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Abstract- This paper uses instances of SAT, 3SAT and
TSP to describe how evolutionary search (running on a
classical computer) differs from quantum search (running
on a quantum computer) for solving NP problems.

1 Introduction

The real challenge of combinatorial optimization is to create
algorithms and techniques that can solve realistically sized
problems within a reasonable amount of computational time.
Most of these algorithms formulate a combinatorial prob-
lem as a search problem—i.e., the solutions to combinatorial
problems reside in an abstract solution space and two solu-
tions are neighbors if they differ by a single mutation of a
problem parameter. Any algorithm that “solves” a combina-
torial problem is therefore a search algorithm that explores
the solution space landscape.

Unfortunately, many real-world combinatorial problems
require such huge computational resources that brute force
search methods are useless; they simply take too much time
to find the optimal answer. This has led researchers to use
search heuristics that yield an acceptable compromise: a pos-
sibly lower quality answer but with a minimal search effort.
Evolutionary Computation (EC) techniques are at the fore-
front of this work and impressive results have been achieved
(e.g, see [1, 2]). Recently an entirely new approach has sur-
faced with potentially enormous consequences. This new ap-
proach is called quantum computing and it relies on the prin-
ciples of quantum mechanics to evolve solutions.

It is interesting to compare how a quantum search, run-
ning on a quantum computer, differs from an evolutionary
search, running on a classical computer. However, the whole
point of this comparison is not to advocate one method over
the other—its purpose is to highlight the radically different
philosophical approaches. (Besides, because no one has ever
built a quantum computer, there is no way any direct compar-
ison can be made at this time. It is up to the reader to decide
which approach holds the most promise.) If nothing else, the
reader should come away with an appreciation for the total
re-orientation in thinking that quantum search will require.

The paper is organized as follows. Section 2 provides an
overview of evolutionary algorithms and quantum comput-
ing. Every attempt has been made to make the quantum com-
puting portion a comprehensive tutorial that should be under-

standable by most computer scientists. Because the focus of
this paper is on NP-complete and NP-hard problems, a formal
definition of these problem classes is also provided. Section
3 describes how the two algorithm methodologies have been
used to solve NP problems, which leads into a formal compar-
ison in Section 4. Finally, Section 5 comments on the future
of quantum computing.

2 Background

2.1 Evolutionary Algorithms

All evolutionary algorithms (EAs) share the same basic or-
ganization: iterations of competitive selection and random
variation. Although there are several varieties of EAs, they
are all biologically inspired and generally follow the format
depicted in Figure 1.

initialize
population

evaluate
fitness

survivors
select

randomly vary
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Figure 1: The canonical EA.

The evaluation function for an individual returns a nu-
meric value representing the quality of the solution described
by that individual. This numeric value is often called the fit-
ness of the individual while the evaluation function is called
the fitness function. High fitness means the associated indi-
vidual represents a good solution to the given problem. The
selection process targets highly fit individuals for survival.
The loop shown in Figure 1 continues until either a fixed num-
ber of generations are processed or an acceptable solution has
been found.



2.2 Quantum Computing

Almost twenty years ago Richard Feynman observed that
classical computers could not simulate certain quantum me-
chanical effects such as entanglement [3]. This observation
spawned interest in the field of quantum computing—i.e.,
computational machines that perform calculations by emulat-
ing quantum mechanic effects. Although no practical quan-
tum computer has yet been built (and the likelihood of build-
ing one in the near future is bleak), the interest in this field
is growing by leaps and bounds [4]. This section reviews
some of the basic concepts of quantum mechanics that relate
to quantum computing.

Classical computer systems represent a single bit of in-
formation deterministically: the value is either a logic 0 or a
logic 1. Quantum computer systems represent a single bit of
information as a qubit, which is a unit vector in a complex
Hilbert space

���
. The ideas are commonly expressed using

the bra/ket notation introduced by Dirac [5]. The ket symbol
is denoted by � ��� and the corresponding bra is denoted by ���	� .
The ket describes a quantum state and the corresponding bra
is its complex conjugate.

