Big Picture: Overview of Issues and
Challenges in Autonomous Robotics +
Impact on Practical Implementation
Details

August 27, 2002

Class Meeting 2

Announcements/Questions

* Course mailing list set up:
cs594-sir@cs.utk.edu

If you haven't received a “welcome” message from this mailing list, see William
Duncan (TA) right away.

* Any questions about Assignment #17

mailto:cs594-sir@cs.utk.edu
mailto:cs594-sir@cs.utk.edu

Today’s Objective: Understand big picture + challenges
and realization in terms of practical implementation details

Remember last time -- Issues we’ll study this term:

* Robot control architectures
* Biological foundations

* Design of behavior-based systems
* Representation Issues

* Sensing

* Adaptation

* Multi-robot systems

» Path planning

» Navigation

* Localization

» Mapping

Same issues from robot perspective

—Where am |? [localization]

—How do | interpret my sensor feedback to determine my current state and
surroundings? [sensor processing/perception]

—How do | make sense of noisy sensor readings? [uncertainty management]

—How do | fuse information from multiple sensors to improve my estimate of the
current situation? [sensor fusion]

—What assumptions should | make about my surroundings?
[structured/unstructured environments]

—How do | know what to pay attention to? [focus-of-attention]

More issues from robot perspective

—What should my control strategy be to ensure that | respond quickly enough?
[control architecture]

—How should | make decisions? [reasoning, task arbitration]
—Where do | want to be, and how do | get there? [path planning, navigation]

—| have lots of choices of actions to take -- what should | do in my current situation?
[action selection]

—How should | change over time to respond to a dynamic environment? [learning,
adaptation]

—Why doesn’t the same action that worked in this situation before not work now?
[hidden state]

—How should | work with other robots? [multi-robot cooperation, communication]

Functional Modules of a (Hypothetical) Intelligent Mobile Robot

Sensors

S Localization/

Mapping

— T

l—> World Model
Sensor
Fusion,

Interpretation Focus-of-
attention
manager

Uncertainty
manager

Planning

L Path | (

Communicator

T

H

Uncertainty manager
A

__—»Controller|

v

A

i Action
, gele_ct.orl
o ecision
» Navigation [+ Maker
’ A
Application
N -sPecllflc |
mission
task
-m| earner/Adapter f«———

+Fast reaction executor

Effectors

Mobile Robot Software Challenge:
Usually, all “reasoning” functions reside on single processor

Sensors

J Localization/

l—> World Model
Sensor
Fusion,

Interpretation Focus-of-
attention
manager

Uncertainty
manager

*Fast reaction executor

Mapping | Communicator
Uncertainty manager
A
Path L
Planning v —l
i Action
,| Selector/ | »controller—»
T Decision
Navigation [+ Maker _
. A
Application
-specific L]
mission
task
-+LearnerlAdapter D —

Effectors

How do we organize all this?

* Typical organizations: | | . o] Localzaton | =7

— Hierarchical - !
_ BehaVIOF-based / - L | Uncertainty manager |
ReaCtIVG — Path Planning [« v
— Hybrid . ’
o
2] \,| Sensor Fusion, v Action Selector/| g» Controller [
©] : Decision Maker
P Interpretation Focus-of- || Navigation [«
attention A
] manager
L ¢ N
- Application-
— Uncertainty < | specific |&
manager o
— mission task
D P Learner/Adapter -

> [Fast reaction executor |

Focus of classes 4-10

Effectors

Functional Modules Related to Control Architecture

| R Localization/

Sensors

Mapping | Comm$nicatof
L’ Uncertainty manager
A
Path
| l—> Lol Ll Planning] l —l
S i Action
Bl F:Snizzr | Selector/ | »icontroller»
Interpretat Focus-of- > Navigation [« Decision
nterpretation : Miaker ,
attention .
] manager
: Application n
Uncertainty4_T | -specific ||
manager mission
task
| Learner/Adapter j«———
+Fast reaction executor

Effectors

Hierarchical Organization

Perception;
Build World |__,| Control | || Action
Model

Environment

Earliest robot control projects used this approach, with limited success.

Focus of class 4: Hierarchical Organization

Behavior-Based / Reactive: Based on Biological Paradigm

I ——————— ————————————————————_E
Philosophy:
“World is own best model; therefore, don’t try to build another world model”

Sensing — Control | Action

Sensing — Control || Action

Sensing —»{Control |

Environment
More recent robot projects use this approach, with better success.

Focus of classes §-10: Biological Parallels, Behavior-Based Paradigm and Design

Typical mobile robot implementation architecture

» Essentially: PC on wheels/legs/tracks/...

