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Abstract: The concept of canonical multiple 
valued input generalised Reed-Muller (MIGRM) 
forms is introduced. The MIGRM is a direct 
extension of the well known generalised Reed- 
Muller (GRM) forms to the logic with multiple 
valued inputs. The concept of the polarity of a 
GRM form is generalised to the polarity matrix of 
a MIGRM form. A tabular pattern-matching 
method is presented for the calculation of a 
MIGRM form. The MIGRM transform has been 
implemented for further investigations of such 
forms and their comparison with other circuit 
realisations. 

1 Introduction 

The concept of a fixed-polarity generalised Reed-Muller 
(GRM) form [l, 23 of an n-input Boolean function has 
been studied extensively in the literature. One reason for 
studying such forms is that, for each of the 2" polarities, 
they are canonical, which has several applications in both 
theory and practice. They have been intensively studied 
for better understanding of the canonical representations 
of switching functions [2-51. As is well known, the cir- 
cuits corresponding to Reed-Muller and GRM forms 
have excellent design-for-test properties 16-1 11. Finally, 
GRMs have applications in signal coding and image pro- 
cessing [12]. 

In recent years a logic with multiple valued inputs has 
been introduced with applications in synthesis of PLAs 
with decoders and function generators [ 13-15], multi- 
level logic synthesis and factorisation [16, 171. A multiple 
valued input, binary output function can be readily 
implemented with currently available digital circuits, 
while a real multiple valued function cannot. The concept 
of multiple valued input Exclusive-OR sum-of-products 
(ESOP) expressions has been presented in Reference 18. 

This paper introduces the counterpart of GRMs for 
the logic with multiple valued inputs and binary outputs. 
We will call such forms multiple valued input generalised 
Reed-Muller forms (MIGRMs). The counterpart to the 
RMs, the restricted multiple valued input generalised 
Reed-Muller forms (RMIGRMs), have been introduced 
in Reference 19. 

A motivation for the investigation of MIGRM forms 
is that the concept of the AND-EXOR PLA [20], which 
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is used for the realisation of ESOPs, can be modified to 
MIGRMs. The AND-EXOR PLA with two-input, four- 
output input decoders [203 is used for the multiple 
valued input, binary output exclusive sum-of-products 
(MIESOP) expansions. Similarly, it can be used for the 
MIGRMs. Moreover, if the RMIGRM forms [19] are 
applied, the ANDiEXOR needs only two-input, three- 
output input decoders. Although one gains 25% on one 
dimension of the PLA, one can lose in the other dimen- 
sion, as the number of terms is usually larger in a GRM 
and a RMIGRM or MIGRM than in an ESOP or 
MIESOP of the same function. But the GRM and 
MIGRM have the advantage of excellent testability 
properties which have been proven for the strict Reed- 
Muller forms [lo] and are extendable for the GRMs and 
MIGRMs. 

The existence of new programmable devices such as 
the Xilinx LCA 3000, the 1020 series from Actel, or the 
LHS5Ol from Signetics allows for the direct implementa- 
tion of the form introduced here. For instance, in Xilinx 
LCA 3000 devices, every module realisation of a Boolean 
function of five variables has the same cost and speed. 
The use of EXORs is then reasonable, as they are more 
powerful than the inclusive gates. It has been proven that 
the circuits with EXOR gates have lower worst-case com- 
plexity than the circuits which use only inclusive gates 
[lS]. Moreover, EXOR-based circuits such as MIGRMs, 
GRMs or ESOPs have much better testability properties 
than SOPS. 

This paper presents the basic research on MIGRMs 
for completely specified multiple valued input, binary 
multioutput functions. We introduce the general concept 
of a tabular pattern matching method to calculate the 
MIGRM. Section 2 presents the theory of the MIGRM 
forms, and Section 3 gives the algorithm for the MIGRM 
transform. Section 4 illustrates the transformation of the 
multiple valued input, multioutput SOP (sum-of-pro- 
ducts) function of a two-bit adder to a MIGRM form. 

2 Canonical multiple valued input, binary output 
generalised Reed-Muller forms 

Canonical forms have already been proposed for multiple 
valued input, multiple valued output functions [21, 221. 
The m-Reed-Muller canonical (m-RMC) forms [22] are 
obtained from the truth vector or the SOP representation 
and the generalisation of the Boolean difference to multi- 
ple valued logic. However, such forms cannot be realised 
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with available digital circuits. Therefore, the MIGRM 
introduced here is based on the multiple valued input, 
binary output logic. 

Definition I ;  A multiple valued input, completely speci- 
fied binary output function (mu function for short) is a 
mapping f (X)  = J(X,, X,,  ..., XJ: R ,  x R ,  x ' . .  
x R ,  + B, where Xi is a multiple valued variable that 
takes the values from the set R ,  = {0, 1, . . . , pi - 1) where 
pi is the number of values of the variable, and B = (0,  1). 

