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ABSTRACT 
We propose a new BDD-based method for decomposition of 
multi-output incompletely specified logic functions into netlists of 
two-input logic gates. The algorithm uses the internal don’t-cares 
during the decomposition to produce compact well-balanced 
netlists with short delay. The resulting netlists are provably non-
redundant and facilitate test pattern generation. Experimental 
results over MCNC benchmarks show that our approach 
outperforms SIS and other BDD-based decomposition methods in 
terms of area and delay of the resulting circuits with comparable 
CPU time.  

1. INTRODUCTION 
Decomposition of Boolean functions consists in breaking large 
logic blocks into smaller ones while keeping the network 
functionality unchanged. Decomposition plays an important role 
in logic synthesis. Research in this area started in the 1950s [1,2]. 
Recently, there has been a revival of interest in disjoint 
decomposition (called also disjunctive decomposition) [3,4,5]. 
Decomposition methods are classified as follows: 

1) Each block of the resulting network has a single binary 
output, or may have multiple binary outputs (Ashenhurst and 
Curtis decomposition, respectively).  

2) Supports of the blocks may overlap, or never overlap 
(disjoint decomposition). 

3) Each block has two or less inputs (bi-decomposition), or the 
number of inputs may be larger than two. 

4) Decomposition is performed as technology mapping for 
FPGAs, as a technology-independent transformation of logic 
circuits, or as a specialized mapping technique. 

5) The decomposed structure is derived by splitting the larger 
blocks into the smaller ones, or the decomposition structure 
is assembled by iteratively adding small components until the 
network is equivalent to the initial specification.  

6) BDDs are used in the decomposition algorithm, or not. 
If yes, BDDs are used to represent functions and store 
intermediate results, or BDDs are used as the essential data 
structure directing the decomposition process. 

7) Decomposition shares blocks across outputs (logic cones) or 
decomposes each output (logic cones) independently. 

8) The algorithm allows for don’t-cares or not.  
This classification can be extended using other criteria such as 
methods for variable partitioning, methods for deriving the 
decomposed functions, cost functions used to evaluate the results 
of decomposition, etc. In terms of the above classification, the 
algorithm proposed in this paper is characterized as follows: 

1) Each decomposed block has a single binary output. 
2) Blocks may have overlapping supports. 
3) Each resulting block has two or less inputs. 
4) It is a technology-independent decomposition. 
5) Larger components are split into smaller ones. 
6) BDDs are used to store functions. 
7) Blocks are shared across outputs and internal logic cones. 
8) Incompletely specified functions are allowed; the more 

don’t-cares, the more efficient is the algorithm. 

According to the above classification, the closest matches to our 
algorithm are its previous versions [6,7,8,9] and the recent 
approach [10,11]. As evidenced by our experiments, the present 
version of the algorithm outperforms its previous versions and 
compares favorably to [10,11]. A more detailed analysis of the 
differences of these approaches is given in Section 8 of the paper.  

The paper is organized as follows: Section 2 introduces the 
notations and the decomposition models. Section 3 gives 
necessary and sufficient conditions for AND-, OR-, and EXOR-
bi-decomposition. Section 4 gives the formulas for deriving the 
decomposed functions. Section 5 presents the variable grouping 
strategy. Section 6 presents hashing techniques. Section 7 
discusses the decomposition algorithm. Section 8 presents 
experimental results. Section 9 summarizes the paper. 

2. PRELIMINARIES 
Let f: Bn → B, B∈ {0,1}, be a completely specified Boolean 
function (CSF). The variable set X, on which f depends, in called 
support of f. Support size is denoted |X|. Let F: Bn → {0,1,-} be 
an incompletely specified Boolean function (ISF) given by its on-
set (Q) and off-set (R). It is easy to convert the on-set/off-set 

 

 



representation of an ISF into the interval specifying the set of 
permissible CSFs: (Q, R ). A CSF f is compatible with the ISF 
F = (Q, R ), iff Q ≤ f ≤ R .  

