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“The mob has many heads but no brains”. -- English Proverb.



Announcements

• Remember:
– Assignment #5 Handed out today, DUE:  November 7

– Final Project Proposals DUE:  This Thursday, Oct. 31
• Final proposals (about 1 page) should include:

– Statement of problem you are addressing
– Your intended approach 
– Your planned experiments to evaluate your approach: VERY IMPORTANT

» This should include definition of a metric (or metrics)
» Data collection relevant to your metric(s), based on multiple runs that vary 

some aspects of problem (for example, varying distributions of beacons, 
varying numbers of robots, varying distributions/shapes/arrangements of 
obstacles, varying algorithms, etc.)

» Note that your final project report should include some sort of 
graph/plot/table, etc., that reports your findings based upon this data 
collection and analysis



Objectives

• Wrap up discussion on Genetic Algorithms for robot learning

• Multi-Robot Systems, Part I
– Overview
– Multi-Robot Communication



Genetic Operators

Reproduce

Crossover

Mutuate



GAs for Robot Learning

• Prior to operator’s application, each individual’s fitness is computed using 
fitness function

• For robot learning, this may involve running a robot through a series of 
experiments, using the encoding of the behavioral controller represented 
by the particular individual bit string encoding being evaluated

• Fitness function returns a value capturing the robot’s overall performance 
for the set of conditions being tested



GAs for Robot Learning (con’t.)

• Reproduction operator:
– Fittest individuals are copied exactly and replace less-fit individuals
– This is done probabilistically, usually using roulette-wheel selection
– Net effect:  increase in ratio of highly-fit individuals relative to # of poor 

performers

• Crossover operator:
– Exchange of information through transfer of info between two individuals
– Process creates new individuals that may or may not perform better than 

parents
– Which individuals to cross over and which bit string pairs to exchange is often 

done randomly
– Net effect:  increase in overall population



GAs for Robot Learning (con’t.)

• Mutation operator:
– Simple probabilistic flipping of bit values in encoding
– Affects individual only
– Probability of mutation is generally low
– Net effect:  ability to escape local minima

• Overall effect:  changing population over time

• Final quality and length of time to obtain solution depend on nature of 
problem and parameters used



Example of GAs for Learning Behavioral Control

• GAs, although powerful, require some restrictions on implementation
compared to previous learning approaches we’ve discussed

• Much of learning must be done off-line, since:
– Significant population of robots needed for fitness testing
– Robots must be tested over many, many generations

• Simulations, fortunately, can be run much faster than real-world testing

• If simulation has reasonable fidelity to real robot and environment, control 
parameters from fittest simulated individual can be transferred to actual 
robot for use



Example Robot GA Code

begin
Obstacles.Create;
Population.Build;
for 1 to NUMBER_GENERATIONS do

begin
for 1 to RUNS_PER_GENERATION do

begin
for 1 to MAX_NUMBER_STEPS do

begin
ROBOTS.Move
end

Obstacles.Recreate;
end

Robots.Reproduce;
Robots.Crossover;
Robots.Mutate;

end
end



Example Robot GA

• GA-Robot (Ram, 1994):  schema-based behavioral controller evolved 
using GAs

• Encoding:  represents the individual gains of the component behaviors:
– goal attraction
– obstacle avoidance
– noise

as well as additional parameters internal to certain behaviors:
– obstacle sphere of influence
– noise persistence

• Instead of using a more slowly converging bit string, an encoding using 
floating-point values for the gains and parameters is used



Example Robot GA (con’t.)