Definition 2: A literal of the multiple valued input vari- 
able Xi ,  denoted by x:, is defined as 

1 i f X , E S ,  
0 I f X , $ S ,  

x: = 

A literal of an mu variable with a single value will be 
called a single-valued literal. A product of literals, Xfl ,  
X F ,  . . . , X> is referred to as a product term (also called 
term for short). 

The approach presented here to generate a MIGRM 
makes use of spectral methods similar to the ones intro- 
duced in References 19 and 23. First the concept of 
polarity is introduced for a multiple valued literal. Then 
it is shown how it is further applied for a product term of 
multiple valued literals. 

2.1 
The concept of the polarity of a singular multiple valued 
literal is given by the following theorem. 

Theorem I :  Multiple valued literal X:, where Si C_ Ri [0, 
1, . . . , pi - 13 and Xf, c R i ,  can be represented by pi 
polarity literals P p  with the set of truth values C_ R i .  
The values of the pi polarity literals form the row vectors 
of the orthogonal pi x p ,  polarity matrix Pi. 

Proof: A property of an orthogonal m x m matrix 0 ( m  is 
an arbitrary natural number) with the elements oil E (0, 1) 
is that any vector U(u,, ti1, . . . , U,,_ with uj E (0, 1) can 
be represented by a superposition (that is, performing a 
bit-by-bit EXOR operation) of row vectors Oi of the 
matrix 0. Thus, any set S of truth values S c R = {0, 1, 
. . . , p - 1) of a literal Xs can be represented by a super- 
position of the values from the orthogonal set of p truth 
values T 5 R = (0, 1, . . ., p - l } ,  where T' is the rth row 
vector of the orthogonal p x p matrix P .  

A form according to theorem 1 is canonic because the 
polarity matrix P is orthogonal. 

Example 1: To illustrate theorem 1, all possible sets of 
truth values S c R = (0, 1,2) of a three-valued literal Xs 
are calculated from the chosen 3 x 3 orthogonal matrix 
shown in Fig. 1. In Table 1 the calculations of all possible 

Concept of polarity for a multiple valued variable 

Fig. 1 Example ofa 3 x 3 orthogonal matrix 

Table 2:  Notation for MIGRM 

sets of truth values S by exoring the rows of the 
orthogonal matrix P (Fig. 1) are given, where the rows 
are denoted by TI, T, and T 3 .  

Table 1 : All possible superpositions of polarity literals 

Truth values S Binaw code Superposition 

Definition 3 :  The matrix Pi introduced in theorem 1 is 
called the polarity matrix or, for short, the polarity of a 
multiple valued variable Xi. The rth row vector T;  of the 
matrix P ,  is the binary representation of the polarity lit- 
erals Py (P: for short). 

For the representation of the polarity literals K ,  non- 
orthogonal matrices can also be used. Thus, theorem 1 
can be generalised to the following lemma. 

Lemma 1:  Instead of the orthogonal matrix P ,  defined in 
theorem I,  any set of vectors T' can be used for the 
polarity literals Pr if, by exoring of those literals, every 
possible set S c R = {0, 1, _..,  p - 1) of a variable X"  
can be generated. Thus, there is more than one way to 
create an mu-literal Xf out of the polarity literals given 
by the nonorthogonal matrix. AND-EXOR expressions 
created with such polarity literals are no longer canonical 
forms. 

The MIESOP expressions [18, 201 are examples of 
expressions generated by polarity literals as described in 
lemma 1. 

Table 2 summarises the notation presented in defini- 
tion 3 and theorem 1. In the first row of Table 2, the 
multiple valued literals Xi'. of a function F(X, ,  X, , . . . , 
X,) are shown. In the second row, the sets of truth values 
Pi for those literals are given. Next, the corresponding 
polarity literals P: are shown, where the r stands for the 
values represented by the Tj vector of the matrix Pi. 
Finally, Fig. 2 illustrates two polarity matrices Pi consist- 
ing of the value vectors T : .  

Fig. 2 Description ofpolarity matrices 

2.2 MIGRM forms 
Before the MIGRM forms are formally defined, let us 
consider a simple example of such a form. 

Example 2 :  The two-variable mu function F, (X , ,  X,) = 

valued. is used to show how to calculate the MIGRM 
~ 0 2 3 x 0 1  , , where X I  is four-valued and X ,  is three- 

mv literal XTX X? X? X> 

polarity literals P i , .  . ,  P;,  .., Pq' PA, . . . ,  P, .  . . ., P? 
set of truth values R,  = (0. 1.  . . p ,  - 1 )  R , =  (0.  1 , .  , p , - 1 )  R,= (0, 1, . . . ,  ~ " - 1 )  

polarity matrix P. P.  P. 
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form for the polarity given in Fig. 3. The variable X:' 
can be represented by the superposition of the polarity 
literals P i  0 P ; ,  where for P i  the subscript 2 indicates 
the corresponding mu literal X, and the superscript 1 
denotes the values T i  for the mu literal X, . The natural 
method to perform the transformation would seem to be 
by an EXOR-term multiplication, i.e. 