This paper discusses bi-decomposition [12] (also known as 
grouping [6]), or decomposition of ISFs into netlists of two-input 
logic gates. One-step bi-decomposition is schematically 
represented in Fig. 1. Block C is an AND, OR, or EXOR gate, 
while components A and B are arbitrary ISFs. The support X of 
the initial function is divided into three parts: variables XA that 
feed only into block A, variables XB that feed only into block B, 
and the common variables XC. By definition, sets XA, XB, and XC 
are disjoint. If XA or XB is empty, the resulting bi-decomposition 
is called weak. Otherwise it is a strong (or non-weak) 
bi-decomposition. In this paper, we consider both types of bi-
decomposition and use the term “bi-decomposition” to denote 
strong bi-decomposition. 

 
 
 
 
 
 

Figure 1. Schematic representation of the two types of 
bi-decompositoin: strong (left) and weak (right). 

Notice that before decomposition function F(X) in Fig. 1 (right) 
has five inputs. The weak bi-decomposition creates five-input 
component A and three-input component B. The advantage of this 
decomposition consists in increasing the number of don’t-cares of 
component A. As a result, the function of block A previously non-
bi-decomposable in the strong sense, after the weak bi-
decomposition may have a strong bi-decomposition. 

∃∃∃∃ abF F( a,b,c,d )  ∀∀∀∀ abF 
 cd   cd\ab 00 01 11 10  Cd   
 00 1  00 1 0 1 0  00 0  
 01 1 OR 01 0 0 1 1 AND 01 0  
 11 0 ⇐  11 0 0 0 0 ⇒ 11 0  
 10 1  10 1 1 1 1  10 1  

Figure 2. Karnaugh map illustration of quantifications. 
In this paper, all Boolean functions and their supports are 
represented using binary decision diagrams (BDDs) [13]. It is 
assumed that the reader is familiar with basic principles of BDDs. 
Two BDD operators, existential and universal quantification, are 
used extensively in the formulas. Quantification of a CSF w.r.t. a 
variable x is defined as follows: ∃∃∃∃ xf = f0 + f1 (existential) and 
∀∀∀∀ xf = f0 & f1, (universal). Symbols “+” and “&” stand for Boolean 
OR and AND, while f0 and f1 are the cofactors of f: f0= f|x=0, 
f1 = f|x=1 [13]. Quantification over a set of variables is defined as 
an iterative quantification over each variable in the set. 

For illustration, if a CSF is represented by its Karnaugh map 
(Fig.2), existential (universal) quantification w.r.t. the column-
encoding variables is a function, whose Karnaugh map is the sum 
(product) of columns.  

3. CHECKING BI-DECOMPOSABILITY 
3.1 Bi-decomposition with an OR-gate 
Consider the four-input CSF in Fig. 3 (left). This function is bi-
decomposable using OR-gate with XA = {c,d} and XB = {a,b}. 
The result of bi-decomposition is: 

F = OR( a⊕ b, dc ) 
 cd\ab 00 01 11 10  cd\ab 00 01 11 10  
 00 0 1 0 1  00 - 1 0 1  
 01 0 1 0 1  01 0 1 - -  
 11 0 1 0 1  11 0 - 0 1  
 10 1 1 1 1  10 1 - 1 1  

Figure 3. Examples of OR bi-decomposition. 
From the Karnaugh map in Fig. 3 (left) it follows that, for the 
function to be OR-bi-decomposable, it should have all 1’s 
grouped in a subset of columns and a subset of rows in such a way 
that none of these columns and rows contain 0’s. The requirement 
does not change for functions with don’t-cares, as witnessed by an 
ISF in Fig. 3 (right), which is OR-bi-decomposable using the 
same formula.  

