

Construction: Start with polar representation of Γ .

<u>Special points</u> O-C: $\Gamma = 1/0$, S-C: $\Gamma = 1/180^{\circ} = -1/0$. in polar plot going from Γ_L to Γ_{in} involves simple rotation. Other points: take e.g. $Z_L = 17.7 + j11.8\Omega$ on $Z_0 = 50\Omega$ line; Idea: Γ_L, Γ_{in} on lossless lines related by simple phase change \Rightarrow $|\Gamma| \leq 1 \Rightarrow$ circle with radius=1 covers all possible Γ s

See fig. 3-17. Find $\Gamma_{in} = \Gamma_L (150^\circ - 2\beta l) = 0.5 (150 - 120)^\circ$ Phase change from $2\beta l = 2\frac{2\pi}{\lambda}\lambda/6 = 2\pi/3 = 120^{\circ}$ $l = \lambda/6 \Rightarrow \Gamma_L = (Z_L - Z_0)/(Z_L + Z_0) = 0.5 \angle 150^\circ$

 \Rightarrow Rotate Γ_L by 120° clockwise to obtain Γ_{in} !!

wise direction. d—distance from the load to the point Γ anywhere between load and generator: rotation by 2eta d in clock-

Conversely, if Γ is known, CCW rotation by 2eta d gives Γ_L .

magnitude by $e^{-2\alpha d}$. Lossy line \Rightarrow spiral; no need to trace it, just adjust the final

Simple graphical solution for Γ transformation along tr. line

What about impedance transformation? We'll use normalized Impedances

Microwave Circuit Design I

©B. Pejcinovic

 \sim

Direct relationship between Γ and \overline{Z} :

$$\bar{Z} = \frac{1+\Gamma}{1-\Gamma} \text{ and } \bar{Y} = \frac{1-\Gamma}{1+\Gamma}$$
(1)

Special points: S-C, O-C. What else can we learn?

Since Z_0 is real, if Γ has angle 0° or 180° then \overline{Z} is real as well Origin of Γ plot is $\overline{Z} = 1$ in impedance plot. Fig. 3-18. left to ∞ on the right. For $\Gamma = 0$, Z=1, i.e. Z= Z_0 . \Rightarrow horiz. axis in Γ plot contains real Z-s, starting with 0 on the

For each Γ we can find \overline{Z} . Idea: connect the points with same real part of Z! same for imaginary parts. (contour plots)

Microwave Circuit Design I (CB. Pejcinovic

-

ಲು

3 - 19Constant real parts — a.k.a const. resistance circles. Fig.

- all pass through $R = \infty$ point
- outermost circle is $ar{R}=0$ circle $(|\Gamma|=1)$; all impedances on It are purely reactive (0 to $\pm j\infty$).

Constant imaginary parts, a.k.a. const. (circles) reactance lines

- $\bar{X} = 0 =$ horizontal line through origin
- ullet upper half \Rightarrow postive reactance X \Rightarrow inductive components
- lower half \Rightarrow negative reactance \Rightarrow capacitive components

Microwave Circuit Design I ©B. Pejcinovic

scale at bottom Combine polar $|\Gamma|$ with Re(Z) and Im(Z) contours \Rightarrow Smith chart (S-chart). Drop the polar circles and calculate $|\Gamma|$ via SWR or the

$$SWR = \frac{1+|\Gamma|}{1-|\Gamma|} \quad \text{or} \quad |\Gamma| = \frac{SWR-1}{SWR+1} \tag{2}$$

and $Z = \infty$). Note: purely resistive loads have SWR = R. SWR read of from the right part of horizontal axis (between Z=1

show S-chart. We need compass and ruler.

Microwave Circuit Design I (0

©B. Pejcinovic

Ċ

are given in fractions of wavelength λ . It is not even necessary to calculate $2\beta l$ (or $2\beta d$) since the scales

case $2\beta l = 360^{\circ}$ One 2π (or 360°) rotation corresponds to $d = \lambda/2$ since in that

to $\lambda/2$. \Rightarrow Full circle = going along transmission line for a distance equal

Impedance and standing wave patterns repeat every $\lambda/2$ distance.