~ 0 2 3 ~ 0 1  - , - (Pi 0 P:  0 p':Np: 0 Pi) 
= (1 0 P:  0 P':)(I 0 P:) 

= 1 0  P :  0 P ' : 0  P :  0 P : P :  0 PfP: 

In example 2, the multiplication is applied to obtain the 
MIGRM form from the polarity literals. To perform the 

A? 2 [ 001 q[;/ 1 ] 0111 

a, =[;:o]=[l 001 ] 
Fig. 3 Polarity matrices 

multiplication of the polarity literals shown there, the 
MIGRM form will be described as a spectrum M .  A 
tabular pattern matching method between the indices of 
the spectral coefficients and a product term will be intro- 
duced to calculate the final MIGRM from the polarity 
representation of the literals XS,. 

The following definition extends the concept of the 
GRM forms for Boolean functions to the concept of 
MIGRM forms for mu functions. 

Definition 4 :  The multiple valued input, binary output 
generalised Reed-Muller (MIGRM) form of a single 
output function F(Xl, X , ,  . .  ., XJ, where X , ,  i = 1, 2, 
. . . , n are the mu literals, is defined as follows 

F(Xl, x,, . . . , X,) = a ,P:P:  ' ' ' P.' 

oalP;P: " '  P,' 

O " ' O a p " P ; P : ' ~ ' P ~  
0 . .  . 0 a,pPIpP2 . . . PP" (1) 

where ai E {0, 1} and t = ny:: p , ;  the other notation 
follows the one in Table 2. For a set of functions FAX, ,  
X, , . . . , X,) we obtain 

1 2  

FAX1, x,, . . . , X,) = ao jP;P:  ' ' ' P :  

0 a l ,  P i p :  ' .  ' P,' 

@ " ' O a p " , P : P :  ' " P P  
0 . .  , e a  p P l p P 2  . . . pP" 

t, 1 2 n (2) 

Definition 5 :  The polarity of a MIGRM form is the 
vector of polarity matrices describing the polarity for 
each multiple valued literal in the form. 

The above definitions can be described with the ter- 
minology of spectral techniques as shown in Reference 24 
for the GRM form. 

Definition 6 :  The MIGRM given by definition 5 can be 
represented by the spectrum M ,  where the index of a 
spectral coefficient M,; .. ,:, corresponds to the terms of 
polarity literals P; . . .  P; in eqns. 1 and 2. Those terms 
represent the standard trivial functions [23] of the 
MIGRM spectrum. 

Example 3 :  The MIGRM of the function Fl(Xl,  X,) = 
, ( ee example 2) can be represented by its spec- 

trum M .  Fig. 4 gives the standard trivial functions of the 
~ 0 2 3 x 0 1  

xlh 0 1  1 1  xm 0 1 0 0  xm 0 0 0 1  xh 0 0 0 0  

xQ 0 0 0 0  xm 0 0 0 0  xQ 0 0 0 0  x,h 0 0 0 0  

x,G 0 0 0 0  xlm 0 0 0 0  x,Q 0 0 0 0  x,m 0 0 0 0  

1 1 1 1  1 1 0 0  1 0 0 1  1 1 1 1  
2 1 1 1  2 1 0 0  2 0 0 1  2 0  0 0 
3 1 1 1  3 1 0 0  3 0 0 1  3 1  1 1  

P;P;,I P i  Ff P; P; P:P; 

1 1 0 0  1 0 0 1  1 0 0 0  1 0 0 0  
2 0 0 0  2 0 0 0  2 1 1 1  2 1 0 0  
3 1 0 0  3 0 0 1  3 1 1 1  3 1 0 0  

P: P; P:P; P: P i  P:P: 

1 0 0 0  1 1 1 1  1 1 0 0  1 0 0 1  
2 0 0 1  2 1 1 1  2 1 0 0  2 0 0 1  
3 0 0 1  3 1 1 1  3 1 0 0  3 0 0 1  

P; P; Pf P i  PfP; Pf P; 

Fig. 4 
specified in Fig. 3 

Srandard triaialfunctionsfor polarities of variables X ,  and X ,  

above product term for the polarity from Fig. 3. For a 
comparison of the product X723X:' with the standard 
trivial functions in Fig. 4, the map of this product is 
shown in Fig. 5 .  

X I X 2 O  1 2 

Fig. 5 Map offunction F ( X , ,  X , )  = X7"X;'from examples 2 and 3 

The new expression can be represented now in the 
form of spectral coefficients (see Table 3), where the 
indices correspond to the standard trivial functions. The 
same result as in example 2 has been obtained 

xyxy = 1 0 P:  @ P': 0 P:  0 P:P: 0 P:P: 

The reader may wish to  verify this form by exoring the 
corresponding maps from Fig. 4 to obtain the map from 
Fig. 5 .  The algorithm for calculating this form will be 
given in Section 3. 

