
Multiple valued input generalised Reed-Muller
forms

I. Schafer
M.A. Perkowski

Indexing terms: Multiple valued inputs, Programmable devices, Reed-Muller expansion

Abstract: The concept of canonical multiple
valued input generalised Reed-Muller (MIGRM)
forms is introduced. The MIGRM is a direct
extension of the well known generalised Reed-
Muller (GRM) forms to the logic with multiple
valued inputs. The concept of the polarity of a
GRM form is generalised to the polarity matrix of
a MIGRM form. A tabular pattern-matching
method is presented for the calculation of a
MIGRM form. The MIGRM transform has been
implemented for further investigations of such
forms and their comparison with other circuit
realisations.

1 Introduction

The concept of a fixed-polarity generalised Reed-Muller
(GRM) form [l, 23 of an n-input Boolean function has
been studied extensively in the literature. One reason for
studying such forms is that, for each of the 2" polarities,
they are canonical, which has several applications in both
theory and practice. They have been intensively studied
for better understanding of the canonical representations
of switching functions [2-51. As is well known, the cir-
cuits corresponding to Reed-Muller and GRM forms
have excellent design-for-test properties 16-1 11. Finally,
GRMs have applications in signal coding and image pro-
cessing [12].

In recent years a logic with multiple valued inputs has
been introduced with applications in synthesis of PLAs
with decoders and function generators [13-15], multi-
level logic synthesis and factorisation [16, 171. A multiple
valued input, binary output function can be readily
implemented with currently available digital circuits,
while a real multiple valued function cannot. The concept
of multiple valued input Exclusive-OR sum-of-products
(ESOP) expressions has been presented in Reference 18.

This paper introduces the counterpart of GRMs for
the logic with multiple valued inputs and binary outputs.
We will call such forms multiple valued input generalised
Reed-Muller forms (MIGRMs). The counterpart to the
RMs, the restricted multiple valued input generalised
Reed-Muller forms (RMIGRMs), have been introduced
in Reference 19.

A motivation for the investigation of MIGRM forms
is that the concept of the AND-EXOR PLA [20], which

Paper 9102E (CZ), first received 18th July 1991 and in revised form 6th
July 1992
The authors are with the Department of Electrical Engineering, Port-
land State University, PO Box 751, Portland, OR 97207-0751, USA

IEE PROCEEDINGS-E, Vol. 139, N o . 6 , N O V E M B E R 1992

is used for the realisation of ESOPs, can be modified to
MIGRMs. The AND-EXOR PLA with two-input, four-
output input decoders [203 is used for the multiple
valued input, binary output exclusive sum-of-products
(MIESOP) expansions. Similarly, it can be used for the
MIGRMs. Moreover, if the RMIGRM forms [19] are
applied, the ANDiEXOR needs only two-input, three-
output input decoders. Although one gains 25% on one
dimension of the PLA, one can lose in the other dimen-
sion, as the number of terms is usually larger in a GRM
and a RMIGRM or MIGRM than in an ESOP or
MIESOP of the same function. But the GRM and
MIGRM have the advantage of excellent testability
properties which have been proven for the strict Reed-
Muller forms [lo] and are extendable for the GRMs and
MIGRMs.

The existence of new programmable devices such as
the Xilinx LCA 3000, the 1020 series from Actel, or the
LHS5Ol from Signetics allows for the direct implementa-
tion of the form introduced here. For instance, in Xilinx
LCA 3000 devices, every module realisation of a Boolean
function of five variables has the same cost and speed.
The use of EXORs is then reasonable, as they are more
powerful than the inclusive gates. It has been proven that
the circuits with EXOR gates have lower worst-case com-
plexity than the circuits which use only inclusive gates
[lS]. Moreover, EXOR-based circuits such as MIGRMs,
GRMs or ESOPs have much better testability properties
than SOPS.

This paper presents the basic research on MIGRMs
for completely specified multiple valued input, binary
multioutput functions. We introduce the general concept
of a tabular pattern matching method to calculate the
MIGRM. Section 2 presents the theory of the MIGRM
forms, and Section 3 gives the algorithm for the MIGRM
transform. Section 4 illustrates the transformation of the
multiple valued input, multioutput SOP (sum-of-pro-
ducts) function of a two-bit adder to a MIGRM form.

2 Canonical multiple valued input, binary output
generalised Reed-Muller forms

Canonical forms have already been proposed for multiple
valued input, multiple valued output functions [21, 221.
The m-Reed-Muller canonical (m-RMC) forms [22] are
obtained from the truth vector or the SOP representation
and the generalisation of the Boolean difference to multi-
ple valued logic. However, such forms cannot be realised

The work presented in this paper was partially
supported by NSF grant MIP-9110772

519

with available digital circuits. Therefore, the MIGRM
introduced here is based on the multiple valued input,
binary output logic.

Definition I ; A multiple valued input, completely speci-
fied binary output function (mu function for short) is a
mapping f (X) = J(X,, X,, ..., XJ: R , x R , x ' . .
x R , + B, where Xi is a multiple valued variable that
takes the values from the set R , = {0, 1, . . . , pi - 1) where
pi is the number of values of the variable, and B = (0, 1).

Definition 2: A literal of the multiple valued input vari-
able Xi , denoted by x:, is defined as

1 i f X , E S ,
0 I f X , $ S ,

x: =

A literal of an mu variable with a single value will be
called a single-valued literal. A product of literals, Xfl ,
X F , . . . , X> is referred to as a product term (also called
term for short).