Microwave Circuit Design I (

©B. Pejcinovic

 $Y/Y_0 = YZ_0$ but $|\Gamma|$ does not change with the change from \overline{Z} to \overline{Y} . $\Rightarrow \overline{Y}$ is 180° away from \overline{Z} but on the same $|\Gamma|$ circle. Smith chart also used as admittance chart. $ar{Y} = 1/ar{Z},ar{Y}$

Same conclusion by looking at eqs. 1 — rotation of Γ by 180° transforms Z to Y

Note on using S-chart as Y-chart:

- $\bar{Y} = 0 \Rightarrow$ O-C; for $\bar{Y} = \infty \Rightarrow$ S-C .
- resistance coord. \Rightarrow conductance coord.
- reactance coord \Rightarrow susceptance coord.
- positvie susceptance \Rightarrow capacitive components
- negative susceptance \Rightarrow inductive components (see chart)

Microwave Circuit Design I ©

©B. Pejcinovic

-1

when in \overline{Y} coordinates, angle of refl. coeff. $(\Gamma$) scale must be rotated by 180° (or, we have to go back to \overline{Z} chart to look at ∏ -s)

Two λ scales: toward generator and toward load.

toward generator, i.e. getting closer to the input \Rightarrow clockwise Toward generator: starting from load and moving along tr. line (CW) rotation.

points closer to the load \Rightarrow CCW rotation. <u>Toward load</u>: starting point Γ_{in} and we want to determine Γ of

Example 3-6

Microwave Circuit Design I (

©B. Pejcinovic

 ∞

- a) find $|\Gamma_L|, \phi_L, SWR$ along tr. line
- 1. calc. $\overline{Z}_L = Z/Z_0 = 0.3 + j0.5$; follow the lines until you proper imaginary comp. is found. find where Z_L is. Move along const. resistance circle until
- 2. circle through Z_L with center at origin \Rightarrow circle of constant $|\Gamma|$ (SWR circle).
- 3. Z_L on this circle corresponds to Γ_L . $|\Gamma_L|$ is obtained from and reading off the angle ($\phi_L = 124^\circ$). $|\Gamma|$ read off either the radius, and angle by extending the line from origin through the point all the way to the outer circle $(|\Gamma|=1)$ from the scale at the bottom or from SWR.

Microwave Circuit Design I (CB. Pejcinovic

-

ల

- 4. Intersection of const. $|\Gamma|$ circle with \mathbf{right} part of the horizon-0.62)tal axis gives SWR. Z is real there and we know that SWR =R. (here: SWR = 4.2 \Rightarrow $|\Gamma_L| = (SWR - 1)/(SWR + 1) =$
- b) Finding Γ_{in} from known Γ_L and eta l means rotating along constant $|\Gamma|$ circle by 2eta l (lossless line). Once Γ_{in} is know, Z_{in} is read off S-chart
- 1. Plot Z_L and SWR circle (const. $|\Gamma|$)
- 2. draw radial line through Z_L and read off the value of λ -s toward generator ($\lambda = 0.078$; no particular meaning)
- 3. $\lambda_0 = 40cm$ at 750MHz, I=5.2cm $\Rightarrow l/\lambda = 5.2/40 =$ 0.130. Start from 0.078, rotate CW by 0.130 to 0.208 (=0.078+0.13)

10

Microwave Circuit Design I

©B. Pejcinovic

- 4. intersection of radial line with SWR circle give Γ_{in} and Z_{in} . |1'| is the same as before, only angle changed to $30^{\circ}.$
- 5. read Z_{in} off the S-chart ($\overline{Z}_{in} = 2 + j2$, $Z_{in} = 200 + j200\Omega$.
- c) for I=2cm, $l/\lambda = 2/40 = 0.05$; draw a radial line, find angle. 0.47 + j0.93, or $Z = 47 + j93\Omega$ Intersection with SWR circle gives $\Gamma(2cm)$ and Z(2cm). Z =

Suppose Y_L was given; procedure is the same: use S-chart as admittance chart to find position of Y_L — rest is the same

where values are read off ($Y_L = 0.9 - j1.47$; note on normalization Finding Y_L from Z_L is easy: it's on the opposite side of the circle $Y_0 = 1/Z_0 = 0.01, Y_L = 0.01Y_L$

To find Γ_{in} from Y_{in} rotate by 180° first!