The 'coefficient' row of Table 3 gives all possible spec- 
tral coefficients, where the MIGRM terms represent all 
the indices for a general function where the arguments 
are a four-valued literal X ,  and a three-valued literal X, . 

Table 3 :  Spectrum of function F, (X, ,  X , )  

Coefficient M P ; P ~  MP;P: MP;P; MP+: Mpfp: Mpfpz Mp7pi Mp+s Mpypz Mpfp; Mep$ Mp:p; 

value 1 0 1 0 0 0 1 0 1 1 0 1  
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In the ‘value’ row, a ‘1’ indicates that the term repre- 
sented by the index of the spectral coefficient in the same 
column is present in the MIGRM form. In Table 3, the 
terms M p i p : ,  IW,,:~;, M p : p ; ,  and M p f p ;  are identical to 1, 
P i ,  P;, and P: because Pt =. P: = 1. 

The final MIGRM form IS now obtained by substitu- 
tion of the polarity literals for their multiple valued literal 
representation according to the polarity matrices. Thus 

xyxy  = 1 @ P i  @ P: @ P:P;  @ P‘: @ P:P; 

= 1 @ x; @ x:3 @ x:3x: @ xy3 @ xy3x; 
Example 4 illustrates the transformation of multioutput 
functions consisting of more than one product term. The 
transformation is based on the input function being in 
ESOP form or disjoint SOP form, where a disjoint SOP 
form is a form in which the product terms of the function 
have no overlapping parts in their map representation. 

Example 4 :  The MIGRM form of the set of two func- 
tions F,(Xl, X, = XYz3XO,’, and 

for the polarity used in Examples 1 and 2 is 

= 1 0  P :  O P :  @ P : P :  @ P : @  P:P: 

as calculated in example 3, where the map of F ,  is shown 
in Fig. 6. The second function F ,  is composed of the 

Fig. 6 M a p  ofjunction F 2 ( X I ,  X,) 

polarity terms 

F ,  = xyxy @ xyx: 
= l @ P : O P : P : @ P ’ :  

For a comparison of the function F ,  with the standard 
trivial functions for the polarities of variables X ,  and X ,  
shown in Fig. 5, the map of F, is given in Fig. 6 .  To 
apply spectral techniques as in example 3, the notation 
for the coeficients from Table 3 is used. 

The output functions F ,  and F ,  are represented by an 
output termf, f, for each product term. The output term 
flf2 is given in the right column of Table 4. Now the 
spectrum for each term is calculated separately, similar to 
example 4. Instead of using ‘1’ as an entry in the spec- 
trum table, the output term for the product term (Table 
4) is taken. As will be shown in Section 3.2, the calcu- 

lation of the spectrum can be performed in one step for 
all output functions. However, for case of explanation, in 
Table 5 we assume that the spectrum for each output 
function is calculated separately. Thus, the spectrum for 
each term in each output function can be obtained as 
shown in example 3, Table 3. Because the product term 

Table 4: Representation of the multioutput function F(X, ,  
X . )  = F(F..F,)  

B 

Product term f. f, 

Xy3Z’ 1 1  
0 1  

X023xOl wh’ ich is present in F, and F ,  is the same as in 
example 3, the results can be taken directly for the spec- 
trum shown in Table 5. The spectrum for the term XyX: 
can be calculated analogously. The results are given in 
Table 5.  The first bit of the entries 1 1  and 10 in the table 
stands for the output function F ,  and the second one for 
the output function F , .  

The calculation of the entries in Table 5 can be per- 
formed in two different ways: 

(i) Each product term is compared with the standard 
trivial function of each spectral coefficient by the tabular 
pattern matching method. 

(ii) The spectral coefficients are determined directly 
from the product term. Thus, the entry ‘-’ in Table 5 
indicates that no calculation has to be performed for 
these cells. 

The calculation according to (i) is used in our implemen- 
tation. PiP: ,  P i p : ,  P : P : ,  and P:P; are identical to 1, 
P : ,  P:.  and P: because P: = P:  = 1. The row ‘EXOR’ in 
Table 5 is obtained by exoring the entries (output 
functions) in every column. Finally, the last row gives the 
polarity literals for the spectral coefficients having 
nonzero entry in the ‘EXOR row. The polarity terms in 
the result row are the same as obtained for the functions 
F ,  and F ,  at the beginning of this example. 

