
Big Picture: Overview of Issues and
Challenges in Autonomous Robotics +
Impact on Practical Implementation

Details

August 27, 2002

Class Meeting 2

Announcements/Questions

• Course mailing list set up:
cs594-sir@cs.utk.edu

If you haven’t received a “welcome” message from this mailing list, see William
Duncan (TA) right away.

• Any questions about Assignment #1?

mailto:cs594-sir@cs.utk.edu
mailto:cs594-sir@cs.utk.edu

Today’s Objective: Understand big picture + challenges
and realization in terms of practical implementation details

Remember last time -- Issues we’ll study this term:
• Robot control architectures
• Biological foundations
• Design of behavior-based systems
• Representation Issues
• Sensing
• Adaptation
• Multi-robot systems
• Path planning
• Navigation
• Localization
• Mapping

Same issues from robot perspective

– Where am I? [localization]

– How do I interpret my sensor feedback to determine my current state and
surroundings? [sensor processing/perception]

– How do I make sense of noisy sensor readings? [uncertainty management]

– How do I fuse information from multiple sensors to improve my estimate of the
current situation? [sensor fusion]

– What assumptions should I make about my surroundings?
[structured/unstructured environments]

– How do I know what to pay attention to? [focus-of-attention]

More issues from robot perspective

– What should my control strategy be to ensure that I respond quickly enough?
[control architecture]

– How should I make decisions? [reasoning, task arbitration]

– Where do I want to be, and how do I get there? [path planning, navigation]

– I have lots of choices of actions to take -- what should I do in my current situation?
[action selection]

– How should I change over time to respond to a dynamic environment? [learning,
adaptation]

– Why doesn’t the same action that worked in this situation before not work now?
[hidden state]

– How should I work with other robots? [multi-robot cooperation, communication]

Functional Modules of a (Hypothetical) Intelligent Mobile Robot

Sensor
Fusion,

Interpretation

Localization/
Mapping

Navigation

Path
Planning

Action
Selector/
Decision

Maker

Controller

S
e n

 s
o

r s

E
 f

 f
 e

 c
 t

 o
 r

 s

Communicator

Learner/Adapter

Fast reaction executor

Focus-of-
attention
manager

World Model

Application
-specific
mission

task

Uncertainty manager

Uncertainty
manager

Mobile Robot Software Challenge:
Usually, all “reasoning” functions reside on single processor

Sensor
Fusion,

Interpretation

Localization/
Mapping

Navigation

Path
Planning

Action
Selector/
Decision

Maker

Controller

S
e n

 s
o

r s

E
 f

 f
 e

 c
 t

 o
 r

 s

Communicator

Learner/Adapter

Fast reaction executor

Focus-of-
attention
manager

World Model

Application
-specific
mission

task

Uncertainty manager

Uncertainty
manager

How do we organize all this?

• Typical organizations:
– Hierarchical
– Behavior-based /

Reactive
– Hybrid

Sensor Fusion,
Interpretation

Localization/
Mapping

Navigation

Path Planning

Action Selector/
Decision Maker

Controller

S
e n

 s
o r

 s

Communicator

Uncertainty
manager

Uncertainty manager

Learner/Adapter

Fast reaction executor

Focus-of-
attention
manager

World Model

Application-
specific

mission task

E
 f

f e
 c

 t
 o

 r
 s

Focus of classes 4-10

Functional Modules Related to Control Architecture

Sensor
Fusion,

Interpretation

Localization/
Mapping

Navigation

Path
Planning

Action
Selector/
Decision

Maker

Controller

S
e n

 s
o

r s

E
 f

 f
 e

 c
 t

 o
 r

 s

Communicator

Learner/Adapter

Fast reaction executor

Focus-of-
attention
manager

World Model

Application
-specific
mission

task

Uncertainty manager

Uncertainty
manager

Hierarchical Organization

Perception;
Build World

Model
Control Action

Environment

Earliest robot control projects used this approach, with limited success.

Focus of class 4: Hierarchical Organization

Behavior-Based / Reactive: Based on Biological Paradigm

Philosophy:
“World is own best model; therefore, don’t try to build another world model”

Sensing Control Action

Environment

Sensing Control Action

Sensing Control Action

More recent robot projects use this approach, with better success.
Focus of classes 5-10: Biological Parallels, Behavior-Based Paradigm and Design

Typical mobile robot implementation architecture

• Essentially: PC on wheels/legs/tracks/...