Microwave Circuit Design I (

©B. Pejcinovic

values of Γ and Z can be obtained and which cannot. Say, $Z_{in} =$ Smith chart is a very nice visual tool. It can easily show which is not on the SWR circle. 0.7 + j0.4 cannot be obtained in this case since that impedance

tainable for this load can be answered easily. Also, questions like finding a maximum reactive component at-

 $0.078 = 0.138\lambda$ length $\Rightarrow Z_{in} \approx 2.3 + j2.0$; to get that Z_{in} we need a line of (0.216 -

Examples of calculations with S-chart.

Microwave Circuit Design I

©B. Pejcinovic

- ex. 3–7. Finding Z_{in} for a given circuit.
- Split it up in parts as we move on the line away from Z_L towards Z_{in} .
- pt. A: add the line delay (lossless)
- $A \rightarrow B$: add $j\omega L (j30\Omega)$ to total reactance; added in series.
- $B \to C$: add $j\omega C \ (-j200\Omega)$ in shunt
- $C \rightarrow$ in: again, phase delay along the line.

Microwave Circuit Design I

©B. Pejcinovic

- $Z_L = 2 + j1.5$; draw SWR circle through that pt.
- rotate by 0.12λ to get to pt. B,
- add j30/50 to impedance at pt. B looking towards Z_L ; done on a const. resistance circle (real comp. does not change); addition is in series \Rightarrow use resistances, $\Rightarrow Z_B =$ 1 - j1.3 + j0.6 = 1 - j0.7
- add C in shunt; impedances in shunt don't add up \Rightarrow switch to admittances; convert Z_B to Y_B by 180° rotation; Y = 1/(-j200) = j0.005, or normalized $\bar{Y} = j0.005 * 50 = j0.25$

Microwave Circuit Design I

©B. Pejcinovic

- now use constant conductance circle to pt. $ar{Y}_C = 0.67 + 1000$ j0.47 + j0.25 = 0.67 + j0.72
- phase change along the line: CW rotation on SWR circle for $0.06\lambda \Rightarrow \bar{Y}_{in} = 1.3 + j1.1$; Z_{in} obtained by 180° rotation $Z_{in} = 0.45 - j0.38$
- finally, de-normalize your Z-s and Y-s.

What would happen if L and C were exchanged?

chart! Note: you must remember what you are using: Z or Y Smith

Microwave Circuit Design I

©B. Pejcinovic

ex. 3-8: using lines with different Z_0

- normalize Z_L with $Z_{01} = 50\Omega \rightarrow \overline{Z}_L = 0.4$.
- CW rotation by $l/\lambda = 5/20 = 0.25 \rightarrow l = 0.25\lambda$.
- find \overline{Z} on the input terminals of Z_{01} tr. line: $\overline{Z}_A = 2.5$ $Z_A=125\Omega$ (note the transformation : $Z_{in}=Z_0^2/Z_L$ or $\bar{Z}_{in}=1/\bar{Z}_L$) \downarrow
- normalize with $Z_{02} = 90\Omega \rightarrow \bar{Z}_Z = 125/90 = 1.39$
- draw new SWR circle and rotate CW by $12.8/20\,=\,0.64\lambda$ Note: 0.5λ is <u>one full circle</u>!
- read off $\bar{Z}_{in} = 0.9 j0.3$ or $Z_{in} = 81 j27\Omega$.
- last SWR is $1.39 \Rightarrow |\Gamma| = 0.163$; angle from Z S-chart

Microwave Circuit Design I ©E

©B. Pejcinovic

What can we do with Smith chart?