The approach presented here to generate a MIGRM
makes use of spectral methods similar to the ones intro-
duced in References 19 and 23. First the concept of
polarity is introduced for a multiple valued literal. Then
it is shown how it is further applied for a product term of
multiple valued literals.

2.1
The concept of the polarity of a singular multiple valued
literal is given by the following theorem.

Theorem I : Multiple valued literal X:, where Si C_ Ri [0,
1, . . . , pi - 13 and Xf, c R i , can be represented by pi
polarity literals P p with the set of truth values C_ R i .
The values of the pi polarity literals form the row vectors
of the orthogonal pi x p , polarity matrix Pi.

Proof: A property of an orthogonal m x m matrix 0 (m is
an arbitrary natural number) with the elements oil E (0, 1)
is that any vector U(u,, ti1, . . . , U,,_ with uj E (0, 1) can
be represented by a superposition (that is, performing a
bit-by-bit EXOR operation) of row vectors Oi of the
matrix 0. Thus, any set S of truth values S c R = {0, 1,
. . . , p - 1) of a literal Xs can be represented by a super-
position of the values from the orthogonal set of p truth
values T 5 R = (0, 1, . . ., p - l } , where T' is the rth row
vector of the orthogonal p x p matrix P .

A form according to theorem 1 is canonic because the
polarity matrix P is orthogonal.

Example 1: To illustrate theorem 1, all possible sets of
truth values S c R = (0, 1,2) of a three-valued literal Xs
are calculated from the chosen 3 x 3 orthogonal matrix
shown in Fig. 1. In Table 1 the calculations of all possible

Concept of polarity for a multiple valued variable

Fig. 1 Example ofa 3 x 3 orthogonal matrix

Table 2: Notation for MIGRM

sets of truth values S by exoring the rows of the
orthogonal matrix P (Fig. 1) are given, where the rows
are denoted by TI, T, and T 3 .

Table 1 : All possible superpositions of polarity literals

Truth values S Binaw code Superposition

Definition 3 : The matrix Pi introduced in theorem 1 is
called the polarity matrix or, for short, the polarity of a
multiple valued variable Xi. The rth row vector T; of the
matrix P , is the binary representation of the polarity lit-
erals Py (P: for short).

For the representation of the polarity literals K , non-
orthogonal matrices can also be used. Thus, theorem 1
can be generalised to the following lemma.

Lemma 1: Instead of the orthogonal matrix P , defined in
theorem I, any set of vectors T' can be used for the
polarity literals Pr if, by exoring of those literals, every
possible set S c R = {0, 1, _.., p - 1) of a variable X"
can be generated. Thus, there is more than one way to
create an mu-literal Xf out of the polarity literals given
by the nonorthogonal matrix. AND-EXOR expressions
created with such polarity literals are no longer canonical
forms.

The MIESOP expressions [18, 201 are examples of
expressions generated by polarity literals as described in
lemma 1.

Table 2 summarises the notation presented in defini-
tion 3 and theorem 1. In the first row of Table 2, the
multiple valued literals Xi'. of a function F(X, , X, , . . . ,
X,) are shown. In the second row, the sets of truth values
Pi for those literals are given. Next, the corresponding
polarity literals P: are shown, where the r stands for the
values represented by the Tj vector of the matrix Pi.
Finally, Fig. 2 illustrates two polarity matrices Pi consist-
ing of the value vectors T : .

Fig. 2 Description ofpolarity matrices

2.2 MIGRM forms
Before the MIGRM forms are formally defined, let us
consider a simple example of such a form.

Example 2 : The two-variable mu function F, (X , , X,) =

valued. is used to show how to calculate the MIGRM
~ 0 2 3 x 0 1 , , where X I is four-valued and X , is three-

mv literal XTX X? X? X>

polarity literals P i , . . , P;, .., Pq' PA, . . . , P,, P?
set of truth values R, = (0. 1. . . p , - 1) R , = (0. 1 , . , p , - 1) R,= (0, 1, . . . , ~ " - 1)

polarity matrix P. P. P.

520 IEE PROCEEDINGS-E. Vol. 139, No. 6, N O V E M B E R 1992

form for the polarity given in Fig. 3. The variable X:'
can be represented by the superposition of the polarity
literals P i 0 P ; , where for P i the subscript 2 indicates
the corresponding mu literal X, and the superscript 1
denotes the values T i for the mu literal X, . The natural
method to perform the transformation would seem to be
by an EXOR-term multiplication, i.e.

~ 0 2 3 ~ 0 1 - , - (Pi 0 P: 0 p':Np: 0 Pi)
= (1 0 P: 0 P':)(I 0 P:)

= 1 0 P : 0 P ' : 0 P : 0 P : P : 0 PfP:

In example 2, the multiplication is applied to obtain the
MIGRM form from the polarity literals. To perform the

A? 2 [001 q[;/ 1] 0111

a, =[;:o]=[l 001]
Fig. 3 Polarity matrices

multiplication of the polarity literals shown there, the
MIGRM form will be described as a spectrum M . A
tabular pattern matching method between the indices of
the spectral coefficients and a product term will be intro-
duced to calculate the final MIGRM from the polarity
representation of the literals XS,.

The following definition extends the concept of the
GRM forms for Boolean functions to the concept of
MIGRM forms for mu functions.