Property: F(X) is OR-bi-decomposable with variable sets 
(XA,XB,XC), XC = ∅ , iff in the Karnaugh map there is no cell 
containing 1 such that 0’s appear in both the row and the column 
to which this cell belongs. 

If XC is not empty, 2|Xc| Karnaugh maps corresponding to different 
assignments of variables XC are considered, but the condition of 
bi-decomposability remains essentially the same: if Property holds 
for all cells of all the Karnaugh maps, the function is OR-bi-
decomposable.  Therefore in the theorems below, there is no 
restriction on XC, meaning that it can be either empty or non-
empty. We refer the reader to [6,7] for a detailed discussion. 

Bi-decomposability of ISFs can be checked by applying the 
existential quantification to Q and R, representing the on-set and 
the off-set, because the existential quantification over variables 
representing columns (rows) consists in adding up all the 1’s 
contained in the rows (columns).  

Theorem 1: F(X) = { Q(X), R(X) } is OR-bi- decomposable with 
variable sets (XA, XB) iff 

Q & ∃∃∃∃ xAR & ∃∃∃∃ xBR = 0. 

Due to the duality of AND and OR operations, the formula for 
checking AND-bi-decomposition can be derived by replacing on-
set (Q) by off-set (R) in the above formula. For this reason, the 
rest of the paper considers only OR and EXOR bi-decomposition. 

Formulas for checking OR-bi-decomposability of strong and weak 
types are summarized in Table 1. 

3.2 Bi-decomposition with an EXOR-gate 
Because checking for EXOR-bi-decomposition is rather 
complicated, the following theorem is formulated for a simpler 
case of XA and XB including 1 and n variables respectively.  

Theorem 2: F(X) = { Q(X), R(X) } is EXOR-bi-decomposable 
with variable sets (XA, XB), such that |XA| = 1 and |XB| = n, iff 

QD & ∃∃∃∃ xBRD = 0, 
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where QD and RD are the on-set and off-set of the derivation of F 
w.r.t. the variable in XA: 

QD = ∃∃∃∃ xAQ & ∃∃∃∃ xAR,    RD = ∀∀∀∀ xAQ + ∀∀∀∀ xAR. 

Checking EXOR-bi-decomposibility with arbitrary non-
overlapping sets XA and XB is performed by a specialized 
algorithm (Fig. 4). Procedure CheckExorBiDecomp() takes four 
arguments. The first two are the on-set (Q) and the off-set (R) of 
an ISF. The next two are variable sets XA and XB. If an 
EXOR-bi-decomposition exists, the procedure returns the on-sets 
and off-sets of ISFs implementing components A and B, 
otherwise it returns zero BDDs.  

procedure CheckExorBiDecomp( bdd Q, bdd R, bdd XA, bdd XB) 
{  bdd QA = 0, RA = 0, QB = 0, RB = 0; 
   bdd qA = 0, rA = 0, qB = 0, rB = 0; 
   while ( Q != 0 )   { 
        bdd Cube = SelectOneCube( Q );  qA = qA + ∃∃∃∃ BCube; 
        while ( qA + rA != 0 )    { 
       qB = ∃∃∃∃ xA ( Q & rA  + R & qA );  rB  = ∃∃∃∃ xA ( Q & qA  + R & rA ); 
       if ( qB & rB != 0 )  return (0, 0, 0, 0); 
       Q  = Q - ( qA + rA );  R  = R - ( qA + rA ); 
       QA = QA + qA;          RA = RA + rA; 
       qA = ∃∃∃∃ xB ( Q & rB  + R & qB ); rA  = ∃∃∃∃ xB ( Q & qB  + R & rB ); 
       if ( qA & rA != 0 )   return (0, 0, 0, 0); 
       Q  = Q - ( qB + rB );  R  = R - ( qB + rB ); 
       QB = QB + qB;          RB = RB + rB; 
    }  } 
     if ( R != 0 ) {  RA = RA + ∃∃∃∃ xB R;  RB = RB + ∃∃∃∃ xA R;  } 
     return (QA, RA, QB, RB);  
} 

Figure 4. Algorithm for checking the existence of 
EXOR-bi-decomposition with arbitrary sets XA and XB. 