1. plot $ar{Z}$ or $ar{Y}$

2. calculate SWR, $|\Gamma|, \angle \Gamma$

3. impedance transformation due to tr. line

4. $Z \to Y$ and $Y \to Z$

5. add series or shunt circuit elements at any pt. on the tr. line

Microwave Circuit Design I (CB. Pejcinovic

Variation of $ar{Z},ar{Y}$ with frequency

Purely reactive networks $\Rightarrow \partial X/\partial \omega, \partial B/\partial \omega > 0$ (figs. 3–14) 15, 16).

a CW trend with increasing frequency. Same conclusion holds for R with X, and G with B. see fig. 3–23 for qualitative behavior. This translates into requirement that Z and Y curves must have

Arrows indicate direction of increasing f.

at 1 GHz. Load is $Z_L=0.5+j\bar{X}$ and $\bar{X}=(\omega L-1/(\omega C))/50$ Examine tr. line with series RLC circuit (fig. 3–24). Resonance

Microwave Circuit Design I (CB. Pejcinovic

ovic 18

is due to freq. change of tr. line. Z_{in} covers 0.151λ while Z_L covers only 0.084λ . Diff. of 0.067λ Note: Z_{in} vs. f is more spread out on S-chart than Z_L itself! $0.167 \Rightarrow$ proportional to f! (electrical length $\beta l = 2\pi l/\lambda = \omega l/v$) Problem: rotation is frequency dependent! $l/\lambda = 0.1, 0.133$ Each Z_L has SWR circle; rotate according to table 3–1. (S-chart) CW change with freq. increase. What's the effect of tr. line? Calculate Z_L at resonance, above, below: see table 3–1.

ficult to match impedance on Δf . Longer line (large Δf) \Rightarrow larger impedance spread \Rightarrow more dif-

Problem 3.51 for illustration.

Microwave Circuit Design I

©B. Pejcinovic

Standing wave patterns

Magnitudes: $V/V^+ = |1 + \Gamma|$, $I I^+ = |1 - \Gamma|$ Use S-chart for this; idea from $\hat{V}/\hat{V}^+ = 1 + \Gamma$, $\hat{I}/\hat{I}^+ = 1 - \Gamma$

ized rms voltage and current). Simple vector addition and subtraction gives the ratios (normal- V, Γ are functions of distance; for lossless lines V^+, I^+ are not!

addition (subtraction) gives V/V^+ (I/I^+ Fig. 3–25 for $Z_L = 1 + j2$. Remember $1 \equiv 1/0^{\circ}$. Vector

specific el. lengths and do vector summation and reconstruct SW pattern Γ moves away from Γ_L on tr. line (SWR circle). Pick a few

Microwave Circuit Design I

©B. Pejcinovic

©B. Pejcinovic

21

Microwave Circuit Design I

lengths toward generator" (need freq. and velocity). Fig. 3–26. Read position on tr. line by reading off the distance from "wave-

Max. V when $\angle \Gamma = 0$; (min. I); min. V (max I) when $\angle \Gamma = 180^{\circ}$.

Smith Chart

Summary of Smith-chart:

- polar plot of $\Gamma = (Z Z_0)/(Z + Z_0)$. Z_0 is the tr. line characteristic or reference (normalizing) impedance.
- Normalized impedances: $z = Z/Z_0 \Rightarrow \Gamma = (z 1)/(z + 1)$
- Normalized admittances: $y = Y/Y_0 \Rightarrow \Gamma = (y 1)/(y + 1)$
- Moving along tr. line \Rightarrow CW circular motion on S-chart (lossless).
- Note the positive and negative reactances/susceptances
- Constant real and imaginary impedances are on circles. Unit l`circle is for pure reactances/susceptances
- conversion from Z to Y done by 180° rotation.

Microwave Circuit Design I ©B.