Definition 4 : The multiple valued input, binary output
generalised Reed-Muller (MIGRM) form of a single
output function F(Xl, X , , . . ., XJ, where X , , i = 1, 2,
. . . , n are the mu literals, is defined as follows

F(Xl, x,, . . . , X,) = a ,P:P: ' ' ' P.'

oalP;P: " ' P,'

O " ' O a p " P ; P : ' ~ ' P ~
0 . . . 0 a,pPIpP2 . . . PP" (1)

where ai E {0, 1} and t = ny:: p , ; the other notation
follows the one in Table 2. For a set of functions FAX, ,
X, , . . . , X,) we obtain

1 2

FAX1, x,, . . . , X,) = ao jP;P: ' ' ' P :

0 a l , P i p : ' . ' P,'

@ " ' O a p " , P : P : ' " P P
0 . . , e a p P l p P 2 . . . pP"

t, 1 2 n (2)

Definition 5 : The polarity of a MIGRM form is the
vector of polarity matrices describing the polarity for
each multiple valued literal in the form.

The above definitions can be described with the ter-
minology of spectral techniques as shown in Reference 24
for the GRM form.

Definition 6 : The MIGRM given by definition 5 can be
represented by the spectrum M , where the index of a
spectral coefficient M,; .. ,:, corresponds to the terms of
polarity literals P; . . . P; in eqns. 1 and 2. Those terms
represent the standard trivial functions [23] of the
MIGRM spectrum.

Example 3 : The MIGRM of the function Fl(Xl, X,) =
, (ee example 2) can be represented by its spec-

trum M . Fig. 4 gives the standard trivial functions of the
~ 0 2 3 x 0 1

xlh 0 1 1 1 xm 0 1 0 0 xm 0 0 0 1 xh 0 0 0 0

xQ 0 0 0 0 xm 0 0 0 0 xQ 0 0 0 0 x,h 0 0 0 0

x,G 0 0 0 0 xlm 0 0 0 0 x,Q 0 0 0 0 x,m 0 0 0 0

1 1 1 1 1 1 0 0 1 0 0 1 1 1 1 1
2 1 1 1 2 1 0 0 2 0 0 1 2 0 0 0
3 1 1 1 3 1 0 0 3 0 0 1 3 1 1 1

P;P;,I P i Ff P; P; P:P;

1 1 0 0 1 0 0 1 1 0 0 0 1 0 0 0
2 0 0 0 2 0 0 0 2 1 1 1 2 1 0 0
3 1 0 0 3 0 0 1 3 1 1 1 3 1 0 0

P: P; P:P; P: P i P:P:

1 0 0 0 1 1 1 1 1 1 0 0 1 0 0 1
2 0 0 1 2 1 1 1 2 1 0 0 2 0 0 1
3 0 0 1 3 1 1 1 3 1 0 0 3 0 0 1

P; P; Pf P i PfP; Pf P;

Fig. 4
specified in Fig. 3

Srandard triaialfunctionsfor polarities of variables X , and X ,

above product term for the polarity from Fig. 3. For a
comparison of the product X723X:' with the standard
trivial functions in Fig. 4, the map of this product is
shown in Fig. 5 .

X I X 2 O 1 2

Fig. 5 Map offunction F (X , , X ,) = X7"X;'from examples 2 and 3

The new expression can be represented now in the
form of spectral coefficients (see Table 3), where the
indices correspond to the standard trivial functions. The
same result as in example 2 has been obtained

xyxy = 1 0 P: @ P': 0 P: 0 P:P: 0 P:P:

The reader may wish to verify this form by exoring the
corresponding maps from Fig. 4 to obtain the map from
Fig. 5 . The algorithm for calculating this form will be
given in Section 3.

The 'coefficient' row of Table 3 gives all possible spec-
tral coefficients, where the MIGRM terms represent all
the indices for a general function where the arguments
are a four-valued literal X , and a three-valued literal X, .

Table 3 : Spectrum of function F, (X, , X ,)

Coefficient M P ; P ~ MP;P: MP;P; MP+: Mpfp: Mpfpz Mp7pi Mp+s Mpypz Mpfp; Mep$ Mp:p;

value 1 0 1 0 0 0 1 0 1 1 0 1

IEE PROCEEDINGS-E, Vol . 139, N o 6 , N O V E M B E R 1992 521

In the ‘value’ row, a ‘1’ indicates that the term repre-
sented by the index of the spectral coefficient in the same
column is present in the MIGRM form. In Table 3, the
terms M p i p : , IW,,:~;, M p : p ; , and M p f p ; are identical to 1,
P i , P;, and P: because Pt =. P: = 1.

The final MIGRM form IS now obtained by substitu-
tion of the polarity literals for their multiple valued literal
representation according to the polarity matrices. Thus

xyxy = 1 @ P i @ P: @ P:P; @ P‘: @ P:P;

= 1 @ x; @ x:3 @ x:3x: @ xy3 @ xy3x;
Example 4 illustrates the transformation of multioutput
functions consisting of more than one product term. The
transformation is based on the input function being in
ESOP form or disjoint SOP form, where a disjoint SOP
form is a form in which the product terms of the function
have no overlapping parts in their map representation.