Internally called procedure SelectOneCube() returns a randomly 
selected cube. The Boolean function of the cube is quantified and 
projected in the directions of XA and XB to find one part of the 
EXOR-decomposable component, which is next added to the on-
sets and off-set of the components A and B and subtracted from 
the initial on-set and off-set. If the on-set and off-set of 
components A and B are incompatible, CheckExorBiDecomp() 
returns zeros, otherwise the process is repeated as long as the 
given on-set is not empty. If at the end the off-set contains some 
minterms, they are added to off-sets of components A and B. For 
a detailed discussion of this algorithm, see [9]. 

4. DERIVING DECOMPOSED FUNCTIONS 
This section presents formulas for deriving ISFs implementing 
components A and B (see Fig. 1). The case of an EXOR-bi-
decomposition has been addressed in the previous section, 
because the decomposed functions in EXOR-bi-decomposition 
are derived as a result of the bi-decomposability check. 

Theorem 3: Let F(X) = { Q(X), R(X) } be OR-bi-decomposable 
with variable sets (XA, XB). The ISF FA = { QA(X), RA(X) } of the 
component A is: 

QA = ∃∃∃∃ xB(Q& ∃∃∃∃ xAR), RA = ∃∃∃∃ xBR. 
Theorem 4: Let F(X) = { Q(X), R(X) } be OR-bi-decomposable 
with variable sets (XA, XB) and a CSF fA belonging to the ISF FA 
is selected to represent component A. The ISF { QB(X), RB(X) } 
representing component B is: 

QB = ∃∃∃∃ xA(Q – fA), RB = ∃∃∃∃ xAR. 

Formulas to derive ISFs representing components A and B are 
summarized in Table 1. Note that removing the existential 
quantifier w.r.t. XB in the formulas for component A in the case of 
strong OR-decomposition leads to the corresponding formulas for 
weak OR-decomposition, because in the case of weak 
decomposition the variable set XB is empty. Symbol “–“ stands 
for Boolean SHARP (A-B  = A & B ). 

Table 1. Checking OR-bi-decomposability and deriving ISFs 
for components A and B. 

Type Checking Deriving A Deriving B 
OR Q&(∃∃∃∃ xBR)&(∃∃∃∃ xAR) = 0 QA = ∃∃∃∃ xB(Q&∃∃∃∃ xAR)

RA = ∃∃∃∃ xBR 
QB = ∃∃∃∃ xA(Q – fA)

RB = ∃∃∃∃ xAR 
Weak 
OR 

Q – ∃∃∃∃ xAR ≠ 0 QA = Q & ∃∃∃∃ xAR 
RA = R 

QB = ∃∃∃∃ xA(Q – fA)
RB= ∃∃∃∃ xAR 

5. VARIABLE GROUPING 
An important task during the bi-decomposition is finding variable 
sets XA and XB, for which the given type of bi-decomposition is 
feasible. This task is solved in two steps. First, XA and XB are 
initialized with a single variable. Next, attempts are made to add 
new variables to the sets while preserving the set sizes as close to 
being equal as possible.  

procedure FindInitialGrouping( bdd Q, bdd R, bdd S ) 
{    for all x ∈  S   { 
     XA = {x}; 
     for all y ∈  S – {x}   { 
        XB = {y}; 
        if ( CheckDecomposability( Q, R, XA, XB ) ) 
             return ( XA, XB ); 
     }  } 
     return (∅∅∅∅ , ∅∅∅∅ ); 
} 

Figure 5. Algorithm to find the initial sets XA and XB. 

