Multi-Robot Systems, Part II

October 31, 2002

Class Meeting 20

"A team effort is a lot of people doing what I say". -- Michael Winner.

Objectives

- Multi-Robot Systems, Part II
 - Overview (con't.)
 - Multi-Robot Communication
 - Keeping Formation

Commonly Studied Tasks for Multi-Robot Teams

- Foraging: collection of randomly placed items
- Consuming: perform work on object in place (e.g., assembly, disassembly, etc.)
- Grazing: cover entire area adequately (e.g., for lawn mowing, etc.)
- Formations or flocking: team maintains a geometric pattern while moving
- Object transport: collectively moving object

Eight Primary Areas of Prior Multi-Robot Research

- 1. Biological Inspirations
- 2. Motion Coordination
- 3. Communication
- 4. Object Transport and Manipulation
- 5. Reconfigurable Robotics
- 6. Architectures, Task Planning, and Control
- 7. Localization, Mapping, and Exploration
- 8. Learning

For each area:

- Different extents of study
- Many excellent solutions
- Open research issues remain in all areas

Relative Concentration in Each Area of Multi-Robot Systems

(Values based upon INSPEC search for years 1979 - 2001)

Not enough time this semester to cover these topics ...

So...

Advertisement: Spring 2003 Course ③

CS594, Section 30682: "Distributed Intelligence in Autonomous Robotics"

Tuesday-Thursday, 11:10 – 12:25

Course will cover topics of distributed intelligence, including cooperative multi-robot systems, in detail.

Topics We'll Cover Today in Multi-Robot Systems

- Communication (some aspects)
- Keeping Formation (some aspects)

Multi-Robot Communication

Objective of communication: Enable robots to exchange state and environmental information with a minimum bandwidth requirement

Issues of particular importance:

- Information content
- Explicit vs. Implicit
- Local vs. Global
- Impact of bandwidth restrictions
- "Awareness"
- Medium: radio, IR, chemical scents, "breadcrumbs", etc.
- Symbol grounding

Balch and Arkin

Jung and Zelinsky

The Nature of Communication

One definition of communication:

"An interaction whereby a signal is generated by an *emitter* and 'interpreted' by a *receiver*"

- Emission and reception may be separated in space and/or time.
- Signaling and interpretation may innate or learned (usually combination of both)
- Cooperative communication examples:
 - Pheromones laid by ants foraging food
 - Time delayed, innate
 - Posturing by animals during conflicts/mating etc.
 - Separated in space, learnt with innate biases
 - Writing
 - Possibly separated in space & time, mostly learned with innate support and scaffolding

Multi-Robot Communication Taxonomy

Put forth by Dudek (1993) (this is part of larger multi-robot taxonomy):

- Communication range:
 - None
 - Near
 - Infinite
- Communication topology:
 - Broadcast
 - Addressed
 - Tree
 - Graph
- Communication bandwidth
 - High (i.e., communication is essentially "free")
 - Motion-related (i.e., motion and communication costs are about the same)
 - Low (i.e., communication costs are very high
 - Zero (i.e., no communication is available)

Explicit Communication

- Defined as those actions that have the express goal of transferring information from one robot to another
- Usually involves:
 - Intermittent requests
 - Status information
 - Updates of sensory or model information
- Need to determine:
 - What to communicate
 - When to communicate
 - How to communicate
 - To whom to communicate
- Communications medium has significant impact
 - Range
 - Bandwidth
 - Rate of failure

Implicit Communication

- Defined as communication "through the world"
- Two primary types:
 - Robot senses aspect of world that is a side-effect of another's actions
 - Robot senses another's actions

Three Key Considerations in Multi-Robot Communication

- Is communication needed at all?
- Over what range should communication be permitted?
- What should the information content be?

Is Communication Needed At All?