Now the polarity literals have to be replaced by their 
multiple valued literals as shown in example 3. Thus, we 
obtain 

F ,  = 1 @ x: 0 x:3 @ xyx: 0 x : 2 3  @ x:23x: 

F, = 1 @ x:3 @ x:23 0 x:3x: 
as calculated in example 3 and 

3 Algor i thm for calculation of MIGRM f o r m  

The method for the generation of the MIGRM form con- 
sists of two basic stages. First, as described in Section 3.1, 
each multiple valued literal of the mu function has to be 
transformed to a polarity specified by the chosen ortho- 
gonal polarity matrix. In the second stage, presented in 
Section 3.2, the terms consisting of transformed literals 
are used to calculate the final MIGRM form. The code 
for the transformation of a multiple valued literal is 
chosen in such a way that the second stage of the trans- 
formation is not dependent on the chosen polarity for the 

Table 5 :  Spectrum of function f ( X , ,  X , )  

Term M ~ ; ~ :  MP;P: MP;P: MP+; Me+-; Mp+q Mp?,;  Mp+% Mp:,+ Mpfp; Mpfpt M,g,z 

1 1  
O l - - - - - - - -  0 1  

1 1  1 1  - xy3P*1 1 1  - 1 1 - - -  1 1  - 

result 1 P1 P: p: P:P? P4 PfP: 
%R 11 1 l o - - -  1 1  - 1 1  1 1  - 1 0  
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literal. This approach requires the introduction of the 
concept of normalised codes. 

3.1 Transformation for one multiple valued literal 
The basic steps of the algorithm for the transformation of 
a multiple valued literal to its representation of polarity 
literals in the normalised code will be illustrated by an 
example. Table 6 shows the transformations for some 
possible four-valued literals to the polarity used in the 
previous examples. The first row gives all the possible 
combinations of the polarity literals. Let us observe that 
the first four polarity literals are the rows of matrix P ,  
from example 2. In the first column, some possible literals 
of the variable X are given. In the respective row for each 
of these literals the representation by its polarity literals 
is given, where the binary representation for the value has 
to be calculated by performing the EXOR operation 
among the code words that are determined by ‘ I ’  in the 
table (i.e. X o  = P’ 0 P4 = 1 @ P4, which is denoted by 
1111 @ 0111 = 1OOO). The second row is then created as 
follows. Its entries for columns PI,  P 2 ,  and P 3  are the 
binary representations of the polarity literals from the 
polarity matrix. All other entries in the second row are 
created by the bit-by-bit EXOR operation on the P’ lit- 
erals from the column header. Finally the last row of the 
table gives the normalised code of the spectral coeffi- 
cients. It represents the combination of the polarity lit- 
erals P. For instance, 01 11 means that variables P 2 ,  P ’, 
and P4 are used. This row is just a binary encoding of the 
first row. 

As mentioned above, the code for the MIGRM repre- 
sentation of one literal is created in such a way, that this 
normalised code can be used directly to perform the 
transformation of the total mu function. This can be done 
by using the same representation of the polarity literals 
PI,  P2, ..., for every chosen polarity. The code then 
determines of what polarity literal/s the initial literal is 
composed of. 

Example 5 :  The literal X o  with the internal representa- 
tion lo00 can be represented by P’  @ P4 which has the 
normalised code 1001. The new code representing this 
combination of polarity literals can be derived by the 
bit-by-bit OR-operation of the code representation of the 
polarity literals shown in Table 7. 

The normalised code has a ‘1’ in its bit representation 
corresponding to the index of the polarity literal P‘. 

Table 7 :  Code representation of  polarity literals 

Normalised code Polarity literals P‘ 

1000 P’ 
01 00 P2 
001 0 P3 
0001 p4 

Table 6: Transformations of some four-valued literals 

The algorithm 1 performs the transformation of a 
multiple valued literal to the normalised code. 

Algorithm I :  

Step I: Generate all possible EXOR combinations of 
the polarity literals I“ (the first row of Table 6)  for later 
comparison with the original mu literal. 

Step 2: Compare the binary representation of the mu 
literal with the binary representation (row 2, Table 6)  of 
the EXOR combination (row 1, Table 6)  of Step 1. If 
these two binary representations are equal, assign to the 
mu literal its normalised code (shown in the last row of 
Table 6).  

3.2 Transformation of a multiple valued function 
After the transformation of each original mu literal, as 
described above, the whole set of multiple valued terms 
of the function has to be changed to the MIGRM. Our 
implementation is based on a tabular pattern matching 
method, where every product term of the input function 
is compared with the normalised code of the indices of all 
spectral coefficients. 

The basic steps of the algorithm for the tabular pat- 
tern matching are explained in the following example. 