Consider procedure FindInitialGrouping() implementing the first 
step of variable grouping (Fig. 5). It takes three arguments: the 
on-set Q, the off-set R, and the support S of an ISF. It returns two 
singleton sets, XA and XB, if the function is strongly bi-
decomposable with them, or two empty sets, if the function is not 
bi-decomposable in the strong sense with any variable grouping. 
The procedure CheckDecomposability() performs an OR-, AND-, 
or EXOR-bi-decomposability check, as discussed in Section 3, 
depending on what initial grouping is sought. 

Procedure GroupVariables() (Fig. 6) implements the second step. 
The arguments and the return values are the same as in procedure 
FindInitialGrouping(). Having found a non-empty initial 
grouping, the procedure considers the remaining variables one by 
one and tries to add them to XA and XB. Depending on sizes of XA 
and XB, it tries to add the new variable to the smaller set first. The 
rationale is to keep the variable set sizes close. 

Notice that the above greedy way of building XA and XB does not 
guarantee that they are the largest possible (meaning that the 
support sizes of components A and B are minimum). In practice, 
however, it gives a reasonably good trade-off between the size and 
the quality of the resulting variable sets and the computation time 
needed to evaluate the quantified formulas on each step of 
variable grouping. We tried a number of ways to increase the sizes 
of XA and XB. For example, by excluding one variable at a time 



while trying to add others, and accepting the change only if 
excluding one variable led to the addition of two or more. This 
strategy reduced the netlist area by less than 3% on average but 
the CPU time increased by 100%.  

procedure GroupVariables( bdd Q, bdd R, bdd S ) 
{  ( XA, XB ) = FindInitialGrouping( Q, R, S ); 
    if ( (XA, XB) == (∅∅∅∅ , ∅∅∅∅ ) )  return (∅∅∅∅ , ∅∅∅∅ ); 
    for all z ∈  S – (XA ∪  XB) 
         if ( |XA| ≤ |XB| ) 
   // try adding the new variable z first to XA, next to XB 
   if ( CheckDecomposability( Q, R, XA ∪  {z}, XB ) ) 
    XA = XA ∪  {z}; 
   else if ( CheckDecomposability( Q, R, XA, XB ∪  {z} ) ) 
    XB = XB ∪  {z}; 
         else … // similarly if ( |XA| > |XB| ) 
    return ( XA, XB ); 
} 

Figure 6. Procedure to find the variable grouping. 
The above algorithm for variable grouping has another important 
consequence related to the testability of the netlist resulting from 
the bi-decomposition. Here we only formulate this result and refer 
the reader to [8] for details. 

Theorem 5: If function F(X) = { Q(X), R(X) } is OR-, AND-, 
or EXOR-bi-decomposable with variable sets (XA, XB), that 
has been selected using the algorithm in Fig. 6, and the 
ISFs were derived using the formulas of Theorems 3 and 4, 
then the resulting netlist does not have redundant internal 
signals, i.e. it is completely testable for all stuck-at-0 and 
stuck-at-1 faults assuming the single stuck-at fault model. 

6. REUSING DECOMPOSED BLOCKS 
The functions considered as input to the decomposition algorithm 
are incompletely specified (the on-set/off-set pairs) while the 
decomposed functions are completely specified. To enable 
efficient reuse of components across the netlist we developed an 
original caching technique, which allows checking that among the 
set of CSFs there exists a function F such that F (or it 
complement) belongs to the interval (Q, R ).  

Theorem 6: Let an ISF F be given by on-set Q and off-set R. A 
CSF f is compatible with an ISF F iff  

Q & f = 0  and R & f = 0. 
The complement of f belongs to the ISF F iff 

R & f = 0  and Q & f = 0. 

Checking many functions for compatibility with the given ISF can 
be performed efficiently if the completely specified functions are 
sorted by support. This can be done by introducing a lossless hash 
table that hashes supports (represented as BDDs) into pointer to 
linked lists of CSFs (also represented as BDDs). In this case, 
checking reduces to getting the pointer to the linked list of all 
functions with the given support and walking through the list to 
determine whether one of them (or its complement) belongs to the 
given interval. 