- Keep in mind:
 - Communication is not free, and can be unreliable
 - In hostile environments, electronic countermeasures may be in effect
- Major roles of communication:
 - Synchronization of action: ensuring coordination in task ordering
 - Information exchange: sharing different information gained from different perspectives
 - Negotiations: who does what?
- Many studies have shown:
 - Significantly higher group performance using communication
 - However, communication does not always need to be explicit

Over What Range Should Communication Be Permitted?

- Tacit assumption: wider range is better
- But, not necessarily the case
- Studies have shown: higher communication range can lead to decreased societal performance
- One approach for balancing communication range and cost (Yoshida '95):
 - Probabilistic approach that minimizes communication delay time between robots
 - Balance out communication flow (input, processing capacity, and output) to obtain optimal range

What Should the Information Content Be?

• Research studies have shown:

 Explicit communication improves performance significantly in tasks involving little implicit communication

- Communication is not essential in tasks that include implicit communication

 More complex communication strategies (e.g., goals) often offer little benefit over basic (state) information → "display" behavior is a rich communication method

Case Study in Multi-Robot Communication: Symbol Grounding in Heterogeneous Robots, Jung, Australia, 1998

- The field of Linguistics is concerned with the structure of human communication -
 - Complex structure is observed in the *signals* humans use (speech, writing, etc.)

- Provides some information about processes underlying generation and interpretation. However, does not imply that an analogous structure is used to represent the world (a wide-spread misconception within the AI and robotics communities)
- Sophistication of cooperative behavior and communication are typically correlated (supported by ethological evidence and robot studies)

Jung's Hypothesis: Symbolic communication required

- Assumptions:
 - Future robots will have a richer understanding of the world in which they operate.
 - Future multi-robot applications will require more sophisticated cooperation.
- Assertion:
 - More sophisticated cooperation will necessitate a corresponding increase in the sophistication of communication.
 - This will not be realized if communication is restricted to the sub-symbolic (iconic/indexical) level
- His conclusion:
 - Symbolic communication is a necessity.
- Implication:
 - Heterogeneous robots will be able to communicate at a high level about what they have 'seen' with disparate sensors
 - Can communicate procedural information (directions for action etc.)

Symbolic communication in a multi-robot system

• What is necessary?

- Some iconic representations in common
 - e.g. by possessing some physically identical sensory-motor apparatus
- A common process that develops shared indexical groundings
 - e.g. a mechanism for learning correlations between icons
- A common process that develops shared symbolic groundings
- Ideally...
 - A mechanism for learning new symbols through communicating known ones
 - e.g. interpretation and learning through metaphor

Jung Example: Symbolic communication of object location

- Task: inherently cooperative cleaning
 - Contrived task such that one robot can't accomplish it alone
 - Heterogeneous (two robots) (Flo and Jo)
 - Goal: Clean lab floor

Tactile Whiskers

Question: How to Communicate Location?

• Sweep needs to communicate location at which it dumped a pile of litter to the vacuum

• One robot represents locations relative to landmarks that are recognized via touch, while the other uses vision (hence a different set of landmarks)

Some Detail... Navigation

- Both robots use a Kohonen Self Organizing Map (SOM) to represent the spatial extent of an open area
 - Set of nodes that span area in accordance with visitation frequency distribution
 - Each node contains Odometry data
 - Odometry has cumulative error
 - Landmarks don't move
 Correct location by combining landmark and odometry data (Kalman filter)
- Hence, each robot can uniquely identify any location by its relationship to known landmark positions
 - But landmarks are not shared (different sensory representations)
- Note: Self Organizing Map = "elastic net" of points that are fitted to the input signal space to approximate its density function in an ordered way.