Example 6 :  Let us assume a function G(X, ,  X , ,  X , )  
where the literal XI ,  being three-valued, is represented by 
three polarity literals P i ,  P: and P:. The second literal 
X ,  , being four-valued, is represented by the polarity lit- 
erals P i ,  P:  , P: and P ! ,  and the three-valued literal X ,  
is represented by P i ,  P:  , and P:  . The notation of the 
spectral coefficients for a spectrum representing such a 
function G ( X , ,  X , ,  X,) is shown in Table 8. The code 
shown in Table 8 is obtained by generating all possible 
combinations of polarity literals from the distinct original 
mu literals. This means that not more than one polarity 
literal per original mu literal can occur in the index of a 
spectral coefficient (i.e. M p f p ;  cannot occur because both 

1111 0101 0011 0111 1010 1100 1000 0110 0010 0100 

P 1 
X’ 1 
P‘ 1 
X I 2  1 
P’ 2 

Norm. code 1000 0100 0010 0001 1100 1010 1001 0110 0101 0011 

Literal P’ @ pz 8 P3 P‘ @pa @ p4 p’ 6 p3 Q p4 p z  p3 Q pb p1 e p2 Q p3 p4 

1001 1101 1011 0001 1110 

P 
X’  
P’ 
X I 2  

P’ 2 1 

Norm. code 1 11  0 11 01 1011 0111 1111 
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Code 1001000100 1001000010 1001000001 1000100100 1000100010 001 0001 001 

polarity literals are from the original mc literal X , .  As 
one can observe from the binary representation of the 
index (second row in Table 8), called code, each spectral 
coefficient consists basically of a combination of three 
polarity literals, where each polarity literal is taken from 
a different original mu literal. Because Table 8 has been 
created for normalised mu literals, the normalised code 
has to be used for the code in Table 8 also. 

The final value of the spectral coefficient M,,  where 
M, is any of the possible spectral coefficients, determined 
by a column in Table 8, is obtained by comparing the 
normalised codes of all product terms, further called 
term, (x = 0, . . . , m - 1 ; where m is the total number of 
terms) of the Boolean function including variables X , ,  
X ,  , . . . , X ,  with the representation of the spectral coeffi- 
cients code, from Table 8. The value M, for term, is the 
representation of the output functions f, of term,,  if the 
intersection of the code, and the term, is not empty. To 
obtain the final value M ,  for the whole function (all its 
terms), the EXOR operation has to be performed among 
all m values M,. The calculation of the values of coeffi- 
cients M ,  is described by 

MP=O 

M:+’ = M: 0 (((code, & term,) # O)&fx), 
for x = 0, . . . ,  m - 1 (3)  

where the value of the spectral coefficient is a product 
term, code, and term, are the binary representations of 
the respective literals, where ((code, & term,) # 0) has to 
be true for the intersection of each literal of code, and 
term,. By 0 we denote a vector which contains at least 
one zero. The output product term for term, is denoted 

The final MIGRM form consists of the terms obtained 
by replacing the polarity literals in the indices of the 
spectral coefficients M, (row code in Table 8) which have 
a value that is not ‘O’, with their binary representation. 

T o  summarise, the procedure for obtaining the 
MIGRM of a multioutput Boolean function can be 
described by algorithm 2:  

Algorithm 2: 

Step I ;  Transform all the multiple valued input literals 
of the function to their normalised codes according to the 
chosen polarities for the variables (Section 2, algorithm 
1). 

Step 2:  Calculate the MIGRM spectrum for the nor- 
malised codes as presented in Section 2.2. 

Step 3: Replace the polarity literals of non-zero spec- 
tral coefficients by their original mv literal. The output 
functions for the terms are given by the values of the 
spectral coefficients. 

As one can observe, each spectral coefficient can be cal- 
culated in turn. Thus, it can be stored directly on hard 
disk. With this approach, the necessity to keep the whole 
spectrum in the computer memory has been overcome. 

4 Practical example 

A real-life example is included to illustrate the complete 
MIGRM transformation. The function used is a two-bit 

524 

by f, ’ 

Table 9: Truth table of two-bit adder 

Binarv MultiDle valued Normalised Output 

x , . x * . x 3 . x 4  x ,  x ,  x ,  x ,  f,f,f ,  

0000 1000 1000 1110 1110 000 
0001 1000 0100 1110 1111 001 
001 0 1000 0010 1110 0010 010 
001 1 1000 0001 1110 1011 011 

01 00 0100 1000 1111 1110 001 
01 01 0100 0100 1111 1111 010 
0110 0100 0010 1111 0010 011 
0111 0100 0001 1111 1011 100 

1000 0010 1000 0010 1110 010 
1001 0010 0100 0010 1111 011 
1010 0010 0010 0010 0010 100 
1011 0010 0001 0010 1011 101 

1100 0001 1000 1011 1110 011 
11 01 0001 0100 1011 1111 100 
1110 0001 0010 1011 0010 101 
1111 0001 0001 1011 1011 110 

adder (Table 9, where the two four-valued literals X ,  and 
X ,  represent two binary values each (X, = (x,, x2), 

The input variable assignment is not unique. Thus, 
there exist many different assignments. In this example, 
the mu literal X ,  is obtained by changing the first two 
bits of the binary function (x,, x,) to a four-valued literal 
( X y  = GO, Xi = 01, X :  = 10, X :  = 11). The second two 
bits are used to obtain X ,  . 