] (/2]
. I§peC|aI- = Special- —
— urpose > = ©
o : 5| |Standard PC (e.g., Pentium ll}qy. | Slayl P05 | o
° | Processor oo tandar (e.g., Pentium lll)gy. = > Processor g ©
c (e.g.,6811) | & running Linux o |(eg.,6811)] ©
n for sensor = = for motor -

processing control L

Implication for Robot Control Code

* Two options:
— Separate threads with appropriate interfaces, interrupts, etc.
—Single process with “operating-system’-like time-slicing of procedures

* Usually: combination of both

* For now: let's examine single process with “operating-system’-like time-
slicing of procedures

Simple program:
Follow walls and obey human operator commands

* Assume we have the following functions needed:

—Communications to operator interface -- commands such as “stop”,
‘go’, etc.

—Sonar: used to follow wall and avoid obstacles
Wall
follower
&
Obstacle Arbitrator
avoider

Communicato

Sonar

Wheels

Want all of this to happen
“in parallel” on single

Human operator commands processor

Typical “single process” control approach

to achieve functional Earallelism

it well fdlower() {/*oneti ne diced work *}

it obstad e ava der() {/* oneti ne dice d work */}

it communicata() {/* onetime dice d work */}

irt contrdler_arldtraor () {/* ded des what actionto take */}

mai ()
{
whl e (faever)
{ wdl fdlower();
dbst ad e _ava der();
co mmunica a();
cortrdler_artrat or();

}
}

Note of caution: dependent upon programmer to ensure
individual functions return after “time slice” completed

Control Commands to Nomad200 Simulator

vm(translation, wheel_rotation, turret_rotation)

Robot continues to execute the given velocity commands until another
command issued.

Thus, duration of ‘time slice” is important.

Current Trend:
More sophisticated programming infrastructure

* Provide infrastructure to ease programming
— Eliminates need for programmer to define procedure “time slices”

* Object-oriented infrastructure facilitiating “parallel” operation (via
operating system time sharing) of various modules

» Examples:
— Behavior language
—Use of CORBA (Common Object Request Broker Architecture)
— “Mobility”
— Efc.

In Robot Design Choices, Must Consider Real-World Challenges

Recall from last meeting: Software Challenges:

* Autonomous: robot makes majority of decisions on its own; no human-
in-the-loop control (as opposed to teleoperateq)

* Mobile: robot does not have fixed based (e.g., wheeled, as opposed to
manipulator arm)

» Unstructured: environment has not been specially designed to make
robot’s job easier

 Dynamic: environment may change unexpectedly

* Partially observable: robot cannot sense entire state of the world (i.e.,
“hidden” states)

* Uncertain: sensor readings are noisy; effector output is noisy

Let’s look at these in more detall...

Examples and Effect of Unstructured Environment

 Examples of unstructured environment:

—Nearly all natural (non-man-made) environments:
* Deserts
* Forests
* Fields

—To some extent, man-made environments not specifically designed for robots

* Impact:
— Difficult to make assumptions about sensing expectations
— Difficult to make assumptions about environmental characteristics

Example of Taking Advantage of Semi-Structured Environment

* If in most man-made buildings, assume perpendicular walls; allows
straightening of “warped” walls caused by accumulated error.

Sources and Effect of Dynamic Environment

* Sources of dynamic environment:

— Other robots/agents in the area
« Teammates
* Adversaries
* Neutral actors

—Natural events (e.g., rain, smoke, haze, moving sun, power outages, efc.)

* Impact:
— Assumptions at beginning of mission may become invalid

— Sensing/Action loop must be tight enough so that environment changes don't
Invalidate decisions

Example of Effect of Dynamic Environment

Current
robot position and
direction of motion

Possible control code:
while (forever) do:
{ free = check for obstacle to goal():;

1f (free)

move straight to goal();
sleepii7yhifg?;
}

briefly

Causes and Effect of Partially Observable Environment

* Causes of partially observable

environment: Example:
_ Limited resolution sensors Glass walls--laser sensors tricked

il |

— Reflection, occlusion, multi-
pathing, absorption

* Impact:

—Same actions in “same” state may
result in different outcomes

Sources and Effect of Uncertainty/Noise

* Sources of sensor noise:
—Limited resolution sensors
—Sensor reflection, multi-pathing, absorption

—Poor quality sensor conditions (e.g., low
lighting for cameras)

* Sources of effector noise:
— Friction: constant or varying (e.g., carpet vs.
vinyl vs. tile; clean vs. dirty floor)
—Slippage (e.g., when turning or on dusty
surface)
—Varying battery level (drainage during mission)
* Impact:
— Sensors difficult to interpret
— Same action has different effects when
repeated
— Incomplete information for decision making

Example of Effect of Noise on Robot Control Code:

“Exact” Motions vs. Servo LooEs

o
.
.
.
.*
.

Current
robot position &
orientation

Two possible control strategies:

(1) “Exact” motions:
—Turn right by amount 6
— Go forward by amount d

(2) Servo loop:
—If to the left of desired trajectory, turn right.
—If to the right of desired trajectory, turn left.
—If online with desired trajectory, go straight.
—If error to desired trajectory is large, go slow.