S
e n

 s
o

r s

E
 f

 f
 e

 c
 t

 o
 r

 sSpecial-
Purpose

Processor
(e.g., 6811)
for sensor
processing

Special-
Purpose

Processor
(e.g., 6811)
for motor
control

Standard PC (e.g., Pentium III)
running Linux

M
e m

 o
 r

y

M
e m

 o
 r

y

Implication for Robot Control Code

• Two options:
– Separate threads with appropriate interfaces, interrupts, etc.
– Single process with “operating-system”-like time-slicing of procedures

• Usually: combination of both

• For now: let’s examine single process with “operating-system”-like time-
slicing of procedures

Simple program:
Follow walls and obey human operator commands

Want all of this to happen
“in parallel” on single

processor

• Assume we have the following functions needed:
–Communications to operator interface -- commands such as “stop”,

“go”, etc.
–Sonar: used to follow wall and avoid obstacles

Controller
&

ArbitratorS
o

 n
 a

 r

W
 h

 e
 e

 l
 s

Communicator

Wall
follower

Human operator commands

Obstacle
avoider

Typical “single process” control approach
to achieve functional parallelism

int wall_follower() {/* one time slice of work */}

intobstacle_avoider() {/* one time slice of work */}
intcommunicator() {/* one time slice of work */}

intcontroller_arbitrator () {/* decides what action to take */}

main()

{

while (forever)
{ wall_follower();

obstacle_avoider();

communicator();

controller_arbitrator();

}

}

Note of caution: dependent upon programmer to ensure
individual functions return after “time slice” completed

Control Commands to Nomad200 Simulator

vm(translation, wheel_rotation, turret_rotation)

Robot continues to execute the given velocity commands until another
command issued.

Thus, duration of “time slice” is important.

Current Trend:
More sophisticated programming infrastructure

• Provide infrastructure to ease programming
– Eliminates need for programmer to define procedure “time slices”

• Object-oriented infrastructure facilitiating “parallel” operation (via
operating system time sharing) of various modules

• Examples:
– Behavior language
– Use of CORBA (Common Object Request Broker Architecture)
– “Mobility”
– Etc.

In Robot Design Choices, Must Consider Real-World Challenges

Recall from last meeting: Software Challenges:

• Autonomous: robot makes majority of decisions on its own; no human-
in-the-loop control (as opposed to teleoperated)

• Mobile: robot does not have fixed based (e.g., wheeled, as opposed to
manipulator arm)

• Unstructured: environment has not been specially designed to make
robot’s job easier

• Dynamic: environment may change unexpectedly
• Partially observable: robot cannot sense entire state of the world (i.e.,

“hidden” states)
• Uncertain: sensor readings are noisy; effector output is noisy

Let’s look at these in more detail…

Examples and Effect of Unstructured Environment

• Examples of unstructured environment:
– Nearly all natural (non-man-made) environments:

• Deserts
• Forests
• Fields

– To some extent, man-made environments not specifically designed for robots

• Impact:
– Difficult to make assumptions about sensing expectations
– Difficult to make assumptions about environmental characteristics

Example of Taking Advantage of Semi-Structured Environment

• If in most man-made buildings, assume perpendicular walls; allows
straightening of “warped” walls caused by accumulated error.

Sources and Effect of Dynamic Environment

• Sources of dynamic environment:
– Other robots/agents in the area

• Teammates
• Adversaries
• Neutral actors

– Natural events (e.g., rain, smoke, haze, moving sun, power outages, etc.)

• Impact:
– Assumptions at beginning of mission may become invalid
– Sensing/Action loop must be tight enough so that environment changes don’t

invalidate decisions

Example of Effect of Dynamic Environment

Goal

Current
robot position and
direction of motion

Possible control code:
while (forever) do:

{ free = check_for_obstacle_to_goal();
if (free)

move_straight_to_goal();
sleep(a_while);

} briefly

Causes and Effect of Partially Observable Environment

• Causes of partially observable
environment:
– Limited resolution sensors
– Reflection, occlusion, multi-

pathing, absorption

• Impact:
– Same actions in “same” state may

result in different outcomes

Example:
Glass walls--laser sensors tricked

Sources and Effect of Uncertainty/Noise

• Sources of sensor noise:
–Limited resolution sensors
–Sensor reflection, multi-pathing, absorption
–Poor quality sensor conditions (e.g., low

lighting for cameras)
• Sources of effector noise:

– Friction: constant or varying (e.g., carpet vs.
vinyl vs. tile; clean vs. dirty floor)

– Slippage (e.g., when turning or on dusty
surface)

– Varying battery level (drainage during mission)
• Impact:

– Sensors difficult to interpret
– Same action has different effects when

repeated
– Incomplete information for decision making

Example of Effect of Noise on Robot Control Code:
“Exact” Motions vs. Servo Loops

θ

d

Goal

Current
robot position &

orientation Two possible control strategies:
(1) “Exact” motions:

– Turn right by amount θ
– Go forward by amount d

(2) Servo loop:
– If to the left of desired trajectory, turn right.
– If to the right of desired trajectory, turn left.
– If online with desired trajectory, go straight.
– If error to desired trajectory is large, go slow.
– If error to desired trajectory is small, go fast.