In computer science domains the ket (bra) can be thought
of as a column (row) vector. That is, the orthonormal basis
 � ������������ can be expressed as


�� ������ T  � ������ T � . Any com-
plex linear combination of two kets is also a ket. The inner
product of two vectors is denoted by ���	� ��� . Note that since� ��� and ����� are orthonormal, ����������� � . � �����!��� denotes the
outer product of the vectors.

Any practical quantum computer manipulates a register of" qubits. If each qubit has an orthonormal basis

 � ���#$������� ,

then a " qubit system has a basis expressed by the tensor
product:

���&%'�(�&%*)�)�)��(�
. This gives +-, basis vectors of

the form

� ��� % � ��� %.)�)�)#% � ���� ��� % � ��� %.)�)�)#% �����
...����� % ����� %.)�)�)#% �����

In general, � /0� denotes the tensor product � / , � % � / ,2143 � %)�)�)�% � / 3 � % � /�5#� , which means a quantum register has the
value /6�7+ 5 /�598:+;3�/ 3 8 )�)�) 8:+-,�/ , .

A qubit need not exist in only one basis state. Indeed, a
qubit can exist as a linear superposition of basis states <�5�� ���#8< 3 ����� , where < 5 =< 3 are complex numbers with � < 5 � � 8>� < 3 � � �� . More generally, the " qubit register can be prepared in a
superposition of all possible classical states:

� ���?� ��@ 143A B C 5 <
B
� DE� (1)

where the normalization condition F B < �B �G� must hold. The
complex number <

B
is called the amplitude associated with the

state � DH� .

The linear superposition of states is key to understand-
ing how quantum computers operate. This linearity feature
means that any operation on a superposition of states ren-
ders the superposition of that operation on each state indi-
vidually [6]. There is no analogue in classical computer sys-
tem for this principle and, as will be shown below, it is an
important ingredient of the power behind quantum comput-
ing. However, superposition also permits the following rather
bizarre situation. Consider the state 3I � � � �����J8K�������J� This state
cannot be expressed in terms of the individual qubit states.
The proof is straightforward. Note that� / 3 � ����8>L 3 �����M� % � / � � ���N8OL � �����J��'/ 3 / � � ������8>/ 3 L � � �2����8PL 3 / � ��������8>L 3 L � ��������Q� ������8R�������
Clearly / 3 L � �S� , but this implies either / 3 / � or L 3 L � must
equal zero, which is not possible. States that cannot be de-
scribed by individual qubit states are called entangled. There
is considerable debate concerning the actual role entangle-
ment plays in search operations. This issue will be discussed
again in Section 3.

The state of a qubit register is determined by a measure-
ment. In quantum systems this measurement process projects
the system state onto one of the basis states. Referring to
Eq. (1), the measurement returns a value of � DE� with proba-
bility � <

B
� � . Any subsequent measurement returns the state� DE� with probability 1, which means the measurement process

irreversibly alters the state of the system. Measurement also
gives another perspective on entanglement: two qubits are en-
tangled if and only if the measurement of one effects the state
of the other.

A quantum computer can perform the same function T as
a classical computer if that function is a one-to-one map-
ping from the domain to the range. In other words, T must
be a reversible function. Reversibility is usually mentioned
in the context of performing computations without expend-
ing heat [7]. Here, however, reversibility must hold or T
will not be physically realizable on a quantum computer.
Hogg [6] illustrates the importance of reversibility with a
simple example. Suppose T �EU 3 �V�WT �HU � �V� U�X . Then for
the superposition � U �Y� 3Z [ �=\ � � U 3 �&8]� U � �J� linearity forces

T � � U �J�^� 3Z [ �=\ � � T �EU 3 �M�N8R� T �HU � �J� . But this equals _ � +���� U X � ,
which violates the normalization condition.