©B. Pejcinovic

One choice is "compressed" Smith chart showing a fraction of the negative resistance values on the horizontal axis. (fig. 2.2.4) Negative resistance results in $|\Gamma| > 1$. Where to put it on S-chart?

circles are as labeled (ex. 2.2.2). Alternative: plot $1/\Gamma^*$ but the resistance circles are now taken to be negative of what is read off the chart, while the reactance

For S-chart calculations: ex. 2.2.3 and fig. 2.2.6

ZY Smith Chart

degrees. ZY chart has them both on one piece of paper. Note: of the Z chart). Ex. 2.3.2 and fig. 2.3.2, 3, 4. upper half is for negative susceptance, lower for positive (opposite Basic idea: Y is obtained by rotating Z in Smith chart by 180

Microwave Circuit Design I

©B. Pejcinovic

Impedance matching networks

stability, minimum noise etc. See fig. 2.4.1. Why matching? For amplifiers: to deliver max. power, ensure

series/shunt inductor and capacitor. cuits (fig. 2.4.2). Simple procedure: ex. 2.4.1 for effects of How to do it? For lower freq. use lumped elements: *ell* cir-

Add series reactance \Rightarrow move on const.-resistance circle (fig.)

Add series susceptance \Rightarrow move on const.-conductance circle

Matching circuit design: moving from one impedance/admittance 2.4.2, 2.4.3 to another via const. resistance and conductance circles. Ex.

Not all *ell* circuits can be used for a given match: fig. 2.4.11

Microwave Circuit Design I (CB. Pejcinovic

-

where $R_s + jX_s$ is an equivalent series input impedance at that either low- or high-pass filters. Define node Q as: $Q_n = |X_s|/R_s$ node. For admittance: $Q_n = |B_p|/G_p$. Fig. 2.4.13 Quality factor Q: loaded Q defined as $Q_L=\omega_0/$ BW . ell circuits

(see fig.) Note: these are the same ${f only}$ at frequency $\omega_0!$ by replacing the "input" impedance Z_B with its shunt equivalent points are not defined. Instead, use "equivalent" bandpass filter How to find Q? Need ω_0 and BW. Not that simple since -3dB

 \Rightarrow resonant circuit loaded with 25Ω

$$Q_L = \frac{\omega_0}{\mathsf{BW}} = \omega_0 R_T C = \frac{|B_C|}{G_T} = \frac{R_T}{|X_C|} = \frac{25}{25} = 1$$
(3)

Microwave Circuit Design I (CB. Pejcinovic

same as the original one at the resonant frequency. Gain of the "equivalent" circuit can be calculated and it is the

estimate it by using $BW \approx f_0/Q_L = 500$ MHz. Alternatively, all *ell*. Since the BW is not really defined for the original circuit, estimate. Example 2.4.5 read it off the plot \Rightarrow BW= 440 MHz, which is close to the Q? In this case $Q_n = 2$ and $Q_L = 1 \Rightarrow Q_L = Q_n/2$, same for Real question: what is the relationship between nodal and loaded

loads). Problem: with *ell* circuits we cannot adjust Q! Solution: \Rightarrow to get high Q_L , high value of Q_n is needed. (note on complex use three elements, i.e. T or Π networks.

Microwave Circuit Design I (CB. Pejcinovic

on Smith chart fig. 2.4.16. Center of circles at $(0, \pm 1/Q_n)$ and radius is $(1 + 1/Q_n^2)^{1/2}$ the highest Q in a T or Π circuit. Useful tool: constant Q circles Problem: Q_n and Q_L not easily related. Normally we just use

tions. example 2.4.8 (why?). Design example(s) 2.4.6, 2.4.7. Note that the final Q is determined trom trequency plot. Also, there are many possible solu-

circuit. I/O matching done via *ell* circuits. Final note on amplifiers: full circuit, dc part, ac part (fig. 2.4.20). Various C-s and L-s (RFC-s) serve to decouple various part of the