Consider effect of noise: “Exact” control method

• “Exact” method:

Goal
θ

d

d1θ1
d2

θ2

Current
robot position &

orientation
, d1: actual angle, distance traveled;

Noise overshoot goal; have to
turn back to goal

θ1

Doesn’t give good performance

Consider effect of noise: Servo method

• Servo method:

Goal
Current

robot position &
orientation

Much better performance in presence of noise

Focus of class 11-12: Sensing
Other Functional Modules We’ll Study

Sensor
Fusion,

Interpretation

Localization/
Mapping

Navigation

Path
Planning

Action
Selector/
Decision

Maker

Controller

S
e n

 s
o

r s

E
 f

 f
 e

 c
 t

 o
 r

 s

Communicator

Learner/Adapter

Fast reaction executor

Focus-of-
attention
manager

World Model

Application
-specific
mission

task

Uncertainty manager

Uncertainty
manager

Other Functional Modules We’ll Study
Focus of class 15-16: Adaptive Behavior

Sensor
Fusion,

Interpretation

Localization/
Mapping

Navigation

Path
Planning

Action
Selector/
Decision

Maker

Controller

S
e n

 s
o

r s

E
 f

 f
 e

 c
 t

 o
 r

 s

Communicator

Learner/Adapter

Fast reaction executor

Focus-of-
attention
manager

World Model

Application
-specific
mission

task

Uncertainty manager

Uncertainty
manager

Other Functional Modules We’ll Study
Focus of class 17-18: Multi-Robot Systems

Sensor
Fusion,

Interpretation

Localization/
Mapping

Navigation

Path
Planning

Action
Selector/
Decision

Maker

Controller

S
e n

 s
o

r s

E
 f

 f
 e

 c
 t

 o
 r

 s

Communicator

Learner/Adapter

Fast reaction executor

Focus-of-
attention
manager

World Model

Application
-specific
mission

task

Uncertainty manager

Uncertainty
manager

Other Functional Modules We’ll Study
Focus of class 19-24: Navigation, Localization, Path Planning, Mapping

Sensor
Fusion,

Interpretation

Localization/
Mapping

Navigation

Path
Planning

Action
Selector/
Decision

Maker

Controller

S
e n

 s
o

r s

E
 f

 f
 e

 c
 t

 o
 r

 s

Communicator

Learner/Adapter

Fast reaction executor

Focus-of-
attention
manager

World Model

Application
-specific
mission

task

Uncertainty manager

Uncertainty
manager

Your Final Project Will Look at Application-Specific Task

Sensor
Fusion,

Interpretation Navigation

Path
Planning

Action
Selector/
Decision

Maker

Controller

S
e n

 s
o

r s

E
 f

 f
 e

 c
 t

 o
 r

 s

Communicator

Learner/Adapter

Fast reaction executor

Focus-of-
attention
manager

World Model

Application
-specific
mission

task

Uncertainty manager

Uncertainty
manager

Localization

Preview of Next Class

• History of Intelligent Robotics:
– Earliest robots to present-day state-of-the-art
– Evolution of control approaches from hierarchical to behavior-based

	Big Picture: Overview of Issues and Challenges in Autonomous Robotics + Impact on Practical Implementation Details
	Announcements/Questions
	Today’s Objective: Understand big picture + challengesand realization in terms of practical implementation details
	Same issues from robot perspective
	More issues from robot perspective
	Functional Modules of a (Hypothetical) Intelligent Mobile Robot
	Mobile Robot Software Challenge:Usually, all “reasoning” functions reside on single processor
	How do we organize all this?
	Functional Modules Related to Control Architecture
	Hierarchical Organization
	Behavior-Based / Reactive: Based on Biological Paradigm
	Typical mobile robot implementation architecture
	Implication for Robot Control Code
	Simple program: Follow walls and obey human operator commands
	Typical “single process” control approachto achieve functional parallelism
	Control Commands to Nomad200 Simulator
	Current Trend:More sophisticated programming infrastructure
	In Robot Design Choices, Must Consider Real-World Challenges
	Examples and Effect of Unstructured Environment
	Example of Taking Advantage of Semi-Structured Environment
	Sources and Effect of Dynamic Environment
	Example of Effect of Dynamic Environment
	Causes and Effect of Partially Observable Environment
	Sources and Effect of Uncertainty/Noise
	Example of Effect of Noise on Robot Control Code: “Exact” Motions vs. Servo Loops
	Consider effect of noise: “Exact” control method
	Consider effect of noise: Servo method
	Other Functional Modules We’ll Study
	Other Functional Modules We’ll Study
	Other Functional Modules We’ll Study
	Your Final Project Will Look at Application-Specific Task
	Preview of Next Class