Quantum systems evolve from state to state according to
Schrödinger’s equation [8]. Vector states can be expressed
as a superposition of basis states each having an amplitude` B

. This means evolution occurs by modification of the state
amplitudes. Clearly, we would like to increase the amplitude
of that state with the desired answer. Suppose we start in
state � /0�^�aF `cb � / b � . This system evolves over time under
a linear operator d , i.e., � /0ef�(�Sdg� /��h� F ` eb � / b � . Hence,` e �Wd ` and the normalization condition is satisfied iff d
is unitary. To see this, consider the inner product

� ` e �Ji ` e ,
which must equal one because state vectors are orthonormal.



Substituting
` e �Rd ` yields� d ` � i � d ` � � ` i � d i d � `

This inner product equals one if
� d i�d � � � . Hence, d must

be unitary.
It is convenient to adopt a simplified notation when de-

scribing unitary operations that are applied to individual
qubits. Some common unitary operators are

��� � ����� � ���� ������� �������� � ����� ������ ������� � ����	� � ����� � ���� ��������
6�����
where

�
is an identity operator,

�
a negation operator, and

�
a phase shift operator. Suppose we have a 3 qubit register and
we want to negate the first qubit and leave the other qubits
unaltered. This transformation is denoted by

� % � % �
.

An extremely important transformation is the Walsh-
Hadamard transformation defined as

�� � ����� 3I � � � ���N87� ���J�������� 3I � � � ����
 � ���J�
When applied to � ��� , a superposition state is created. When
applied to " bits individually, a superposition of all +�, states
is created. Specifically,� � % � % )�)�)#% � ��� ����� )�)�) ���

� �Z + , �J� � ���N8'� ���M� % )�)�)#% � � ����8R� ���M�J�
After distributing the tensor product, this becomes

� �Z + , � ����� )�)�) �����N8 )�)�) 87� ��� )�)�) ������8R� ��� )�)�) �����J�
� �Z + ,

� @ 143A
� C 5 � ����� ��� 
 �2��-� ,

It is important to emphasize the role superposition plays in
quantum computing. Let d�� be a unitary transformation cor-
responding to a classical function T , i.e., d�� � � ����� ������ ����� ���PT � ���J� , where � represents bitwise exclusive-or. No-
tice that this transformation preserves the input—which must
be done if T is not invertible—thereby making d�� unitary [9].
We can think of � ��� as the hardware of the quantum com-
puter. When this d�� operates on a superposition of states as
in Eq. (1), the result is

d � � ��@ 143A B C 5 <
B
� DE��� ���M� � ��@ 143A B C 5 <

B
d � � � DH��� ���J�

� � @ 143A B C 5 <
B
� DE��� ���:T � DE�J�

� � @ 143A B C 5 <
B
� DE��� T � DE�J�

Notice that T is simultaneously applied to all basis vectors.
Hence, a single application of d � computes all +-, values ofT � ���#������#�T � +$,�
R��� at once [10]. It is this quantum paral-
lelism that is primarily responsible for the enormous inter-
est in quantum computing. But something must be wrong.
How can you extract an exponential amount of information
out of a linear number of qubits? The answer lies with the
amplitudes. If <

B
� <��� DM"! , then a measurement will pro-

duce any of the +-, states with equal probability. Furthermore,
once that measurement is taken, the system collapses into that
measured state and all other information is lost. (You really
can’t get something for nothing.) Nevertheless, you can ex-
ploit this parallelism using the property of quantum interfer-
ence. Interference allows the exponential number of compu-
tations performed in parallel to either cancel or enhance each
other. Feynman [8] beautifily describes how light waves can
constructively or destructively interfere to produce this effect.
The goal of any quantum algorithm is to have a similar phe-
nomena occur—i.e., interference increases the amplitudes of
computational results we desire and decreases the amplitudes
of the remaining results. It is a unitary operator that would al-
ter these amplitudes. Examples of this approach are presented
in Section 3.

2.3 NP-Complete vs. NP-Hard Problems

Many papers that discuss NP-complete and NP-hard prob-
lems (incorrectly) presume the reader fully understands the
difference between these two labels. This paper takes a more
formal approach: all terms and three example problems are
formally defined. This material is primarily taken from [11].
I begin with the following basic definitions:

Definition 1 (decision problem)
A problem in which the only answer is either YES or NO.
Definition 2 (language)
The set of all possible input strings to a decision problem that
render a YES answer.

