
An Algorithm for Bi-Decomposition of Logic Functions

Alan Mishchenko
Portland State University

B.O. Box 751,
Portland, OR 97207, USA

1-503-725-2780

alanmi@ee.pdx.edu

Bernd Steinbach
Freiberg Univ. of Mining and Techn.

Bernhard-von-Cotta-Str. 1
D-09596 Freiberg, Germany

03731-39-2568

steinb@informatik.tu-freiberg.de

Marek Perkowski
Portland State University

B.O. Box 751,
 Portland, OR 97207, USA

1-503-725-5411

mperkows@ee.pdx.edu

ABSTRACT
We propose a new BDD-based method for decomposition of
multi-output incompletely specified logic functions into netlists of
two-input logic gates. The algorithm uses the internal don’t-cares
during the decomposition to produce compact well-balanced
netlists with short delay. The resulting netlists are provably non-
redundant and facilitate test pattern generation. Experimental
results over MCNC benchmarks show that our approach
outperforms SIS and other BDD-based decomposition methods in
terms of area and delay of the resulting circuits with comparable
CPU time.

1. INTRODUCTION
Decomposition of Boolean functions consists in breaking large
logic blocks into smaller ones while keeping the network
functionality unchanged. Decomposition plays an important role
in logic synthesis. Research in this area started in the 1950s [1,2].
Recently, there has been a revival of interest in disjoint
decomposition (called also disjunctive decomposition) [3,4,5].
Decomposition methods are classified as follows:

1) Each block of the resulting network has a single binary
output, or may have multiple binary outputs (Ashenhurst and
Curtis decomposition, respectively).

2) Supports of the blocks may overlap, or never overlap
(disjoint decomposition).

3) Each block has two or less inputs (bi-decomposition), or the
number of inputs may be larger than two.

4) Decomposition is performed as technology mapping for
FPGAs, as a technology-independent transformation of logic
circuits, or as a specialized mapping technique.

5) The decomposed structure is derived by splitting the larger
blocks into the smaller ones, or the decomposition structure
is assembled by iteratively adding small components until the
network is equivalent to the initial specification.

6) BDDs are used in the decomposition algorithm, or not.
If yes, BDDs are used to represent functions and store
intermediate results, or BDDs are used as the essential data
structure directing the decomposition process.

7) Decomposition shares blocks across outputs (logic cones) or
decomposes each output (logic cones) independently.

8) The algorithm allows for don’t-cares or not.
This classification can be extended using other criteria such as
methods for variable partitioning, methods for deriving the
decomposed functions, cost functions used to evaluate the results
of decomposition, etc. In terms of the above classification, the
algorithm proposed in this paper is characterized as follows:

1) Each decomposed block has a single binary output.
2) Blocks may have overlapping supports.
3) Each resulting block has two or less inputs.
4) It is a technology-independent decomposition.
5) Larger components are split into smaller ones.
6) BDDs are used to store functions.
7) Blocks are shared across outputs and internal logic cones.
8) Incompletely specified functions are allowed; the more

don’t-cares, the more efficient is the algorithm.

According to the above classification, the closest matches to our
algorithm are its previous versions [6,7,8,9] and the recent
approach [10,11]. As evidenced by our experiments, the present
version of the algorithm outperforms its previous versions and
compares favorably to [10,11]. A more detailed analysis of the
differences of these approaches is given in Section 8 of the paper.

The paper is organized as follows: Section 2 introduces the
notations and the decomposition models. Section 3 gives
necessary and sufficient conditions for AND-, OR-, and EXOR-
bi-decomposition. Section 4 gives the formulas for deriving the
decomposed functions. Section 5 presents the variable grouping
strategy. Section 6 presents hashing techniques. Section 7
discusses the decomposition algorithm. Section 8 presents
experimental results. Section 9 summarizes the paper.

2. PRELIMINARIES
Let f: Bn → B, B∈ {0,1}, be a completely specified Boolean
function (CSF). The variable set X, on which f depends, in called
support of f. Support size is denoted |X|. Let F: Bn → {0,1,-} be
an incompletely specified Boolean function (ISF) given by its on-
set (Q) and off-set (R). It is easy to convert the on-set/off-set

representation of an ISF into the interval specifying the set of
permissible CSFs: (Q, R). A CSF f is compatible with the ISF
F = (Q, R), iff Q ≤ f ≤ R .