Example 4 : The MIGRM form of the set of two func-
tions F,(Xl, X, = XYz3XO,’, and

for the polarity used in Examples 1 and 2 is

= 1 0 P : O P : @ P : P : @ P : @ P:P:

as calculated in example 3, where the map of F , is shown
in Fig. 6. The second function F , is composed of the

Fig. 6 M a p ofjunction F 2 (X I , X,)

polarity terms

F , = xyxy @ xyx:
= l @ P : O P : P : @ P ’ :

For a comparison of the function F , with the standard
trivial functions for the polarities of variables X , and X ,
shown in Fig. 5, the map of F, is given in Fig. 6 . To
apply spectral techniques as in example 3, the notation
for the coeficients from Table 3 is used.

The output functions F , and F , are represented by an
output termf, f, for each product term. The output term
flf2 is given in the right column of Table 4. Now the
spectrum for each term is calculated separately, similar to
example 4. Instead of using ‘1’ as an entry in the spec-
trum table, the output term for the product term (Table
4) is taken. As will be shown in Section 3.2, the calcu-

lation of the spectrum can be performed in one step for
all output functions. However, for case of explanation, in
Table 5 we assume that the spectrum for each output
function is calculated separately. Thus, the spectrum for
each term in each output function can be obtained as
shown in example 3, Table 3. Because the product term

Table 4: Representation of the multioutput function F(X, ,
X .) = F(F..F,)

B

Product term f. f,

Xy3Z’ 1 1
0 1

X023xOl wh’ ich is present in F, and F , is the same as in
example 3, the results can be taken directly for the spec-
trum shown in Table 5. The spectrum for the term XyX:
can be calculated analogously. The results are given in
Table 5. The first bit of the entries 1 1 and 10 in the table
stands for the output function F , and the second one for
the output function F , .

The calculation of the entries in Table 5 can be per-
formed in two different ways:

(i) Each product term is compared with the standard
trivial function of each spectral coefficient by the tabular
pattern matching method.

(ii) The spectral coefficients are determined directly
from the product term. Thus, the entry ‘-’ in Table 5
indicates that no calculation has to be performed for
these cells.

The calculation according to (i) is used in our implemen-
tation. PiP: , P i p : , P : P : , and P:P; are identical to 1,
P : , P:. and P: because P: = P: = 1. The row ‘EXOR’ in
Table 5 is obtained by exoring the entries (output
functions) in every column. Finally, the last row gives the
polarity literals for the spectral coefficients having
nonzero entry in the ‘EXOR row. The polarity terms in
the result row are the same as obtained for the functions
F , and F , at the beginning of this example.

Now the polarity literals have to be replaced by their
multiple valued literals as shown in example 3. Thus, we
obtain

F , = 1 @ x: 0 x:3 @ xyx: 0 x : 2 3 @ x:23x:

F, = 1 @ x:3 @ x:23 0 x:3x:
as calculated in example 3 and

3 Algor i thm for calculation of MIGRM f o r m

The method for the generation of the MIGRM form con-
sists of two basic stages. First, as described in Section 3.1,
each multiple valued literal of the mu function has to be
transformed to a polarity specified by the chosen ortho-
gonal polarity matrix. In the second stage, presented in
Section 3.2, the terms consisting of transformed literals
are used to calculate the final MIGRM form. The code
for the transformation of a multiple valued literal is
chosen in such a way that the second stage of the trans-
formation is not dependent on the chosen polarity for the

Table 5 : Spectrum of function f (X , , X ,)

Term M ~ ; ~ : MP;P: MP;P: MP+; Me+-; Mp+q Mp?,; Mp+% Mp:,+ Mpfp; Mpfpt M,g,z

1 1
O l - - - - - - - - 0 1

1 1 1 1 - xy3P*1 1 1 - 1 1 - - - 1 1 -

result 1 P1 P: p: P:P? P4 PfP:
%R 11 1 l o - - - 1 1 - 1 1 1 1 - 1 0

522 IEE PROCEEDINGS-E, Vol. 139, N o . 6, N O V E M B E R 1992

literal. This approach requires the introduction of the
concept of normalised codes.

3.1 Transformation for one multiple valued literal
The basic steps of the algorithm for the transformation of
a multiple valued literal to its representation of polarity
literals in the normalised code will be illustrated by an
example. Table 6 shows the transformations for some
possible four-valued literals to the polarity used in the
previous examples. The first row gives all the possible
combinations of the polarity literals. Let us observe that
the first four polarity literals are the rows of matrix P ,
from example 2. In the first column, some possible literals
of the variable X are given. In the respective row for each
of these literals the representation by its polarity literals
is given, where the binary representation for the value has
to be calculated by performing the EXOR operation
among the code words that are determined by ‘ I ’ in the
table (i.e. X o = P’ 0 P4 = 1 @ P4, which is denoted by
1111 @ 0111 = 1OOO). The second row is then created as
follows. Its entries for columns PI, P 2 , and P 3 are the
binary representations of the polarity literals from the
polarity matrix. All other entries in the second row are
created by the bit-by-bit EXOR operation on the P’ lit-
erals from the column header. Finally the last row of the
table gives the normalised code of the spectral coeffi-
cients. It represents the combination of the polarity lit-
erals P. For instance, 01 11 means that variables P 2 , P ’,
and P4 are used. This row is just a binary encoding of the
first row.

As mentioned above, the code for the MIGRM repre-
sentation of one literal is created in such a way, that this
normalised code can be used directly to perform the
transformation of the total mu function. This can be done
by using the same representation of the polarity literals
PI, P2, ..., for every chosen polarity. The code then
determines of what polarity literal/s the initial literal is
composed of.