The input strings are defined some fixed alphabet of sym-
bols. For example, binary strings are defined over the alpha-
bet

 �2��-� .

Definition 3 (polynomially reducible)
Let # 3 and # � be two languages. # 3 is polynomially re-
ducible to # � (denoted by # 3%$ # � ) if there exists some
polynomial-algorithm that converts every input instance D 3 �# 3 into another D � �&# � .

Reducibility is asymmetric. In other words, if # 3 $ # � ,
this does not necessarily mean # � $ # 3 . Nevertheless,
polynomial reducibility does have an important characteris-
tic, which is given in the following theorem:

Theorem: If # 3'$ # � , and there is a polynomial-time algo-
rithm for # � , there there is a polynomial-time algorithm for
# 3 . (See [11], page 343 for proof.)

With these definitions it is now possible to define the al-
gorithm classes P and NP.



Definition 4 (class P)
P is the class of languages (decision problems) # that, with
input � , can in polynomial time return an answer YES if and
only if � � # .
Definition 5 (class NP)
NP is the class of languages (decision problems) that can be
checked for correctness in polynomial time.

Notice that the above definition says nothing about the
computational effort required to get that answer—it merely
says to verify the correctness of an answer takes only polyno-
mial time. Whether or not P=NP has yet to be determined. It
is now possible to formally define NP-hard and NP-complete.
It should be emphasized that the two type of problem classes
are not interchangeable.
Definition 6 (NP-hard)
A problem

�
is NP-complete if every other problem in NP is

polynomially reducible to
�

Definition 7 (NP-complete)
A problem

�
is NP-complete if (1)

� � NP, and (2) every
other problem in NP is polynomially reducible to

�
NP-complete problems are decision problems. NP-hard

problems ask for the optimal solution to an NP-complete
problem. And, they have at least the same level of difficulty to
solve as does the corresponding NP-complete problem. There
are a very large number of problems that have been proven to
be NP-complete.

3 Search Approaches

I can now define the NP problems that are used to compare
the two search techniques. Let � be a Boolean expression in
Conjunctive Normal Form (CNF)—i.e., � is the logical and
of two or more clauses where each clause is the logical or
of Boolean variables or their complements. An example is
�R� � ��8 �(8 ��� ) � �68 �0� ) � ��8���� . This Boolean expres-
sion is considered satisfied if an assignment of 0s and 1s to
the Boolean variables makes � equal to a logic 1. The SAT-
ISFIABILITY PROBLEM (SAT) takes as input a Boolean
expression in CNF and asks if there exist an assignment of 0s
and 1s to the variables such that the expression is satisfied.
A related problem is 3SAT. This a satisfiability problem in
which each clause has exactly three variables. The TRAV-
ELING SALESMAN PROBLEM (TSP) is a well known
combinatorial problem where the objective is to find a tour
of minimal length that visits all � cities with no city visited
more than once. This problem is known to be NP-Hard [12].

There is a clear distinction between NP-Complete and NP-
Hard: the former is in class NP and the latter is not. Both SAT
are 3SAT are NP-Complete, but TSP can be either one de-
pending on how it is formulated. If a TSP problem asks “does
a tour exist of length ��� ?”, then this is NP-complete because
the answer is quickly verified, which makes it in class NP.
However, if the problem asks “what is the minimum length
tour?”, then the problem is only NP-hard. (The answer is
not verifiable in polynomial time because this would require

a pairwise comparison among all � ! possible tours.)

3.1 Evolutionary Search

Although a number of papers have appeared discussing at-
tacking SAT problems using EAs, I will focus on the recent
work by Bäck, et al [1]. They used an evolution strategy to
find solutions to instances of the 3SAT problem.