This technique turned out to be efficient in practice by achieving 
up to 30% component reuse. The gain in area and CPU time is 
even more substantial, especially when a gate is reused on an 
early stage of the decomposition process, because in this case 
there is no need to generate the fanin cone of the given gate. 

7. BI-DECOMPOSITION ALGORITHM 
This section presents the upper-level procedure performing one 
step of recursive bi-decomposition (Fig. 7). 

procedure BiDecompose( bdd Qi, bdd Ri ) 
{  bdd Q, R, S, FA, FB, F; 
   ( Q, R ) = RemoveInessentialVariables( Qi, Ri ); 
   S = Find_Support( Q, R ); 
   if ( LookupCacheForACompatibleComponent( Q, R, S ) ) { 
      F = GetCompatibleComponent( Q, R, S );  return F; } 
   if ( |S| ≤ 2 ) { 
      (FA, FB, gate) = FindGate( Q, R ); 
       F = AddGateToDecompositionTree( FA, FB, gate ); 
       AddFunctionToCache( F ); 
       return F; } 
   bdd XA

OR, XB
OR, XA

AND, XB
AND, XA

EXOR, XB
EXOR, XA

BEST, XB
BEST;  

   ( XA
OR, XB

OR ) = GroupVariablesOR( Q, R, S ); 
   ( XA

AND, XB
AND ) = GroupVariablesAND( Q, R, S ); 

   ( XA
EXOR, XB

EXOR ) = GroupVariablesEXOR( Q, R, S ); 
   ( XA

BEST, XB
BEST, gate ) = FindBestVariableGrouping(    

   (XA
OR, XB

OR), (XA
AND, XB

AND), (XA
EXOR, XB

EXOR)  ); 
   if ( (XA

BEST, XB
BEST) == ( ∅∅∅∅ , ∅∅∅∅  ) ) 

        (XA
BEST, XB

BEST, gate) = GroupVariablesWeak( Q, R, S ); 
   (QA,RA) = DeriveComponentA( Q,R, XA

BEST, XB
BEST , gate); 

   FA = BiDecompose( QA,RA ); 
   (QB,RB)=DeriveComponentB(Q,R,FA,XA

BEST,XB
BEST, gate); 

   FB = BiDecompose( QB,RB ); 
   F = AddGateToDecompositionTree( FA, FB, gate ); 
   AddFunctionToCache( F ); 
   return F;  
} 

Figure 7. The pseudo-code of bi-decomposition algorithm. 

The arguments, Qi and Ri, are the initial on-set and off-set of the 
ISF to be decomposed. The return value is a CSF in the range (Qi, 

iR ) representing the resulting network of gates. At the beginning 
the support of the ISF is minimized by a simple greedy algorithm 
and a new ISF (Q, R ) is created. In practice, support 
minimization occurs in less than 1% of recursive calls for typical 
MCNC benchmarks. Next, a cache look up is performed. If it is 
successful, it means that the CSF in the given interval has already 
been implemented and can be returned right away. If it is the 
terminal case, an appropriate two-input gate is added to the 
decomposition tree and to the cache before returning the gate’s 
CSF. Otherwise, the procedure calls three functions 
GroupVariables() to find sets XA and XB leading to a strong bi-
decomposition with OR, AND, and EXOR gates. 

Procedure FindBestVariableGrouping() considers the variable sets 
and determines the best one taking into account that XA and XB 
should be well-balanced. If variable grouping with non-empty 
variable sets XA and XB is not available (this happens in 20-30% 
of recursive calls for typical MCNC benchmarks), procedure 
GroupVariablesWeak() finds the best variable grouping to 
perform weak AND/OR-bi-decomposition, which always exists. 