Example 5 : The literal X o with the internal representa-
tion lo00 can be represented by P’ @ P4 which has the
normalised code 1001. The new code representing this
combination of polarity literals can be derived by the
bit-by-bit OR-operation of the code representation of the
polarity literals shown in Table 7.

The normalised code has a ‘1’ in its bit representation
corresponding to the index of the polarity literal P‘.

Table 7 : Code representation of polarity literals

Normalised code Polarity literals P‘

1000 P’
01 00 P2
001 0 P3
0001 p4

Table 6: Transformations of some four-valued literals

The algorithm 1 performs the transformation of a
multiple valued literal to the normalised code.

Algorithm I :

Step I: Generate all possible EXOR combinations of
the polarity literals I“ (the first row of Table 6) for later
comparison with the original mu literal.

Step 2: Compare the binary representation of the mu
literal with the binary representation (row 2, Table 6) of
the EXOR combination (row 1, Table 6) of Step 1. If
these two binary representations are equal, assign to the
mu literal its normalised code (shown in the last row of
Table 6).

3.2 Transformation of a multiple valued function
After the transformation of each original mu literal, as
described above, the whole set of multiple valued terms
of the function has to be changed to the MIGRM. Our
implementation is based on a tabular pattern matching
method, where every product term of the input function
is compared with the normalised code of the indices of all
spectral coefficients.

The basic steps of the algorithm for the tabular pat-
tern matching are explained in the following example.

Example 6 : Let us assume a function G(X, , X , , X ,)
where the literal XI , being three-valued, is represented by
three polarity literals P i , P: and P:. The second literal
X , , being four-valued, is represented by the polarity lit-
erals P i , P: , P: and P ! , and the three-valued literal X ,
is represented by P i , P: , and P: . The notation of the
spectral coefficients for a spectrum representing such a
function G (X , , X , , X,) is shown in Table 8. The code
shown in Table 8 is obtained by generating all possible
combinations of polarity literals from the distinct original
mu literals. This means that not more than one polarity
literal per original mu literal can occur in the index of a
spectral coefficient (i.e. M p f p ; cannot occur because both

1111 0101 0011 0111 1010 1100 1000 0110 0010 0100

P 1
X’ 1
P‘ 1
X I 2 1
P’ 2

Norm. code 1000 0100 0010 0001 1100 1010 1001 0110 0101 0011

Literal P’ @ pz 8 P3 P‘ @pa @ p4 p’ 6 p3 Q p4 p z p3 Q pb p1 e p2 Q p3 p4

1001 1101 1011 0001 1110

P
X’
P’
X I 2

P’ 2 1

Norm. code 1 11 0 11 01 1011 0111 1111

IEE PROCEEDINGS-E, Vol. 139, N o . 6 , N O V E M B E R 1992 523

Code 1001000100 1001000010 1001000001 1000100100 1000100010 001 0001 001

polarity literals are from the original mc literal X , . As
one can observe from the binary representation of the
index (second row in Table 8), called code, each spectral
coefficient consists basically of a combination of three
polarity literals, where each polarity literal is taken from
a different original mu literal. Because Table 8 has been
created for normalised mu literals, the normalised code
has to be used for the code in Table 8 also.

The final value of the spectral coefficient M,, where
M, is any of the possible spectral coefficients, determined
by a column in Table 8, is obtained by comparing the
normalised codes of all product terms, further called
term, (x = 0, . . . , m - 1 ; where m is the total number of
terms) of the Boolean function including variables X , ,
X , , . . . , X , with the representation of the spectral coeffi-
cients code, from Table 8. The value M, for term, is the
representation of the output functions f, of term,, if the
intersection of the code, and the term, is not empty. To
obtain the final value M , for the whole function (all its
terms), the EXOR operation has to be performed among
all m values M,. The calculation of the values of coeffi-
cients M , is described by

MP=O

M:+’ = M: 0 (((code, & term,) # O)&fx),
for x = 0, . . . , m - 1 (3)

where the value of the spectral coefficient is a product
term, code, and term, are the binary representations of
the respective literals, where ((code, & term,) # 0) has to
be true for the intersection of each literal of code, and
term,. By 0 we denote a vector which contains at least
one zero. The output product term for term, is denoted

The final MIGRM form consists of the terms obtained
by replacing the polarity literals in the indices of the
spectral coefficients M, (row code in Table 8) which have
a value that is not ‘O’, with their binary representation.

T o summarise, the procedure for obtaining the
MIGRM of a multioutput Boolean function can be
described by algorithm 2:

Algorithm 2:

Step I ; Transform all the multiple valued input literals
of the function to their normalised codes according to the
chosen polarities for the variables (Section 2, algorithm
1).

Step 2: Calculate the MIGRM spectrum for the nor-
malised codes as presented in Section 2.2.

Step 3: Replace the polarity literals of non-zero spec-
tral coefficients by their original mv literal. The output
functions for the terms are given by the values of the
spectral coefficients.

As one can observe, each spectral coefficient can be cal-
culated in turn. Thus, it can be stored directly on hard
disk. With this approach, the necessity to keep the whole
spectrum in the computer memory has been overcome.