The search for a satisfiable solution is difficult because,
as the authors point out, the fitness landscape is extremely
flat—any genetic search reverts to a random search. More-
over, this type of landscape makes it difficult to define fitness
in a meaningful way. The authors get around this situation by
adapting a method suggested by a colleague [13]. This alter-
native method replaces each literal with � with

� � 
 ��� � and� with
� �&8 ��� � . Furthermore, each conjunction 	 is replaced

by an arithmetic + (sum) and each disjunction 
 is replaced
by an arithmetic

)
(product). The resulting fitness function

has a minimum of 0, when the �
B
’s converge to 1 (true) or

-1 (false). Positive values were rounded to 1, and negative
values to -1 to check if an individual in the population is a
solution. These changes convert 3SAT into a real-parameter
optimization problem, which evolution strategies are ideally
suited for.

The evolution strategy randomly initialized the object pa-
rameters to values between -1.0 and 1.0. A (15,100)-ES with
one standard deviation ( � ) was used; � had an upper limit of
3.0. Later versions introduced various forms of recombina-
tion, which ultimately was shown to render the best perform-
ing version.

3.2 Quantum Search

Quantum search approaches differentiate between structured
problems, where partial solutions can be extended to com-
plete solutions, and unstructured problems. The unstructured
approach can be used for finding solutions for NP-hard prob-
lems.

3.2.1 NP-Complete Problems

Ohya and Masuda [14] developed a quantum search method
for solving instances of SAT. Their algorithm starts with the
quantum system in the state

� U � � �Z + , 3A
���������� � � @ C 5

% ,� C 3 � � �$� %�� 3 � ��� % � ���
for a SAT instance with Boolean variables � 3 ������J�� , . The �
qubits are garbage bits needed by reversible logic gates and
the least significant qubit (initialized to � ��� ) indicates if the
expression is satisfied. Then, using a unitary operator d�� ,
� �=� �Rd �4� U �
� �Z + , 3A

����������� � � @ C 5 d �
% ,� C 3 � � �$� %�� 3 � ��� % � ���



� �Z + , 3A
������������� � @ C 5

% ,� C 3 � � ��� %��� C 3 � � � � % � T � ) �M�
where T � ) � is the Boolean expression and � � ) � are the garbage
bits produced during the quantum computation. (Specifically,
these are bits used to support reversible computations per-
formed by the reversible logic gates [15].)

The quantum computation is performed by a unitary gate
composed of primitive reversible logic gates: a Not gate,
a Controlled-Not, and a Controlled-Controlled-Not gate.
These logic gate functions are described by the following uni-
tary matrices:

d������ � � �������0�#87�����������d�� � � � ��������� % � 8R� �����=��� % � � �������0��8R� �����!��� �d	��� � � � ��������� % � ��������� % � 87� ���2� ��� % � ��� �=�0� % �8>� �����=��� % � � ��������� % �����2�J��� �
A SAT instance with " Boolean variables and 
 clauses
will require 3 
 " steps for truth assignment and substitution.
Hence, the unitary operator becomes

d �R� d X � , )�)�) d � d 3
where each d b is a combination of the d������ �d � �� andd���� � unitary matrices. (Details for constructing the

� 
 "d b matrices are omitted for brevity. Interested readers are
referred to [14] where the entire procedure is described.)

A measurement of � �=� causes its collapse into a single state
and the least significant bit indicates if that state satisfies T � ) � .
This is done by applying a projector *� % ,�� �3 � % �������=��� to� �=� . That is, T � ) � is satisfied if V� �=� exists, or equivalently� ��� V� �=���� � . If out of the +-, possible solutions there are �
solutions that satisfy T , then the probability of measuring a
solution is �  � �=��� � ������+$, . For small � this probability is
quite small. Hence, in practice quantum search algorithms
try to exploit quantum interference to amplify the amplitude
of the desirable solutions and attenuate all other amplitudes.

Cerf, et al. [16] provide a good description of exactly how
this is done. Their approach relies on an “oracle” function< � ��� that equals one for the optimal input � (and zero else-
where). The goal is for the quantum system to evolve from an
initial state � U � to the target state � �=� in minimum time. Note
that < � ���(� � only at � � � . More precisely, the goal is to
increase the amplitude of � �=� to a point where a measurement
will render � �=� with the highest probability.