This paper discusses bi-decomposition [12] (also known as
grouping [6]), or decomposition of ISFs into netlists of two-input
logic gates. One-step bi-decomposition is schematically
represented in Fig. 1. Block C is an AND, OR, or EXOR gate,
while components A and B are arbitrary ISFs. The support X of
the initial function is divided into three parts: variables XA that
feed only into block A, variables XB that feed only into block B,
and the common variables XC. By definition, sets XA, XB, and XC
are disjoint. If XA or XB is empty, the resulting bi-decomposition
is called weak. Otherwise it is a strong (or non-weak)
bi-decomposition. In this paper, we consider both types of bi-
decomposition and use the term “bi-decomposition” to denote
strong bi-decomposition.

Figure 1. Schematic representation of the two types of
bi-decompositoin: strong (left) and weak (right).

Notice that before decomposition function F(X) in Fig. 1 (right)
has five inputs. The weak bi-decomposition creates five-input
component A and three-input component B. The advantage of this
decomposition consists in increasing the number of don’t-cares of
component A. As a result, the function of block A previously non-
bi-decomposable in the strong sense, after the weak bi-
decomposition may have a strong bi-decomposition.

∃∃∃∃ abF F(a,b,c,d) ∀∀∀∀ abF
 cd cd\ab 00 01 11 10 Cd
 00 1 00 1 0 1 0 00 0
 01 1 OR 01 0 0 1 1 AND 01 0
 11 0 ⇐ 11 0 0 0 0 ⇒ 11 0
 10 1 10 1 1 1 1 10 1

Figure 2. Karnaugh map illustration of quantifications.
In this paper, all Boolean functions and their supports are
represented using binary decision diagrams (BDDs) [13]. It is
assumed that the reader is familiar with basic principles of BDDs.
Two BDD operators, existential and universal quantification, are
used extensively in the formulas. Quantification of a CSF w.r.t. a
variable x is defined as follows: ∃∃∃∃ xf = f0 + f1 (existential) and
∀∀∀∀ xf = f0 & f1, (universal). Symbols “+” and “&” stand for Boolean
OR and AND, while f0 and f1 are the cofactors of f: f0= f|x=0,
f1 = f|x=1 [13]. Quantification over a set of variables is defined as
an iterative quantification over each variable in the set.

For illustration, if a CSF is represented by its Karnaugh map
(Fig.2), existential (universal) quantification w.r.t. the column-
encoding variables is a function, whose Karnaugh map is the sum
(product) of columns.

3. CHECKING BI-DECOMPOSABILITY
3.1 Bi-decomposition with an OR-gate
Consider the four-input CSF in Fig. 3 (left). This function is bi-
decomposable using OR-gate with XA = {c,d} and XB = {a,b}.
The result of bi-decomposition is:

F = OR(a⊕ b, dc)
 cd\ab 00 01 11 10 cd\ab 00 01 11 10
 00 0 1 0 1 00 - 1 0 1
 01 0 1 0 1 01 0 1 - -
 11 0 1 0 1 11 0 - 0 1
 10 1 1 1 1 10 1 - 1 1

Figure 3. Examples of OR bi-decomposition.
From the Karnaugh map in Fig. 3 (left) it follows that, for the
function to be OR-bi-decomposable, it should have all 1’s
grouped in a subset of columns and a subset of rows in such a way
that none of these columns and rows contain 0’s. The requirement
does not change for functions with don’t-cares, as witnessed by an
ISF in Fig. 3 (right), which is OR-bi-decomposable using the
same formula.

Property: F(X) is OR-bi-decomposable with variable sets
(XA,XB,XC), XC = ∅ , iff in the Karnaugh map there is no cell
containing 1 such that 0’s appear in both the row and the column
to which this cell belongs.

If XC is not empty, 2|Xc| Karnaugh maps corresponding to different
assignments of variables XC are considered, but the condition of
bi-decomposability remains essentially the same: if Property holds
for all cells of all the Karnaugh maps, the function is OR-bi-
decomposable. Therefore in the theorems below, there is no
restriction on XC, meaning that it can be either empty or non-
empty. We refer the reader to [6,7] for a detailed discussion.

Bi-decomposability of ISFs can be checked by applying the
existential quantification to Q and R, representing the on-set and
the off-set, because the existential quantification over variables
representing columns (rows) consists in adding up all the 1’s
contained in the rows (columns).