Given the variable sets and the type of decomposition, the on-set 
and off-set QA and RA of the ISF of component A are derived 
using the formulas of Section 4. Calling BiDecompose() 
recursively for component A returns the CSF fA representing this 
component by a netlist of gates. The CSF fA together with XA and 
XB are used to compute the ISF of the component B. Procedure 
BiDecompose() is again called recursively for component B. The 
CSF f of the netlist implementing the initial ISF is found using 



CSFs fA and fB and the decomposition gate. Finally, the CSF f is 
inserted into the cache and returned. 

8. EXPERIMENTAL RESULTS 
The algorithm has been implemented in the program 
BI-DECOMP written in platform-independent C++ using the 
BDD package CUDD [14]. The program has been tested on a 
300Mhz Pentium II PC with 64Mb RAM under Microsoft 
Windows 98. The correctness of the resulting networks has been 
checked using a BDD-based verifier. 

To demonstrate the optimization potential of bi-decomposition for 
both delay and area, we carried out two series of experiments. In 
the first one (Table 2), the bi-decomposition of MCNC 
benchmarks into two-input NAND/NOR/EXOR/NEXOR gates 
performed by BI-DECOMP is compared with similar results 
produced by SIS[15]. For SIS, the benchmarks have been 
preprocessed using script.rugged (with and without speed_up) 
followed by a delay-oriented mapping into a subset of 
mcnc.genlib containing the above listed two-input logic gates.  

Columns “gates” (“exors”) and “levels” give the number of 
(EXORs) gates and logic levels. Columns “area1” and “delay1” 
show results after running script.rugged and mapping. Columns 
“area2” and “delay2” show results if script.rugged is followed by 
speed_up. SIS used at the most one or two EXOR gates per 
circuit. Column “time” gives the CPU time in seconds needed for 
BI-DECOMP to perform the decomposition and write the 
resulting BLIF file. The runtime for SIS was dominated by 
script.rugged and was one minute on average.  

From Table 1 we see that BI-DECOMP produces larger area 
compared to SIS. This is because BI-DECOMP builds BDDs for 
the primary outputs and applies the bi-decomposition algorithm to 
them without any pre- or post-processing. However, the delay of 
the networks produced by BI-DECOMP is better because of the 
way the algorithm derives supports of the components resulting in 
a well-balanced bi-decomposition. 

The second series of experiments (Table 3) shows that BI-
DECOMP produces good results in terms of area for EXOR-
intensive circuits. BI-DECOMP is compared with SIS[15] 
(script.rugged followed by area-oriented mapping into 
mcnc.genlib) and BDS, a BDD-based logic synthesis system [10]. 
(The results for SIS and BDS are taken from [11].) The number of 
gates after decomposition is shown in column “gates”. BDS 
outputs a netlist of 2/3/4-input (N)ANDs and (N)ORs, and 2-input 
(N)EXORs. To make a fair comparison, we translated the two-
input-gate output of BI-DECOMP into a set of gates comparable 
to the output of BDS. (This is why the gate count of BI-DECOMP 
for 9sym in Table 3 differs from that of Table 2). The column 
“area” shows the results of script.rugged followed by area-
oriented mapping into mcnc.genlib. 

One of the reasons why BI-DECOMP outperforms BDS in terms 
of gates on some test cases in that BDS does not make the most of 
the strong bi-decomposability of Boolean functions. The BDS 
algorithm does not guarantee that weak bi-decomposition is 
applied only when there is no strong bi-decomposition. 
Meanwhile, it is the strong bi-decomposition, with both XA and 
XB not empty (Fig. 1), that leads to the fast reduction in the 
component size (smaller area) and creation of well-balanced 
netlists (shorter delay). Another difference between BDS and BI-

DECOMP is in the use of don’t-cares. BDS uses them locally, to 
optimize the size of the BDD representation of one component. 
BI-DECOMP uses don’t-cares locally and passes don’t-cares 
(both external and locally generated) to the next decomposition 
steps by allowing the generic bi-decomposition procedure to work 
on incompletely specified functions. 