Assume an arbitrary unitary operator d has been found
that connects � U � to � �=� —i.e., � ��� dK� U ����'� . The probability � �=�
is actually found is � � ��� dg� U ��� � , which means the experiment
must be repeated � � ��� dg� U ��� 1 � times on average to guarantee
success. However, it is possible to reduce this to the order of� � ��� dg� U ��� 1c3 —which can be a considerable savings—with an
appropriate quantum search algorithm.

The algorithm begins in a superposition of states and any
measurement is postponed until the end. Cerf, et al. [16]

defined a specific unitary operator � � 
hd��
B
����� d i �

B
�����

where ! 9�Q� U ��� U � and �"4� � �=��� ��� are projection operators on� U � and � �=� . These exponential operators simple flip the phase
on a state. For example, the phase of state � ��� is flipped by
�
B
�����

iff � � U . Since the objective is search for state � �=� , the
oracle is used to implement its exponential operator. That is,
�
B
���#� � ��� � � 
(���%$ [ � \ � ��� . Then, by repeatedly applying � , the

amplitude of � �=� is amplified, beginning at dg� U � . This ampli-
tude amplification is achieved by the repeated application of
� which, in effect, rotates the starting state � U � into the target
state � �=� . In other words, the beginning state dg� U � is rotated
to the target state � �=� by repeated applications of � , followed
by a measurement. Recall d was an arbitrary unitary opera-
tor; by using structure information it may be possible to find
a better d e so that d e � U � has larger amplitudes in states which
are more probable to be solutions. Cerf, et al. [16] describe a
method that constructs such a d e .

Grover’s quantum search algorithm searches a random
database of � items in & � _ � �Y�M� steps [17]. This means
unstructured NP-complete problems can be solved by form-
ing a database of all possible candidate solutions, and then
use Grover’s algorithm to find the solution. Although this is
a considerable speedup over classical machines, it may not
be all that impressive. For instance, if one has to find an as-
signment of one of � values to " total variables, a classical
algorithm would take & � �;,�� steps while quantum algorithms
would still take & � �;,#' � � steps. Nevertheless, the algorithm
does find a use with both NP-complete and NP-hard prob-
lems.

3.2.2 NP-Hard Problems

Most attempts at solving TSP instances with EAs have con-
centrated on discovering useful recombination operators that
try to use partial tour information from the parents to con-
struct good tours in the offspring. Local search operations
often augment the main search effort to find even better tours.
(These are called memetic algorithms.) Unfortunately, the
computation time to solve large problems can often take
hours.

Tao and Michalewicz [2] proposed a novel EA that consid-
erably reduces the computation effort. In their EA each parent
competes for survival only with its offspring. They defined a
new unary reproduction operator called “inver-over”, which
is adaptive: its properties incorporate knowledge taken from
the current population. For example, suppose an individual in
the current population enumerates the tour

( � 
 � �*),+ +,-,.*/��
An offspring is created by randomly choosing two cities (say< � �

and < e ��- ) and “inverting” the list of intermediate
cities. That is, inverting

(
yields

( e � 
 � � -�+ +,) .*/;�
Note that the inversion process makes < and < e adjacent. The
inver-over operator chooses < e from another randomly cho-



sen individual in the current population. Specifically, < is
located in the randomly chosen individual and its adjacent
city becomes < e in the original individual. Evaluation of the
offspring does not occur until a sequence of inver-over oper-
ators have been applied. This sequence terminates when the< e chosen from a random individual is already adjacent to < in
the original individual. Test results indicate this EA can find
near-optimal solutions for TSP instances with over 400 cities
within a few minutes.

�������������������������������������������������������������������������������������
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Figure 2: An interference experiment showing how ampli-
tudes combine in both a constructive and destructive man-
ner. The electron gun fires electrons that go through slits
in a wall. A movable detector determines where the elec-
trons impact the backstop. The wavelike behavior of the
electrons produces interference so that the total distribution
 3 � ��  3 8  � . “  ” is a complex number called a probabil-
ity amplitude. This figure was adopted from [8].