4 Practical example

A real-life example is included to illustrate the complete
MIGRM transformation. The function used is a two-bit

524

by f, ’

Table 9: Truth table of two-bit adder

Binarv MultiDle valued Normalised Output

x , . x * . x 3 . x 4 x , x , x , x , f,f,f ,

0000 1000 1000 1110 1110 000
0001 1000 0100 1110 1111 001
001 0 1000 0010 1110 0010 010
001 1 1000 0001 1110 1011 011

01 00 0100 1000 1111 1110 001
01 01 0100 0100 1111 1111 010
0110 0100 0010 1111 0010 011
0111 0100 0001 1111 1011 100

1000 0010 1000 0010 1110 010
1001 0010 0100 0010 1111 011
1010 0010 0010 0010 0010 100
1011 0010 0001 0010 1011 101

1100 0001 1000 1011 1110 011
11 01 0001 0100 1011 1111 100
1110 0001 0010 1011 0010 101
1111 0001 0001 1011 1011 110

adder (Table 9, where the two four-valued literals X , and
X , represent two binary values each (X, = (x,, x2),

The input variable assignment is not unique. Thus,
there exist many different assignments. In this example,
the mu literal X , is obtained by changing the first two
bits of the binary function (x,, x,) to a four-valued literal
(X y = GO, Xi = 01, X : = 10, X : = 11). The second two
bits are used to obtain X , .

To make it easier to follow the steps of the transform-
ation, the same polarity is assumed for both literals. The
polarity literals P: and the binary representations of their
values (T:) are given in Table 10.

x, = (x3 3 x4)).

Table 10: Polaritv for two-bit adder

Polarity for X , Polarity for X ,

p;.1111 P; 1111
P:: 0101 P: 0101
P: . 001 0 P: 001 0
P4 1100 P4.1100

Now the binary representations of the literals X , and
X , in Table 7 are replaced by their normalised codes
(algorithm 1). Because only four different values occur in
the literals X , and X , , the normalised codes for those
values are shown in Table 11, where P‘ = PI = P; . The

Table 11 : Normalised codes for four occurring values

Binary value Normalised code Cube representation
of literal of normalised code

0001 P ’ @ P ” P 4 1011
001 0 P3 001 0
01 00 P ‘ O P 2 0 P 3 O P 4 1111
1000 P ‘ @ P * @ P 3 1110

multiple valued literals X , and X , shown in Table 9 are
now substituted with the cube representations of their
normalised codes given in Table 1 1 ; the result is given in
Table 9.

The normalised code obtained in this procedure is
now compared with all the indices of the spectral coeffi-
cients of the general spectrum for a function G (X , , X2),

IEE PROCEEDINGS-E, Vol 139. N o . 6. N O V E M B E R 1992

Table 12: Spectrum for first three terms from table 9

Term M P ; P ~ MP;P: MP;P: MP;P: M p : p : Mp:p; M ~ v : Mp+;

1000 1000 1000 01 00 1000 001 0 1000 0001 01 00 1000 01 00 01 00 01 00 001 0 01 00 0001

11101111 001 001 00 1 001 001 001 00 1 001
01 0 11100010 ~ - 01 0

11101011 011 - 01 1 01 1 01 1 - 01 1 01 1
~ - - -

Result 010 001 000 01 0 01 0 001 01 0 000

Term MPW MP:?: M P V ~ M,:,; M p : p i M,+: M p t p z M p f p t

001 0 1000 001 0 01 00 001 0001 0 001 0 0001 0001 1000 0001 01 00 0001 001 0 0001 0001

- - - - 11101111 001 001 001 001
11100010 -
11101011 011 01 1 01 1

Result 010 001 000 01 0 000 000 000 000

~ - - - - 01 0 -
~ ~ ~ - ~

where X, and X, are four-valued literals (algorithm 2,
step 2). Table 12 illustrates the calculation of the spec-
trum for the first three terms from Table 9. The Table has
the output functions of the terms as entries if, for each
term, the intersection of the term and the index of the
coefficient is not empty (eqn. 3); otherwise the entry is
'-'. For instance, the cell for the intersection of row
11 10 101 1 and column 0100 IO00 is '01 1' as the intersec-
tion of those indices is 0100 lo00 where both literals are
not empty. The intersection of row 11100010 and column
0100 1000 is 0100oooO so '-' is placed in the correspond-
ing cell. The final coefficients for the partial function in
Table 12 are obtained by exoring the entries of the
columns. The result of this operation is given in the last
row.

The result of the complete function is shown in Table
13. The first column of Table 13 lists all nonzero spectral

Table 13: M I G R M of 2-bit adder

Spectral Index X , X , f , f , f ,
coefficient

1000 1 000
1000 01 00
1000 0001
01 00 1000
01 00 01 00
01 00001 0
01 000001
001 0 01 00
0001 1000
0001 01 00
0001 0001

1111 1111 100
1111 0101 101
1111 1100 110
0101 1111 101
0101 0101 010
0101 0010 100
0101 1100 100
0010 0101 100
1100 1111 110
1100 0101 100
1100 1100 100

coeffcients M , that occur in any of its component func-
tions. These coeffcients have been obtained by compar-
ing (as in Table 12) the normalised binary representations
of their indices (listed in the second column of Table 13)
with the normalised code obtained according to Tables
10 and 11. Finally, the binary representation for the liter-
als of variables X, and X, is obtained by replacing the
polarity literals of the indices of spectral coefficients from
the first row, by their binary representations (algorithm 2,
step 3). According to Table 10, the conversion is: lo00 to
1111, 0100 to 0101, 0010 to 0010, and ooO1 to 1100. The
output terms f, fo f, are the values of the spectral coeffi-
cients.