9. CONCLUSIONS 
We presented a new approach to decomposition of incompletely 
specified multi-output functions into netlists of two-input 
AND/OR/EXOR gates. The decomposition is based on Boolean 
formulas with quantifiers that can be evaluated using a standard 
BDD package. Our algorithm can be characterized as follows: 

•  The generated netlists are compact because it uses the EXOR 
gates for EXOR-intensive circuits, exploits external and 
internal don’t-cares, and achieves significant degree of 
component reuse by applying an original caching technique. 

•  The netlists are well-balanced, which significantly reduces 
the delay of the resulting circuit. 

•  The resulting netlists are 100% testable for single stuck-at 
faults [8]. Test pattern generation can be integrated into the 
decomposition algorithm with little if any increase in the 
complexity and runtime.  

The future work includes extending the algorithm to work with 
arbitrary standard cell libraries, integration of ATPG into the 
process of decomposition, and generalization of the algorithm for 
multi-valued logic with potential applications in datamining [16]. 
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Table 2. Comparison of delay-oriented decomposition results with SIS. 

SIS 
Benchmark 

script.rugged + mapping + speed_up 
BI-DECOMP 

name ins outs gates levels area1 delay1 area2 delay2 Gates exors levels area delay time,c 
9sym 9 1 235 18 487 30.0 486 28.5 83 26 11 226 17.1 0.39 

alu4.pla 14 8 211 26 430 37.4 490 27.8 279 31 12 619 20.4 4.07 
cps 24 109 1188 21 2428 54.5 2629 40.5 1733 130 13 3679 22.8 8.20 

duke2 22 29 467 27 961 53.4 1280 39.0 684 70 12 1503 20.0 4.83 
e64 65 65 253 125 506 169.0 798 32.3 1558 0 7 2999 11.2 3.46 

misex3 14 14 717 30 1467 51.0 1528 42.2 1017 166 15 2414 27.8 6.87 
pdc 16 40 415 20 861 31.0 955 29.8 328 30 8 712 14.5 1.48 
spla 16 46 658 21 1350 31.2 1369 29.9 786 67 14 1691 23.3 2.36 
vg2 25 8 107 14 214 20.4 234 13.3 259 39 11 601 18.3 7.91 

Average   472 33.5 967 53.1 1085 31.4 747 62 11.4 1605 19.5 4.40 
Ratio   100% 100% 89% 169% 100% 100% 158% 8% 34% 148% 62%  

 

Table 3. Comparison of area-oriented decomposition results for EXOR-intensive circuits with SIS  and BDS. 

Benchmark SIS BDS BI-DECOMP 
name ins outs gates area gates exors area time, c gates exors area time, c 
5xp1 7 10 81 195 67 16 172 0.4 62 21 160 0.27 
9sym 9 1 152 396 42 4 109 1.0 50 27 155 0.33 
alu2 10 6 217 524 230 53 632 2.8 198 61 519 1.60 

alu4.blif 14 8 409 996 582 124 1655 15.9 508 126 1264 5.83 
cordic 23 2 34 94 47 16 126 0.5 33 15 121 10.32 
f51m 8 8 58 139 56 11 174 0.3 40 15 110 0.16 
rd53 5 3 22 47 25 6 72 0.2 21 8 67 0.06 
rd73 7 3 106 258 45 8 133 0.8 39 19 122 0.22 
rd84 8 4 192 468 62 12 189 1.4 54 25 166 0.43 
t481 16 1 407 1023 15 5 45 0.3 17 6 65 1.43 
z4ml 7 4 20 59 20 6 53 0.1 30 6 61 0.11 

Average   154.5 435 108.2 23.7 305 2.15 95.6 29.9 256 1.89 
Ratio   100% 100% 70% 100% 70% 100% 62% 126% 59% 88% 

 