A beautiful example of how non-traditional architectures
can solve NP-hard problems is the scheme presented by
Černý [18] to solve an instance of TSP. His proposed quan-
tum computer is based on the classical interference experi-
ment, which is shown in Figure 2. The computer has ( " -1)
walls representing cites 2,3, �����# " . Furthermore, each wall
has ( " -1) slits. A beam of quanta (e.g., electrons) sent through
this array has ( " -1) ,2143 possible trajectories. The wavelike
behavior of electrons means a superposition of all possible
trajectories is rendered in & � " � time. A sample trajectory in
this quantum computer is shown in Figure 3.

These trajectories identify tours but they do not indicate
the length of those tours. Since this machine is hypothetical,
an internal degree of freedom can be added—even if nature
doesn’t provides it. Specifically, the internal state of a particle
is � � ��< � =< X ������=�< , ����� where � � 
 �2���=+2������� �&#&� , <

B
�
 ����$� , and ��� 
 �2��-� . The quantum number � measures the

tour length; <
B
�'� if city D is not visited and 1 otherwise; and

the quantum number � is used to control the dynamics of the
search 1.

1See the appendix in [18] for an explanation of how � is used; its purpose
is not needed for the brief overview given in this paper.
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Figure 3: A sample TSP trajectory in the Černý quantum
computer. This tour is

(  � �+� -� .��� . Note that not all tours
are “legal”. For instance,

(  �  �  -2 .��� is also a trajectory
but it is illegal because city 3 is visited twice and city 2 is
never visited.

To illustrate the dynamics, let
� DM 
 ��� � DN87�� " � denote

a trajectory between slots on neighboring layers D and DN8 �
indicating the tour moves from city 
 to city " . If the particle
moves through slot

� DM " � , then < , � � � < , �S� . Further-
more, assume the particle moving between layers encounters
a field that increases the quantum number � by a factor � � ,
if the trajectory moves from ( DM 
V� to

� DN8R�� " � , where � � ,
is the distance between the two cites. Then, with an initial
state � � ����������� �J�� ����� , after passing through the machine the
particles are in a stateA

trajectories

� � ��< � �< X �������=< , ����� trajectory � (2)

Note that the legal tours will have all <
B
�W� and the quan-

tum number � is the tour length. A filter installed at point �
purges all kets with at least one <

B
�7� . This leavesA

TS routes

� � ��< � �< X ������M=< , ����� TS route � (3)

A Stern-Gerlach-like device [8] could be used to construct
such a filter, which would split the above superposition into
� # streams according to the � value. A set of particle detec-
tors would then indicate the tour length—i.e., a detector mea-
suring � would fire if there exists a TS tour with a length
equal to � .

It is important to emphasize this does not mean an instance
of TSP can be solved in polynomial time. In principle, Eq. (3)
could represent a superposition of & � "�� � states. Hence, even
if Grover’s algorithm is used, it would take & � Z "�� � steps to
find the minimal length tour.

4 Discussion

No one has yet built a quantum computer capable of search-
ing for solutions to even moderate size NP problems. But,



despite our inability to make head-to-head comparisons of
evolutionary and quantum searches, it is possible to highlight
their primary philosophical difference:

evolutionary search

The algorithm uses stochastic operations to explore a
fitness landscape comprised of all possible solutions.

quantum search

The algorithm forms a superposition of all possible
problem states. A unitary operator alters the ampli-
tudes of each state exploiting interference to maximize
the amplitudes of the desired states. A final measure-
ment extracts the solution with a probability equal to
the amplitude squared.

EAs must tradeoff exploration against exploitation. In
other words, the EA must carefully decide which regions of
the fitness landscape to abandon, because the solutions are
found there are poor, without putting much emphasis on re-
gions with good solutions because that would limit the search.
The focus of EA research with respect to NP problems is in
two areas: (1) identification of appropriate representations of
the problem parameters, which ultimately defines the fitness
landscape, and (2) creation of effective stochastic reproduc-
tion operators that control movement over the fitness land-
scape.