The implementation of the above result as an AND-
EXOR PLA with two-input, three-output decoders for
the chosen polarities is shown in Fig. 7.

IEE PROCEEDINGS-E, Vol . 139, N o . 6 . N O V E M B E R 1992

r o u t
decoder AND-plane

X 1

x 2

x 3

EXOR-plane fc

f 0
fl

Fig. 7
M I G R M form ofthe 2-bit udder

A N D - L X O R P L A implementation with input decoders of the

The input decoders are the same because the same
polarity has been chosen for both literals, the input
decoder for both variables XI , and X, is shown in Fig. 8.

~~~~~~~~~~~~~~~~ 

I 

i - _ - _ - _ - - - - - l  

Fig. 8 

5 Evaluation and results 

The calculation method presented for the computation of 
the MIGRM has been implemented in the program 
GRM-MV (generalised Reed-Muller synthesiser, multi- 
ple valued version). The numerical results have confirmed 
the validity of the MIGRM concept. However, the 
problem of finding a polarity with the minimal number of 
product terms without the computation of all possible 
forms still has to be solved. It is known, that for an n 
variable Boolean function, there are 2" GRM forms. For 
an n variable function where each variable is three- 
valued, there are 28" forms, and for each variable being 
four-valued there are 840" forms. Therefore, the computa- 
tion of the form having the minimal number of product 
terms by going through all forms is very complex. More- 
over, the pairing of the Boolean variables to obtain the 

525 

Input  decoder for cariuhles X, and X, 



multiple valued form also has an impact on the number 
of necessary product terms in the MIGRM. 

For the evaluation of the MIGRM in comparison to 
the GRM, the number of polarities for a four-valued vari- 
able has been restricted to 60 randomly selected pol- 
arities. Therefore, the total number of polarities 
considered was 60”. Table 14 gives the results obtained 
for some MCNC benchmark functions. 

Table 14: Benchmark r e su l t s  for MIGRM 

ESPRESSO G R M  ESPRESSO MIGRM 
2-bit decoder 2-bit decoder 

~ ~ 

adr2 11 8 9  5 
ad14 7 5  3 4  66 34  
bw 2 2  2 2  23 22 
con1 9 1 7  9 17  
inc 30 47 2 8  40  
id53 31 2 0  1 2  1 5  
id73 127  63 37  40  
rd04 255 107  54  54  
squar5 2 5  2 3  26 25  
xor5 1 6  5 4  4 
5xpl 65 61 55  6 4  

The column ESPRESSO lists the number of product 
terms obtained by the two-level SOP optimizer ESPRES- 
SO [13]. The following column gives the minimal 
number of product terms in the respective GRM form. 
For the computation of the MIGRM and MIESOP 
based on four-valued variables, pairs of Boolean vari- 
ables have been taken to obtain a four-valued one. The 
results obtained are given in the last columns of Table 14. 

One can observe from the obtained results that the 
MIGRM gives a reduction of up to 50% in the number 
of product terms over the GRM. Moreover, the number 
of product terms of the GRM is the absolute minimum 
while only a local minimum is obtained for the MIGRM. 
This is due to the restriction of the number of polarities 
per variable to 60 instead of 840. 

The results obtained give motivation to further investi- 
gate in MIGRM forms. However, methods to avoid the 
computation of all possible polarities similar to the ones 
introduced for GRMs [5, 251 have to be developed to 
overcome the high computational complexity of 
MIGRM forms. Additionally, it has to be investigated 
which multiple valued decoders are practical for circuit 
realisations. Then, the search for the minimal MIGRM 
form can be restricted to the one which is optimal with 
respect to a certain set of multiple valued decoders. 

6 Conclusions 

The extension of the general Reed-Muller expansion to 
multiple valued input, binary multioutput functions has 
been shown. For this, the concept of code normalisation 
of single multiple valued literals to perform a final trans- 
formation has been developed. The code normalisation is 
applied to make the transformation of the complete func- 
tion independent of the polarity chosen. This simplifies 
and speeds up the main transformation step to the final 
MIGRM form for the transformed single mu literal. For 
further investigations of the properties of such forms, the 
MIGRM transformation has been implemented as a 
computer algorithm. Because an exhaustive search of all 
nl=o P(X,)  MIGRM forms, where P ( X J  is the number of 
possible polarities for variable Xi with i = 1, . . . , n, would 
be too time consuming, further research has to be con- 
centrated on avoiding a complete search and to finding 

526 

immediately good polarities as has been carried out for 
GRM forms [5, 251. 

As circuits which realise the MIGRM forms are both 
easily testable, o r  modifiable to very easily testable cir- 