Theorem 1: F(X) = { Q(X), R(X) } is OR-bi- decomposable with
variable sets (XA, XB) iff

Q & ∃∃∃∃ xAR & ∃∃∃∃ xBR = 0.

Due to the duality of AND and OR operations, the formula for
checking AND-bi-decomposition can be derived by replacing on-
set (Q) by off-set (R) in the above formula. For this reason, the
rest of the paper considers only OR and EXOR bi-decomposition.

Formulas for checking OR-bi-decomposability of strong and weak
types are summarized in Table 1.

3.2 Bi-decomposition with an EXOR-gate
Because checking for EXOR-bi-decomposition is rather
complicated, the following theorem is formulated for a simpler
case of XA and XB including 1 and n variables respectively.

Theorem 2: F(X) = { Q(X), R(X) } is EXOR-bi-decomposable
with variable sets (XA, XB), such that |XA| = 1 and |XB| = n, iff

QD & ∃∃∃∃ xBRD = 0,

C

XA

XB

XC

A

B

C

XA

XB=∅

XC

A

B

F F

where QD and RD are the on-set and off-set of the derivation of F
w.r.t. the variable in XA:

QD = ∃∃∃∃ xAQ & ∃∃∃∃ xAR, RD = ∀∀∀∀ xAQ + ∀∀∀∀ xAR.

Checking EXOR-bi-decomposibility with arbitrary non-
overlapping sets XA and XB is performed by a specialized
algorithm (Fig. 4). Procedure CheckExorBiDecomp() takes four
arguments. The first two are the on-set (Q) and the off-set (R) of
an ISF. The next two are variable sets XA and XB. If an
EXOR-bi-decomposition exists, the procedure returns the on-sets
and off-sets of ISFs implementing components A and B,
otherwise it returns zero BDDs.

procedure CheckExorBiDecomp(bdd Q, bdd R, bdd XA, bdd XB)
{ bdd QA = 0, RA = 0, QB = 0, RB = 0;
 bdd qA = 0, rA = 0, qB = 0, rB = 0;
 while (Q != 0) {
 bdd Cube = SelectOneCube(Q); qA = qA + ∃∃∃∃ BCube;
 while (qA + rA != 0) {
 qB = ∃∃∃∃ xA (Q & rA + R & qA); rB = ∃∃∃∃ xA (Q & qA + R & rA);
 if (qB & rB != 0) return (0, 0, 0, 0);
 Q = Q - (qA + rA); R = R - (qA + rA);
 QA = QA + qA; RA = RA + rA;
 qA = ∃∃∃∃ xB (Q & rB + R & qB); rA = ∃∃∃∃ xB (Q & qB + R & rB);
 if (qA & rA != 0) return (0, 0, 0, 0);
 Q = Q - (qB + rB); R = R - (qB + rB);
 QB = QB + qB; RB = RB + rB;
 } }
 if (R != 0) { RA = RA + ∃∃∃∃ xB R; RB = RB + ∃∃∃∃ xA R; }
 return (QA, RA, QB, RB);
}

Figure 4. Algorithm for checking the existence of
EXOR-bi-decomposition with arbitrary sets XA and XB.

Internally called procedure SelectOneCube() returns a randomly
selected cube. The Boolean function of the cube is quantified and
projected in the directions of XA and XB to find one part of the
EXOR-decomposable component, which is next added to the on-
sets and off-set of the components A and B and subtracted from
the initial on-set and off-set. If the on-set and off-set of
components A and B are incompatible, CheckExorBiDecomp()
returns zeros, otherwise the process is repeated as long as the
given on-set is not empty. If at the end the off-set contains some
minterms, they are added to off-sets of components A and B. For
a detailed discussion of this algorithm, see [9].

4. DERIVING DECOMPOSED FUNCTIONS
This section presents formulas for deriving ISFs implementing
components A and B (see Fig. 1). The case of an EXOR-bi-
decomposition has been addressed in the previous section,
because the decomposed functions in EXOR-bi-decomposition
are derived as a result of the bi-decomposability check.