—If error to desired trajectory is small, go fast.

Consider effect of noise: “Exact” control method

 “Exact” method:

Current |
robot position & 0,, d,: actual angle, distance traveled;

orientation

Noise =¥ overshoot goal; have to
turn back to goal

Doesn’t give good performance

Consider effect of noise: Servo method

* Servo method:

Current
robot position &
orientation

Much better performance in presence of noise

Other Functional Modules We’ll Study

Focus of class 11-12: Sensing

| | Localization/

Mapping l Comm$nicatof
L Uncertainty manager
A
Path
/2] A t
. ction
5 !
d HR FS ShSor ,| Selector/ | »controller>
o el L Decision
n Interpretation Focus-of- > Navigation 1+ Maker 5
attention ;
— manager
9 Application 1
Uncertainty N -spec.ific Pl
manager mission
task
| -m| earner/Adapter f«———
+Fast reaction executor

Effectors

Other Functional Modules We’ll Study

Focus of class 15-16: Adaptive Behavior

| | Localization/

Mapping l Comm$nicatof
L Uncertainty manager
A
Path
i World Model Planning | I _l
(7)) A t
p ction
5 !
d HR If ensor ,| Selector/ | »controller>
S Siletnl, L Decision
n Interpretation Focus-of- > Navigation 1+ Maker 5
attention ;
— manager
9 Application 1
Uncertainty ,| -specific ||

task

| -m| earner/Adapter [+

+Fast reaction executor

Effectors

Other Functional Modules We’ll Study

Focus of class 17-18: Multi-Robot Systems

| | Localization/

Mapping l Comm$nicatof
L Uncertainty manager
A
Path
i World Model Planning | I _l
(7)) A t
p ction
5 !
d HR If ensor ,| Selector/ | »controller>
S Siletnl, L Decision
n Interpretation Focus-of- > Navigation 1+ Maker 5
attention ;
— manager
9 Application 1
Uncertainty ,| -specific ||

task

| -m| earner/Adapter f+———

+Fast reaction executor

Effectors

Other Functional Modules We’ll Study

Focus of class 19-24: Navigation, Localization, Path Planning, Mapping

| ,|Localization/

Mapping l Comm$nicatof
L Uncertainty manager
A
Path
i World Model Planning | I _l
(7)) A t
p ction
5 !
d HR If ensor ,| Selector/ | »controller>
S Siletnl, . Decision
o Interpretation Focus-of- > Navigation <« Maker 3
attention .
— manager
9 Application 1
Uncertainty ,| -specific | |

task

| -m| earner/Adapter f+———

+Fast reaction executor

Effectors

Your Final Project Will Look at Application-Specific Task

Sensors

| > Localization [+ Communicator
L’ i Uncertainty manager
A
Path
B l—» World Model Planning || I _l
5 i Action
L1, F eneor ,| Selector/ | »controllert»
usion, .
Int tati Focus-of- » Navigation < Decislon
nterpretation _ Maker -
attention .
— manager
9 Application t
Uncertainty || -specific |_|
manager mission
task
| | earner/Adapter f«———
+Fast reaction executor

Effectors

Preview of Next Class

* History of Intelligent Robotics:
— Earliest robots to present-day state-of-the-art
— Evolution of control approaches from hierarchical to behavior-based

	Big Picture: Overview of Issues and Challenges in Autonomous Robotics + Impact on Practical Implementation Details
	Announcements/Questions
	Today’s Objective: Understand big picture + challengesand realization in terms of practical implementation details
	Same issues from robot perspective
	More issues from robot perspective
	Functional Modules of a (Hypothetical) Intelligent Mobile Robot
	Mobile Robot Software Challenge:Usually, all “reasoning” functions reside on single processor
	How do we organize all this?
	Functional Modules Related to Control Architecture
	Hierarchical Organization
	Behavior-Based / Reactive: Based on Biological Paradigm
	Typical mobile robot implementation architecture
	Implication for Robot Control Code
	Simple program: Follow walls and obey human operator commands
	Typical “single process” control approachto achieve functional parallelism
	Control Commands to Nomad200 Simulator
	Current Trend:More sophisticated programming infrastructure
	In Robot Design Choices, Must Consider Real-World Challenges
	Examples and Effect of Unstructured Environment
	Example of Taking Advantage of Semi-Structured Environment
	Sources and Effect of Dynamic Environment
	Example of Effect of Dynamic Environment
	Causes and Effect of Partially Observable Environment
	Sources and Effect of Uncertainty/Noise
	Example of Effect of Noise on Robot Control Code: “Exact” Motions vs. Servo Loops
	Consider effect of noise: “Exact” control method
	Consider effect of noise: Servo method
	Other Functional Modules We’ll Study
	Other Functional Modules We’ll Study
	Other Functional Modules We’ll Study
	Your Final Project Will Look at Application-Specific Task
	Preview of Next Class