• Fitness for an individual is defined as a function of weighted penalties:
raw_fitness = collision_weight  x  number_of_collisions

+  time_weight  x  number_of_steps
+  distance_weight  x  distance_traveled

• By altering penalty weights for each component of the fitness functions, 3 
different classes of robots are evolved, each specialized for a particular 
ecological niche:
– Safe: optimized to avoid hitting obstacles while still attaining the goal
– Fast: optimized to take the least amount of time to attain the goal
– Direct: optimized to take the shortest path (which may be slower because of 

reduced speeds in cluttered areas)



Other Capabilities Learned with GAs

• Learning to approach both stationary and moving light sources

• Learning of primitive behaviors, such as approaching, chasing, and 
escaping

• Learning location of energy sources and not getting stuck in obstacle 
traps while seeking them out



Hybrid Genetic/Neural Learning and Control

• Several researchers have combined neural nets and GAs for robot learning

• Typically, approach is to use GAs to learn synaptic weights for a neural controller

• Example by Floreano et al:
– Implementation of Braitenberg-style neural controller
– Use of robot (Khepera) with 3 ambient light sensors and 8 IR proximity sensors
– Fitness functions defined for behaviors, including:

• Navigation and obstacle avoidance:  Fitness maximizes motion and distance from obstacles
• Homing:  Fitness ensures that power is kept at adequate levels by adding a light-seeking 

behavior to guide it to its black recharging area when power becomes low
• Grasping of balls using an added gripper:  Fitness maximizes the number of objects gripped 

in an obstacle-free environment
– Most successful individual:  learned to back up until it encountered something, then 

turned around an attempted to grip it



Summary of Learning/Adaptation

• Neural networks, a form of reinforcement learning, use specialized, multi-node 
architectures. 

• Learning in neural nets occurs through the adjustment of synaptic weights by an error 
minimization procedure, such as:
– Hebb’s rule
– Back Propagation

• Classical conditioning in which a conditioned stimulus is eventually associated with an 
unconditioned response can be manifested in robotic systems

• Genetic algorithms operate over sets of individuals over multiple generations using 
operators such as selection, crossover, and mutation

• Effective fitness functions must be defined for a particular task and environment for 
successive evolutionary learning.  By suitable selection, particular ecological niches can 
be defined for various behavioral classes of robots.



Multi-Robot Systems:  Research Growing Rapidly

• Previous summaries/overviews of the field:
– L. E. Parker, “Current State of the Art in Distributed Autonomous Mobile Robotics”, 

Proc. of Distributed Autonomous Robotic Systems 2000.
– Cao, et al., “Cooperative mobile robotics:  Antecedents and directions”, Autonomous 

Robots, 4 (1), 1997: 7-28.
– G. Dudek, et al., “A taxonomy for swarm robots”, Proc. of IEEE International 

Conference on Intelligent Robots and Systems (IROS), 1993: 441-447.



How rapidly is this research growing? 

• To investigate, conducted an INSPEC* Search:
– Yearly query, 1979 - 2001

– Searched for articles including at least one of the following terms:
• Multi-robot
• Multirobot
• Cooperative robot
• Collaborative robot
• Distributed robot

* Citation index for physics, electronics, and computing



Results of INSPEC Search Show Enormous Growth in 
Multi-Robot Systems Research
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What are reasons for enormous growth?

• Many potential application domains
• RoboCup influence
• Increased computational capabilities
• Advances in individual autonomous 

robotics
• Advances in understanding of complex 

systems
• Etc...



One Categorization of Multi-Robot Systems

• Cooperative robotics field is often divided according to a number of criteria:
– Collective (swarm) cooperation

• Many robots; sub-symbolic communication
(possibly implicit)

• Typically uses insect society cooperation model

– Homogeneous vs. Heterogeneous systems
• Sensors, actuators and behavior
• Affects communication possibilities

– Centralized vs. Distributed
• Centralized systems typically use classical-AI planning, rather than being behavior-

based (new AI)

[Mataric et. al. USC/MIT]

[Murphy et. al. USF]



Multi-Robot Systems -- Brains + Bodies
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Are N Robots Better than One?

• Positive aspects of teaming:
– Improved system performance
– Task enablement
– Distributed sensing
– Distributed action at a distance
– Fault tolerance

• Negative aspects of teaming:
– Interference
– Communication cost and robustness
– Uncertainty concerning other robots’ intentions
– Overall system cost
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