Theorem 3: Let F(X) = { Q(X), R(X) } be OR-bi-decomposable
with variable sets (XA, XB). The ISF FA = { QA(X), RA(X) } of the
component A is:

QA = ∃∃∃∃ xB(Q& ∃∃∃∃ xAR), RA = ∃∃∃∃ xBR.
Theorem 4: Let F(X) = { Q(X), R(X) } be OR-bi-decomposable
with variable sets (XA, XB) and a CSF fA belonging to the ISF FA
is selected to represent component A. The ISF { QB(X), RB(X) }
representing component B is:

QB = ∃∃∃∃ xA(Q – fA), RB = ∃∃∃∃ xAR.

Formulas to derive ISFs representing components A and B are
summarized in Table 1. Note that removing the existential
quantifier w.r.t. XB in the formulas for component A in the case of
strong OR-decomposition leads to the corresponding formulas for
weak OR-decomposition, because in the case of weak
decomposition the variable set XB is empty. Symbol “–“ stands
for Boolean SHARP (A-B = A & B).

Table 1. Checking OR-bi-decomposability and deriving ISFs
for components A and B.

Type Checking Deriving A Deriving B
OR Q&(∃∃∃∃ xBR)&(∃∃∃∃ xAR) = 0 QA = ∃∃∃∃ xB(Q&∃∃∃∃ xAR)

RA = ∃∃∃∃ xBR
QB = ∃∃∃∃ xA(Q – fA)

RB = ∃∃∃∃ xAR
Weak
OR

Q – ∃∃∃∃ xAR ≠ 0 QA = Q & ∃∃∃∃ xAR
RA = R

QB = ∃∃∃∃ xA(Q – fA)
RB= ∃∃∃∃ xAR

5. VARIABLE GROUPING
An important task during the bi-decomposition is finding variable
sets XA and XB, for which the given type of bi-decomposition is
feasible. This task is solved in two steps. First, XA and XB are
initialized with a single variable. Next, attempts are made to add
new variables to the sets while preserving the set sizes as close to
being equal as possible.

procedure FindInitialGrouping(bdd Q, bdd R, bdd S)
{ for all x ∈ S {
 XA = {x};
 for all y ∈ S – {x} {
 XB = {y};
 if (CheckDecomposability(Q, R, XA, XB))
 return (XA, XB);
 } }
 return (∅∅∅∅ , ∅∅∅∅);
}

Figure 5. Algorithm to find the initial sets XA and XB.

Consider procedure FindInitialGrouping() implementing the first
step of variable grouping (Fig. 5). It takes three arguments: the
on-set Q, the off-set R, and the support S of an ISF. It returns two
singleton sets, XA and XB, if the function is strongly bi-
decomposable with them, or two empty sets, if the function is not
bi-decomposable in the strong sense with any variable grouping.
The procedure CheckDecomposability() performs an OR-, AND-,
or EXOR-bi-decomposability check, as discussed in Section 3,
depending on what initial grouping is sought.

Procedure GroupVariables() (Fig. 6) implements the second step.
The arguments and the return values are the same as in procedure
FindInitialGrouping(). Having found a non-empty initial
grouping, the procedure considers the remaining variables one by
one and tries to add them to XA and XB. Depending on sizes of XA
and XB, it tries to add the new variable to the smaller set first. The
rationale is to keep the variable set sizes close.

Notice that the above greedy way of building XA and XB does not
guarantee that they are the largest possible (meaning that the
support sizes of components A and B are minimum). In practice,
however, it gives a reasonably good trade-off between the size and
the quality of the resulting variable sets and the computation time
needed to evaluate the quantified formulas on each step of
variable grouping. We tried a number of ways to increase the sizes
of XA and XB. For example, by excluding one variable at a time

while trying to add others, and accepting the change only if
excluding one variable led to the addition of two or more. This
strategy reduced the netlist area by less than 3% on average but
the CPU time increased by 100%.

procedure GroupVariables(bdd Q, bdd R, bdd S)
{ (XA, XB) = FindInitialGrouping(Q, R, S);
 if ((XA, XB) == (∅∅∅∅ , ∅∅∅∅)) return (∅∅∅∅ , ∅∅∅∅);
 for all z ∈ S – (XA ∪ XB)
 if (|XA| ≤ |XB|)
 // try adding the new variable z first to XA, next to XB
 if (CheckDecomposability(Q, R, XA ∪ {z}, XB))
 XA = XA ∪ {z};
 else if (CheckDecomposability(Q, R, XA, XB ∪ {z}))
 XB = XB ∪ {z};
 else … // similarly if (|XA| > |XB|)
 return (XA, XB);
}

Figure 6. Procedure to find the variable grouping.
The above algorithm for variable grouping has another important
consequence related to the testability of the netlist resulting from
the bi-decomposition. Here we only formulate this result and refer
the reader to [8] for details.