Quantum search algorithm exploit superposition to pro-
duce massive parallelism. One rather contentious debate in
this field is the role entanglement plays. On one side of
the fence are those who feel entanglement is essential for
speedup [19], while on the other side are those who feel it is
completely unnecessary [20]. The latter group believes super-
position and interference are sufficient to produce speedup.
This issue could be resolved if a truly entangled system were
available for study. Unfortunately, recent room-temperature
liquid-state NMR experiments have failed to produce any en-
tangled states. Still, some researchers feel increasing the
number of qubits (currently only around 5) will eventually
make entanglement appear [21].

One of the main difficulties in running a quantum com-
puter is they must remain completely isolated from their envi-
ronment or the state evolution will cease. Furthermore, there
is no way of observing what’s going on unless a measure-
ment is taken. But taking a measurement process changes the
system by causing it to collapse into one of the basis states.
Some methods of dealing with this have been proposed [3],
but it still remains a thorny issue. Consequently, we can ex-
pect running a quantum search will be much more fragile than
the running of an evolutionary search on a classical computer.

One final note on unstructured NP-complete problems.
The & � Z �Y� time for Grover’s search algorithm has been
proven to be optimal [22]. This has a rather disappointing
consequence: if & � Z � � time is optimal, this may mean
quantum computers can’t solve NP problems with an ex-

ponential speedup. Preskill [23] suggests the real applica-
tion area may lay outside NP. Quantum system simulation is
one example, which was also previously suggested by Feyn-
man [3].

Even if an exponential speedup isn’t possible, why can’t
evolutionary and quantum computing be combined to find re-
ally good solutions quickly? Consider a very simple evolu-
tionary algorithm where a single parent competes against its�

offspring for survival. The parent for the next generation is
selected with roulette wheel sampling [24]. A quantum ver-
sion, in principle, could be constructed as follows. Suppose
the single parent were represented by " qubits. A Walsh-
Hadamard transformation of ����� " qubits creates a super-
position of the parent and

� �S+ b 
'� offspring. A unitary
transformation would amplify the amplitude of the best off-
spring, and a final measurement would chose the single parent
for the next generation. This might be a reasonable approach
for searching extremely large solution spaces—e.g., a " =50
variable SAT problem—where manipulating all +�, possible
solutions at one time would be difficult.

5 Final Comments

I will conclude this paper with some personal observations. I
do believe quantum computing will change the way computer
engineers and scientists think about computing systems. To
date, quantum computing has been the domain of primarily
physicists. It is about time that computer engineers and sci-
entists enter this arena and begin to drive its direction.

Many computer professionals entering this field are
quickly put off by the notational and conceptual barriers. Tu-
torials are available (e.g., see [15, 25, 26, 27]), but many read-
ers will quickly find them incomprehensible—they are writ-
ten by physicists for physicists. (Out of this lot, however, I
believe [15] is the best.) The sad truth is a computer profes-
sional who lacks a firm foundation—i.e., formal training—
in quantum theory will most likely not be able to contribute
to the quantum computing field. As an absolute minimum
I would recommend an upper division undergraduate course
in quantum mechanics. This should be sufficient background
for one to begin reading the literature from the field.

My other observation concerns the practicality of the cur-
rently proposed quantum computer architectures. A num-
ber of proposed systems advocate a vast network of inter-
connected quantum gates (such as AND gates) which imple-
ments some function T � ��� . I believe this is entirely too low
of a design level, which is unlikely to lead to massive im-
provements in computation power—certainly no where near
orders of magnitude improvement. Although, in principle,
all computer systems are just interconnected primitive logic
gates, computer engineers don’t look at them in this way. De-
signers do not think of a processor as a network of primitive
logic gates manipulating input binary strings. Today’s com-
puter systems are simply too complex, which is precisely why
dense integrated circuits are normally designed at a register-



transfer level using hardware description languages such as
VHDL or Verilog. Moreover, thinking of quantum comput-
ers in terms of interconnected logic gates likewise limits their
ability to perform general purpose computations—especially
those computations that are inherently parallel. For instance,
can a quantum computer perform an evolutionary search such
as that described in the previous section?

I am convinced that a radical increase in computing power
will only come once the Von Neumann paradigm has been
dispensed with. Architectures such as those proposed by
Černý [18] are an example of the imagination that will be
required.
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