To make it easier to follow the steps of the transform- 
ation, the same polarity is assumed for both literals. The 
polarity literals P: and the binary representations of their 
values (T:) are given in Table 10. 

x, = (x3 3 x4)). 

Table 10: Polaritv for two-bit  adder 

Polarity for X ,  Polarity for X ,  

p;.1111 P; 1111 
P:: 0101 P: 0101 
P: .  001 0 P: 001 0 
P4 1100 P4.1100 

Now the binary representations of the literals X ,  and 
X ,  in Table 7 are replaced by their normalised codes 
(algorithm 1). Because only four different values occur in 
the literals X ,  and X , ,  the normalised codes for those 
values are shown in Table 11, where P‘ = PI = P; . The 

Table 11 : Normalised codes for four occurring values 

Binary value Normalised code Cube representation 
of literal of normalised code 

0001 P ’ @ P ” P 4  1011 
001 0 P3 001 0 
01 00 P ‘ O P 2 0 P 3 O P 4  1111 
1000 P ‘ @ P * @ P 3  1110 

multiple valued literals X ,  and X ,  shown in Table 9 are 
now substituted with the cube representations of their 
normalised codes given in Table 1 1  ; the result is given in 
Table 9. 

The normalised code obtained in this procedure is 
now compared with all the indices of the spectral coeffi- 
cients of the general spectrum for a function G ( X , ,  X2), 
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Table 12: Spectrum for first three terms from table 9 

Term M P ; P ~  MP;P: MP;P: MP;P: M p : p :  Mp:p; M ~ v :  Mp+; 

1000 1000 1000 01 00 1000 001 0 1000 0001 01 00 1000 01 00 01 00 01 00 001 0 01 00 0001 

11101111 001 001 00 1 001 001 001 00 1 001 
01 0 11100010 ~ - 01 0 

11101011 011 - 01 1 01 1 01 1 - 01 1 01 1 
~ - - - 

Result 010 001 000 01 0 01 0 001 01 0 000 

Term MPW MP:?: M P V ~  M,:,; M p : p i  M,+: M p t p z  M p f p t  

001 0 1000 001 0 01 00 001 0001 0 001 0 0001 0001 1000 0001 01 00 0001 001 0 0001 0001 

- - - - 11101111 001 001 001 001 
11100010 - 
11101011 011 01 1 01 1 

Result 010 001 000 01 0 000 000 000 000 

~ - - - - 01 0 - 
~ ~ ~ - ~ 

where X, and X, are four-valued literals (algorithm 2, 
step 2). Table 12 illustrates the calculation of the spec- 
trum for the first three terms from Table 9. The Table has 
the output functions of the terms as entries if, for each 
term, the intersection of the term and the index of the 
coefficient is not empty (eqn. 3); otherwise the entry is 
'-'. For instance, the cell for the intersection of row 
11 10 101 1 and column 0100 IO00 is '01 1' as the intersec- 
tion of those indices is 0100 lo00 where both literals are 
not empty. The intersection of row 11100010 and column 
0100 1000 is 0100oooO so '-' is placed in the correspond- 
ing cell. The final coefficients for the partial function in 
Table 12 are obtained by exoring the entries of the 
columns. The result of this operation is given in the last 
row. 

The result of the complete function is shown in Table 
13. The first column of Table 13 lists all nonzero spectral 

Table 13: M I G R M  of 2-bit adder 

Spectral Index X ,  X ,  f , f , f ,  
coefficient 

1000 1 000 
1000 01 00 
1000 0001 
01 00 1000 
01 00 01 00 
01 00001 0 
01 000001 
001 0 01 00 
0001 1000 
0001 01 00 
0001 0001 

1111 1111 100 
1111 0101 101 
1111 1100 110 
0101 1111 101 
0101 0101 010 
0101 0010 100 
0101 1100 100 
0010 0101 100 
1100 1111 110 
1100 0101 100 
1100 1100 100 

coeffcients M ,  that occur in any of its component func- 
tions. These coeffcients have been obtained by compar- 
ing (as in Table 12) the normalised binary representations 
of their indices (listed in the second column of Table 13) 
with the normalised code obtained according to Tables 
10 and 11. Finally, the binary representation for the liter- 
als of variables X, and X, is obtained by replacing the 
polarity literals of the indices of spectral coefficients from 
the first row, by their binary representations (algorithm 2, 
step 3). According to Table 10, the conversion is: lo00 to 
1111, 0100 to 0101, 0010 to 0010, and ooO1 to 1100. The 
output terms f, fo f, are the values of the spectral coeffi- 
cients. 

The implementation of the above result as an AND- 
EXOR PLA with two-input, three-output decoders for 
the chosen polarities is shown in Fig. 7. 