Theorem 5: If function F(X) = { Q(X), R(X) } is OR-, AND-,
or EXOR-bi-decomposable with variable sets (XA, XB), that
has been selected using the algorithm in Fig. 6, and the
ISFs were derived using the formulas of Theorems 3 and 4,
then the resulting netlist does not have redundant internal
signals, i.e. it is completely testable for all stuck-at-0 and
stuck-at-1 faults assuming the single stuck-at fault model.

6. REUSING DECOMPOSED BLOCKS
The functions considered as input to the decomposition algorithm
are incompletely specified (the on-set/off-set pairs) while the
decomposed functions are completely specified. To enable
efficient reuse of components across the netlist we developed an
original caching technique, which allows checking that among the
set of CSFs there exists a function F such that F (or it
complement) belongs to the interval (Q, R).

Theorem 6: Let an ISF F be given by on-set Q and off-set R. A
CSF f is compatible with an ISF F iff

Q & f = 0 and R & f = 0.
The complement of f belongs to the ISF F iff

R & f = 0 and Q & f = 0.

Checking many functions for compatibility with the given ISF can
be performed efficiently if the completely specified functions are
sorted by support. This can be done by introducing a lossless hash
table that hashes supports (represented as BDDs) into pointer to
linked lists of CSFs (also represented as BDDs). In this case,
checking reduces to getting the pointer to the linked list of all
functions with the given support and walking through the list to
determine whether one of them (or its complement) belongs to the
given interval.

This technique turned out to be efficient in practice by achieving
up to 30% component reuse. The gain in area and CPU time is
even more substantial, especially when a gate is reused on an
early stage of the decomposition process, because in this case
there is no need to generate the fanin cone of the given gate.

7. BI-DECOMPOSITION ALGORITHM
This section presents the upper-level procedure performing one
step of recursive bi-decomposition (Fig. 7).

procedure BiDecompose(bdd Qi, bdd Ri)
{ bdd Q, R, S, FA, FB, F;
 (Q, R) = RemoveInessentialVariables(Qi, Ri);
 S = Find_Support(Q, R);
 if (LookupCacheForACompatibleComponent(Q, R, S)) {
 F = GetCompatibleComponent(Q, R, S); return F; }
 if (|S| ≤ 2) {
 (FA, FB, gate) = FindGate(Q, R);
 F = AddGateToDecompositionTree(FA, FB, gate);
 AddFunctionToCache(F);
 return F; }
 bdd XA

OR, XB
OR, XA

AND, XB
AND, XA

EXOR, XB
EXOR, XA

BEST, XB
BEST;

 (XA
OR, XB

OR) = GroupVariablesOR(Q, R, S);
 (XA

AND, XB
AND) = GroupVariablesAND(Q, R, S);

 (XA
EXOR, XB

EXOR) = GroupVariablesEXOR(Q, R, S);
 (XA

BEST, XB
BEST, gate) = FindBestVariableGrouping(

 (XA
OR, XB

OR), (XA
AND, XB

AND), (XA
EXOR, XB

EXOR));
 if ((XA

BEST, XB
BEST) == (∅∅∅∅ , ∅∅∅∅))

 (XA
BEST, XB

BEST, gate) = GroupVariablesWeak(Q, R, S);
 (QA,RA) = DeriveComponentA(Q,R, XA

BEST, XB
BEST , gate);

 FA = BiDecompose(QA,RA);
 (QB,RB)=DeriveComponentB(Q,R,FA,XA

BEST,XB
BEST, gate);

 FB = BiDecompose(QB,RB);
 F = AddGateToDecompositionTree(FA, FB, gate);
 AddFunctionToCache(F);
 return F;
}

Figure 7. The pseudo-code of bi-decomposition algorithm.