Process for developing shared indexical groundings

- Location labeling:
 - Initiated when the vacuum can see the sweep
 - Vacuum tells sweep to label its current location with an arbitrary icon
 - Sweep associates the icon with the icon for its current position
 - The vacuum also labels the location of the sweep with the same icon

Process that develops shared symbolic groundings

• System developer responsibility:

 In this application, the symbol for representing positions relative to known labeled locations was common due to system developer programming it into both robots

- Obvious shortcomings:
 - Labor intensive to construct significant symbol system
 - Never learns new symbols
 - (just new locations)

Schematic of the <specific-geometric-relationbetween> symbol used to communication locations

Jung: The way forward

Learned symbolic communication

- Recent work by Steels (VUB) demonstrated, "the evolution of an open-ended set of meanings and words by a group of autonomous distributed agents in interaction with their physical environments through their sensory apparatus".
- The system involves software agents playing a language game.
- A stable lexicon is an emergent property of the system
- Jung believes these results can be transferred to cooperative multi-robot systems.
 - The language game may be replaced with (or subsumed into) a cooperative task.
 - Indexical references acquired provide the discriminations necessary for language formation
- Keep in mind ... this is one opinion; other researchers have different opinions

Steels and Kaplan, "Bootstrapping Grounded Word Semantics", http://talking-heads.csl.sony.fr, 1999

Summary of Multi-Robot Communication

- Many types:
 - Implicit vs. explicit
 - Local vs. global
 - Iconic vs. symbolic
 - General "awareness"
- Proper approach to communication dependent upon application:
 - Communication availability
 - Range of communication
 - Bandwidth limitations
 - Language of robots
 - Etc.

Motion Coordination

Objective: enable robots to navigate collaboratively to achieve spatial positioning goals

- Issues studied:
 - Multi-robot path planning
 - Traffic control
 - Formation generation
 - Formation keeping
 - Target tracking
 - Target search
 - Multi-robot docking

Parker

Murphy

Case Study: Formation-Keeping

- Objective:
 - Robots maintain specific formation while collectively moving along path
- Examples:
 - Column formation:

- Line formation:

L. E. Parker, "Designing Control Laws for Cooperative-Agent Teams", Proc. of ICRA, 1993.

Issue in Formation Keeping: Local vs. Global Control

- Local control laws:
 - No robot has all pertinent information
 - Appealing because of their simplicity and potential to generate globally emergent functionality
 - -But, may be difficult to design to achieve desired group behavior

- Global control laws:
 - Centralized controller (or all robots) possess all pertinent information
 - Generally allow more coherent cooperation
 - But, usually increases inter-agent communication

Descriptions: Global Goals, Global Knowledge, Local Control

- Global Goals:
 - Specify overall mission the team must accomplish
 - Typically imposed by centralized controller
 - May be known at compile time, or only at run-time
- Global Knowledge:
 - -Additional information needed to achieve global goals
 - E.g., information on capabilities of other robots, on environment, etc.
- Local Control:
 - Based upon proximate environment of robot
 - Derived from sensory feedback
 - Enables reactive response to dynamic environmental changes

Tradeoffs between Global and Local Control

- Questions to be addressed:
 - How static is global knowledge?
 - How difficult is it to obtain reliable global knowledge?
 - How badly will performance degrade without use of global knowledge?
 - How difficult is it to use global knowledge?
 - How costly is it to violate global goals?
- In general:
 - The more unknown the global information is, the more dependence on local control

Demonstration of Tradeoffs in Formation-Keeping

• Measure of performance: Cumulative formation error:

Where $d_i(t)$ = distance robot *i* is from ideal formation position at time *t*

- Strategies to investigate:
 - -Local control alone
 - -Local control + global goal
 - Local control + global goal + partial global knowledge
 - Local control + global goal + more complete global knowledge

Formation Keeping Objective

- Group leader knows path waypoints
- Each robot assigned local leader + position offset from local leader
- As group leader moves, individual robots maintain relative position to local leaders

Results of Strategy I

Strategy II: Local Control + Global Goal

- Group leader knows path waypoints
- Each robot assigned global leader + position offset from global leader
- As group leader moves, individual robots maintain relative position to global leader

Results of Strategy II

- Group leader knows path waypoints
- Each robot assigned global leader + position offset from global leader
- Each robot knows next waypoint
- As group leader moves, individual robots maintain relative position to global leader

Results of Strategy III

Strategy IV: Local Control + Global Goal + More Complete Global Knowledge

- Group leader knows path waypoints
- Each robot assigned global leader + position offset from global leader
- Each robot knows current and next waypoints
- As group leader moves, individual robots maintain relative position to global leader

Results of Strategy IV

Time and Cumulative Formation Error Results

Summary of This Formation-Keeping Control Case Study

- Important to achieve proper balance between local and global knowledge and goals
- Static global knowledge ==> easy to use as global control law
- Local knowledge ==> appropriate when can approximate global knowledge
- Local control information should be used to ground global knowledge in the current situation.