IEE PROCEEDINGS-E, Vol .  139, N o .  6 .  N O V E M B E R  1992 

r o u t  
decoder AND-plane 

X 1  

x 2  

x 3  

EXOR-plane fc 

f 0  
fl 

Fig. 7 
M I G R M  form ofthe 2-bit udder 

A N D - L X O R  P L A  implementation with input decoders of the 

The input decoders are the same because the same 
polarity has been chosen for both literals, the input 
decoder for both variables XI ,  and X, is shown in Fig. 8. 

~~~~~~~~~~~~~~~~ 

I 

i - _ - _ - _ - - - - - l  

Fig. 8 

5 Evaluation and results 

The calculation method presented for the computation of 
the MIGRM has been implemented in the program 
GRM-MV (generalised Reed-Muller synthesiser, multi- 
ple valued version). The numerical results have confirmed 
the validity of the MIGRM concept. However, the 
problem of finding a polarity with the minimal number of 
product terms without the computation of all possible 
forms still has to be solved. It is known, that for an n 
variable Boolean function, there are 2" GRM forms. For 
an n variable function where each variable is three- 
valued, there are 28" forms, and for each variable being 
four-valued there are 840" forms. Therefore, the computa- 
tion of the form having the minimal number of product 
terms by going through all forms is very complex. More- 
over, the pairing of the Boolean variables to obtain the 
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multiple valued form also has an impact on the number 
of necessary product terms in the MIGRM. 

For the evaluation of the MIGRM in comparison to 
the GRM, the number of polarities for a four-valued vari- 
able has been restricted to 60 randomly selected pol- 
arities. Therefore, the total number of polarities 
considered was 60”. Table 14 gives the results obtained 
for some MCNC benchmark functions. 

Table 14: Benchmark r e su l t s  for MIGRM 

ESPRESSO G R M  ESPRESSO MIGRM 
2-bit decoder 2-bit decoder 

~ ~ 

adr2 11 8 9  5 
ad14 7 5  3 4  66 34  
bw 2 2  2 2  23 22 
con1 9 1 7  9 17  
inc 30 47 2 8  40  
id53 31 2 0  1 2  1 5  
id73 127  63 37  40  
rd04 255 107  54  54  
squar5 2 5  2 3  26 25  
xor5 1 6  5 4  4 
5xpl 65 61 55  6 4  

The column ESPRESSO lists the number of product 
terms obtained by the two-level SOP optimizer ESPRES- 
SO [13]. The following column gives the minimal 
number of product terms in the respective GRM form. 
For the computation of the MIGRM and MIESOP 
based on four-valued variables, pairs of Boolean vari- 
ables have been taken to obtain a four-valued one. The 
results obtained are given in the last columns of Table 14. 

One can observe from the obtained results that the 
MIGRM gives a reduction of up to 50% in the number 
of product terms over the GRM. Moreover, the number 
of product terms of the GRM is the absolute minimum 
while only a local minimum is obtained for the MIGRM. 
This is due to the restriction of the number of polarities 
per variable to 60 instead of 840. 

The results obtained give motivation to further investi- 
gate in MIGRM forms. However, methods to avoid the 
computation of all possible polarities similar to the ones 
introduced for GRMs [5, 251 have to be developed to 
overcome the high computational complexity of 
MIGRM forms. Additionally, it has to be investigated 
which multiple valued decoders are practical for circuit 
realisations. Then, the search for the minimal MIGRM 
form can be restricted to the one which is optimal with 
respect to a certain set of multiple valued decoders. 

6 Conclusions 

The extension of the general Reed-Muller expansion to 
multiple valued input, binary multioutput functions has 
been shown. For this, the concept of code normalisation 
of single multiple valued literals to perform a final trans- 
formation has been developed. The code normalisation is 
applied to make the transformation of the complete func- 
tion independent of the polarity chosen. This simplifies 
and speeds up the main transformation step to the final 
MIGRM form for the transformed single mu literal. For 
further investigations of the properties of such forms, the 
MIGRM transformation has been implemented as a 
computer algorithm. Because an exhaustive search of all 
nl=o P(X,)  MIGRM forms, where P ( X J  is the number of 
possible polarities for variable Xi with i = 1, . . . , n, would 
be too time consuming, further research has to be con- 
centrated on avoiding a complete search and to finding 
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immediately good polarities as has been carried out for 
GRM forms [5, 251. 

As circuits which realise the MIGRM forms are both 
easily testable, o r  modifiable to very easily testable cir- 
cuits, further research into them is important. It must 
however, be experimentally found with practical logic 
benchmarks how much of a circuit cost penalty we pay 
with respect to the corresponding MIESOPs. The role of 
input variable pairing [15] must also be investigated, as a 
good pairing together with a good choice of variable pol- 
arities may significantly improve the cost. 

ir 
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