the stable region
- if Γ_s is not in stable region, or is too close to stability circle: a) select Γ_s arbitrarily, b) select new G_p , c) try different Γ_L

tions during tuning or due to variations of parameters Γ_s, Γ_L should be away from the stability circles to avoid oscilla-

Example 3.8.2. Design for 10 dB.

- stability: $K=0.4<1\Rightarrow$ potentially unstable. $G_{MSG}=31$ $= 14.9 \, \mathrm{dB}$
- calc. const. gain circles: $R_p=0.473, C_p=0.57 \angle 97^\circ$
- output stability circle: $r_L=0.34, C_L=1.18/97^{\circ}$; note that C_L and C_p are on the same line; obvious from their eqs.
- ullet stability region: since $|S_{11}| < 1$, stable region includes origin.



on input: $\Gamma_s = \Gamma_{OUT}^* = 0.52/179^\circ$; is it stable?

input stability circle: $r_s=1, C_s=1.67/171^\circ$. Since $|S_{22}|<1$, origin is in stable region $\Rightarrow \Gamma_s$ is stable point. (construct these on S-chart).

Yet another method for amplifier design

pp. 1567–1575, 1995 Conditionally Stable Amplifiers," *IEEE MTT*, vol. 43, no. 7, M.L. Edwards et al., "A Deterministic Approach for Designing

each affects the other. Fig. 1 for basic procedure for the methods discussed so far: Basic problem: input and output treated separately even though

- 1. Pick a "suitable" source reflection coefficient Γ_s
- 2. design input matching network
- 3. calculate Γ_{OUT} and take $\Gamma_L = \Gamma_{OUT}^*$
- 4. is Γ_L in stable region?

What to do if Γ_L is not stable?

- 1. accept the give Γ_L and design the OMN
- 2. change Γ_L to be stable but "close" to Γ_{OUT}^*
- 3. change Γ_s and hope that new Γ_L will be stable

Problems: possibly unstable (1) and iterative (2,3).

and vice-versa can be output stable ($|\Gamma_{OUT}| < 1$) but input unstable ($|\Gamma_{IN}| > 1$) Distinction: stability on input and output separated. \Rightarrow circuit

Definition: Jointly stable I/O circuits are those that have $|\Gamma_{OUT}(\Gamma_s)| < 1 \text{ and } |\Gamma_{IN}(\Gamma_{OUT}^*(\Gamma_s))| < 1.$

picking Γ_s and Γ_L . (note: Γ_L is really function of Γ_s since we assume $\Gamma_s = \Gamma_{OUT}^*$). Recall: in the Γ_s plane, than we could devise a non-iterative scheme for ldea: If stable/unstable region of Γ_L plane could be represented

$$\Gamma_{IN} = f(\Gamma_L) = \frac{S_{11} - \Delta \Gamma_L}{1 - S_{22}\Gamma_L} \tag{19}$$

$$\Gamma_{IN} = f(\Gamma_L) = \frac{S_{11} - \Delta\Gamma_L}{1 - S_{22}\Gamma_L}$$

$$\Gamma_{OUT} = g(\Gamma_s) = \frac{S_{22} - \Delta\Gamma_s}{1 - S_{11}\Gamma_s}$$
(20)

(20)). Similar eqs. can be obtained for Γ_L (from (19)), and Γ_s (from

Define:

- 1. Output stable region in the source plane where $|\Gamma_{OUT}(\Gamma_s)| < 1$ (= input stability circle), and
- 2. input stable region in the source plane where $\Gamma_{IN}(|\Gamma_{OUT}^*(\Gamma_s))| < 1$ (= output stability circle, but in Γ_s plane).

depends only on S-matrix). For (1), see fig. 2 (two cases: $D_1>0$ and $D_1<0$, where D_1

Section III of the paper shows that |k| < 1 if and only if stability circle intersects the unit circle. Why is that important?

solely by comparing the centers of the circles stability circle, the gain circle and the unit circle can be determined that are common to all available gain circles which are called invariant points. \Rightarrow geometric relationship between the For |k| < 1, stability circle intersects the unit circle in two points

The invariant (intersection) points are given by

$$\Gamma_s^{\pm} = \frac{B_1 \pm \sqrt{4|C_1|^2 - B_1^2}}{2C_1}$$

(21)

all this? But, what can we learn about the gain g_a $(G_A = g_a |S_{21}|^2|)$ from

 $g_a
ightarrow \infty$ when Γ_s is on stability circle. this line $\Gamma_s=x\hat{c}_s$? Based on the derivative and some reasoning |k|<1. See fig. 3 for illustration. For $|\Gamma_s|=1\Rightarrow g_a=0$, and \Rightarrow the gain function g_a is a ${f monotonic}$ function of ${\sf x}$ whenever Because of the discussion above, only the position of the center (and they are all on one line) matters. How does g_a change along

source plane Not very useful, unless we can show input stable region in the

source plane is an available gain circle the invariant points! \Rightarrow input stable boundary in the circle is on the same line as available gains and that it intersects Through equations (section ${\sf V})$ it is shown that the center of this

The gain that corresponds to this boundary (IS) is :

$$g_{is} = \frac{2k}{|S_{12}S_{21}|} \Rightarrow G_{IS} = 2k \left| \frac{S_{21}}{S_{12}} \right| = 2k \text{ MSG}$$
 (22)

Question: when/if is this g_{is} upper bound for the available gain?

stable available gain. required to be passive and jointly stable, called max. jointly There is a max. of available gain when source impedance Γ_s is

gion). For $|\Gamma_{IN}(\Gamma_{OUT}^*(\Gamma_s))| < 1$ (input stable region) stable these circles: see Table 1. Two obvious requirements: $|\Gamma_s| < 1$ (passive source region) and $|\Gamma_{OUT}(\Gamma_s)| < 1$ (output stable reregion can be either inside or outside the g_{IS} circle. The analysis requires examination of different combination of

Different cases in Figs. 4 - 8. Case I in some detail.

the load stability circle. Also, the gain is limited to G_{IS} an output whose conjugate match is located on the stable side of laps with the USC, i.e. Γ_s from the overlapping region result in Conclusion: when 0 < k < 1 then the jointly stable region over-

stability. For -1 < k < 0 no passive source impedance will result in joint

source impedances is $G_{IS} = 2kMSG (= G_{MSM})$. For $0 < k < 1 \Rightarrow$ the maximum available gain for jointly stable

exchanged with load). Similar reasoning can be extended to operating power gain (source

transistor Example of design for 6 GHz amplifier with conditionally stable