Another Case Study for Formation-Keeping: Balch & Arkin's Behavior-Based Control

- Applications:
 - -Automated scouting (military)
 - -Search and rescue
 - Agricultural coverge
 - Security patrols
- Approach:
 - Motor schemas
 - -Fully integrated obstacle avoidance

Motor Schemas Used for Formation-Keeping

- Move-to-goal
- Avoid-static-obstacle
- Avoid-robot
- Maintain-formation:
 - Perceptual schema: detect-formation-position
 - Accomplished by:
 - Determining robot's desired location for the formation type in use
 - Determining robot's relative position in the overall formation
 - Determining other robots' locations
 - Motor schema output vector:
 - Computed toward position whose magnitude is based on how far out of position the robot is

Output Vector Magnitude Calculation

• Dead zone:

- Robot is within acceptable positional tolerance.
- Output vector magnitude is always 0.

• Controlled zone:

- Robot is somewhat out of position.
- Output vector magnitude decreases linearly from a maximum at zone's furthest edge to 0 at the inner edge.
- Directional component: points toward dead zone's center.

• Ballistic zone:

- Output vector magnitude is set to its maximum
- Directional component points toward the center of the computed dead zone

Formation and Obstacle Avoidance

- Barriers -- choices for handling include:
 - Move as a unit around barrier
 - Divide into subgroups
- Choice depends upon relative strengths of behaviors

Balch's Formation Types and Position Determination

Position Determination:

Requirements of Formation Techniques

- Unit-center approach:
 - Requires transmitter and receiver for all robots
 - Requires protocol for exchanging position information
 - Places heavy demand on passive sensor systems: each robot has to track 3 other robots that may be spread across a very large field of view
- Leader-referenced approach:
 - Requires only one transmitter for leader and one receiver for each follower robot
 - Thus, has reduced communications bandwidth
 - Require tracking only one robot
 - However, leader may be too far away to sense
 - Local interactions among robots may make little sense, if they aren't paying attention to each other
- Neighbor-referenced approach:
 - Requires tracking only one other robot
 - However, less information on global formation requirements → could be more formation error

Balch's Formation Results

- For 90 degree turns:
 - Diamond formation best with unit-center-reference
 - Wedge, line formations best with leader-reference
- For obstacle-rich environments:
 - Column formation best with either unit-center or leader-reference
- Most cases:
 - Unit-center better than leader-center
 - Except:
 - If using human leader, not reasonable to expect to use unit-center
 - Unit-center requires transmitter and receiver for all robots, whereas leadercenter only requires transmitter at leader plus receivers for all robots
 - Passive sensors are difficult to use for unit-center

Balch's Formation Types and Position Determination

Summary of Multi-Robot Systems

- Teams of robots can offer significant advantages over individual robots in terms of:
 - Performance
 - Sensing capabilities
 - Fault tolerance
- Problems with multi-robot systems include:
 - Inteference
 - Communications costs
 - Uncertainty in others' actions
- Typical generic tasks studied are:
 - Foraging
 - Flocking
 - Consuming
 - Moving material
 - Grazing

Summary of Multi-Robot Systems (con't)

- Communication plays central role in coordinating teams of robots
- Communication is not always necessary for cooperation, but can sometimes significantly improve results
- Formation keeping involves multiple types of formations and multiple strategies
- No single formation strategy is best for all cases
- Must consider tradeoffs in exchange of local and global information

Preview of Next Class (Tuesday, Nov. 5th)

• Navigation: Part I