cuits, further research into them is important. It must 
however, be experimentally found with practical logic 
benchmarks how much of a circuit cost penalty we pay 
with respect to the corresponding MIESOPs. The role of 
input variable pairing [15] must also be investigated, as a 
good pairing together with a good choice of variable pol- 
arities may significantly improve the cost. 

ir 

7 References 

1 AKERS, S.B.: ‘On a theory of Boolean functions’, SIAM J., 1959, I, 

2 GREEN, D.H.: ‘Modern logic design’ (Electronic Systems Engineer- 
ing Series, 1986) 

3 DAVIO, M., DESCHAMPS, J.P.. and THAYSE, A.: ‘Discrete and 
switching functions’ (McGraw-Hill, 1978) 

4 GREEN, D.H.: ‘Families of Reed-Muller canonical forms’, Int. J. 
Electron’, 1991,63, (2), pp. 259-280 

5 SARABI, A., and PERKOWSKI, M.A.: ‘Fast exact and quasi- 
minimal minimization of highly testable fixed-polarity A N D p O R  
canonical networks’. Proceedings of the 29th Design Automation 

pp. 487-498 

Conference, Anaheim, CA, June i992, pp. 30-35 
6 BHATTACHARYA, B.B., GUPTA, B., SARKAR, S., and 

CHOUDHURY. A.K.’ ‘Testable design of RMC networks with uni- 
versal tests for detecting stuck-at and bridging faults’, IEE Proc. E, 
Comput. Digif. Tech., 1985, 132, (3). pp. 155-161 

7 DAMARLA, T., and KARPOWSKY, M.: ‘Detection of stuck-at 
and bridging faults in Reed-Muller canonical (RMC) networks’, 
IEE Proc. E, Comput. Digit. Tech., 1989, 136, (3, pp. 430-433 

8 KODANDAPANI, K.L.: ’A note on easily testable realizations for 
logic functions’. IEEE Trans. Comput., 1974, pp. 332-333 

9 PRADHAN, D.K.: ‘Universal test sets for multiple fault detection in 
AND-EXOR arrays’, IEEE Trans. Compur., 1978, 21, (2), pp. 181- 
187 

10 REDDY, S.M.: ‘Easily testable realizations for logic functions’, 
IEEE Trans. Comput., 1972,21,(11), pp. 1182-1188 

11 SALUJA. K.K.. and REDDY, S.M.. ‘Fault detecting test sets for 
Reed-Muller canonic networks’, IEEE Trans. Comput., 1975, 24, 

12 REDDY, B.R.K., and PAI, A.L.: ‘Reed-Muller transform image 
coding’, Comput Vis . ,  Graph. Image Process.. 1988,42, pp. 48-61 

13 RUDELL, R , and SANGIOVANNI-VINCENTELLI, A.: 
‘Multiple-valued minimization for PLA optimization’, IEEE Trans. 
Camput.-Aided Des. Integrated Circuits and Syst., 1987, 6, (5) ,  
pp, 727-750 

14 SASAO, T.: ‘On the optimal design of multiple-valued PLAs’, IEEE 
Trans. Compur., 1 9 8 9 , s .  (4), pp. 582-592 

15 SASAO, T.: ‘Multiple-valued decomposition of generalized Boolean 
functions and the complexity of programmable logic arrays’, IEEE 
Trans. Compur.. 1981, 30, (9). pp. 636-643 

16 BRAYTON, R.K., RUDELL, R., SANGIOVANNI- 
VINCENTELLI, A., and WANG, A.R.: ‘MIS: multi-level inter- 
active logic optimization system’, IEEE Trans., Camput.-Aided Des. 
Integrated Circuits and Syst , 1989,6, (6), pp. 1062-1082 

17 SASAO, T.: ‘MACDAS’ multi-level AND-OR circuit synthesis 
using two-variable function generators’, Proceedings of the 23rd 
Design Automation Conference, June 1986. pp. 86-93 

18 PERKOWSKI. M.A., HELLIWELL, M., and WU, P.: ‘Mini- 
mization of multiple-valued input multi-output mixed-radix exclu- 
sive sums of products for incompletely specified Boolean functions’, 
19th Int. Symp. on Multiple-valued Logic, May 1989, pp. 256-263 

19 SCHAFER, I., and PERKOWSKI, M.A.: ‘Multiple valued gener- 
alized Reed-Muller forms’, 21st Int. Symp. on Multiple-Valued 
Logic, May 1991, pp. 40-48 

20 SASAO, T.: ‘EXMIN: a simplification algorithm for exclusive-OR- 
sum-of-products expressions for multiple-valued input two-valued 
output functions’, 20th Int. Symp. on Multiple-Valued Logic, May 
1990, pp. 128-135 

21 HU, Z.: ’The simple methods for evaluating the coeficients of the 
canonical RM expansion of multivalued functions’, Int. J. Electron., 
1987, 63, (6), pp. 851-856 

22 KODANDAPANI, K.L.. and SETLUR, R.V.: ‘Reed-Muller canon- 
ical forms in multivalued Iog~c’, IEEE Trans. Compuf., 1975, 
pp. 628-636 

23 FALKOWSKI, B.J., and PERKOWSKI, M.A.: ‘Walsh type trans- 
forms for completely and incompletely specified multiple-valued 

IEE PROCEEDINGS-E,  Val .  139, No .  6, N O V E M B E R  1992 

(10). pp. 995-998 



input binary functions’, 20th Int. Symp. on Multiple-Valued Log~c. cube representation of Boolean functions’. IEEE 33rd Midwest 
May 1990, pp. 75-82 

25 ALMAINI, A.E.A.: ‘Tabular techniques for Reed-Muller logic’, I n t .  
of generalized Reed-Muller canonical expansions from Disjoint J. Electron.. 1991, 70, ( l ) ,  pp. 23-34 

Symp. on Circuits & Systems, August 1990, pp. 1131-1133 
24 FALKOWSKI, B.J., and PERKOWSKI, M.A.: ‘On the calculation 

IEE PROCEEDINGS-E, Vol. 139, N o .  6 ,  N O V E M B E R  I992 521 