The arguments, Qi and Ri, are the initial on-set and off-set of the
ISF to be decomposed. The return value is a CSF in the range (Qi,

iR) representing the resulting network of gates. At the beginning
the support of the ISF is minimized by a simple greedy algorithm
and a new ISF (Q, R) is created. In practice, support
minimization occurs in less than 1% of recursive calls for typical
MCNC benchmarks. Next, a cache look up is performed. If it is
successful, it means that the CSF in the given interval has already
been implemented and can be returned right away. If it is the
terminal case, an appropriate two-input gate is added to the
decomposition tree and to the cache before returning the gate’s
CSF. Otherwise, the procedure calls three functions
GroupVariables() to find sets XA and XB leading to a strong bi-
decomposition with OR, AND, and EXOR gates.

Procedure FindBestVariableGrouping() considers the variable sets
and determines the best one taking into account that XA and XB
should be well-balanced. If variable grouping with non-empty
variable sets XA and XB is not available (this happens in 20-30%
of recursive calls for typical MCNC benchmarks), procedure
GroupVariablesWeak() finds the best variable grouping to
perform weak AND/OR-bi-decomposition, which always exists.

Given the variable sets and the type of decomposition, the on-set
and off-set QA and RA of the ISF of component A are derived
using the formulas of Section 4. Calling BiDecompose()
recursively for component A returns the CSF fA representing this
component by a netlist of gates. The CSF fA together with XA and
XB are used to compute the ISF of the component B. Procedure
BiDecompose() is again called recursively for component B. The
CSF f of the netlist implementing the initial ISF is found using

CSFs fA and fB and the decomposition gate. Finally, the CSF f is
inserted into the cache and returned.

8. EXPERIMENTAL RESULTS
The algorithm has been implemented in the program
BI-DECOMP written in platform-independent C++ using the
BDD package CUDD [14]. The program has been tested on a
300Mhz Pentium II PC with 64Mb RAM under Microsoft
Windows 98. The correctness of the resulting networks has been
checked using a BDD-based verifier.

To demonstrate the optimization potential of bi-decomposition for
both delay and area, we carried out two series of experiments. In
the first one (Table 2), the bi-decomposition of MCNC
benchmarks into two-input NAND/NOR/EXOR/NEXOR gates
performed by BI-DECOMP is compared with similar results
produced by SIS[15]. For SIS, the benchmarks have been
preprocessed using script.rugged (with and without speed_up)
followed by a delay-oriented mapping into a subset of
mcnc.genlib containing the above listed two-input logic gates.

Columns “gates” (“exors”) and “levels” give the number of
(EXORs) gates and logic levels. Columns “area1” and “delay1”
show results after running script.rugged and mapping. Columns
“area2” and “delay2” show results if script.rugged is followed by
speed_up. SIS used at the most one or two EXOR gates per
circuit. Column “time” gives the CPU time in seconds needed for
BI-DECOMP to perform the decomposition and write the
resulting BLIF file. The runtime for SIS was dominated by
script.rugged and was one minute on average.

From Table 1 we see that BI-DECOMP produces larger area
compared to SIS. This is because BI-DECOMP builds BDDs for
the primary outputs and applies the bi-decomposition algorithm to
them without any pre- or post-processing. However, the delay of
the networks produced by BI-DECOMP is better because of the
way the algorithm derives supports of the components resulting in
a well-balanced bi-decomposition.

The second series of experiments (Table 3) shows that BI-
DECOMP produces good results in terms of area for EXOR-
intensive circuits. BI-DECOMP is compared with SIS[15]
(script.rugged followed by area-oriented mapping into
mcnc.genlib) and BDS, a BDD-based logic synthesis system [10].
(The results for SIS and BDS are taken from [11].) The number of
gates after decomposition is shown in column “gates”. BDS
outputs a netlist of 2/3/4-input (N)ANDs and (N)ORs, and 2-input
(N)EXORs. To make a fair comparison, we translated the two-
input-gate output of BI-DECOMP into a set of gates comparable
to the output of BDS. (This is why the gate count of BI-DECOMP
for 9sym in Table 3 differs from that of Table 2). The column
“area” shows the results of script.rugged followed by area-
oriented mapping into mcnc.genlib.

One of the reasons why BI-DECOMP outperforms BDS in terms
of gates on some test cases in that BDS does not make the most of
the strong bi-decomposability of Boolean functions. The BDS
algorithm does not guarantee that weak bi-decomposition is
applied only when there is no strong bi-decomposition.
Meanwhile, it is the strong bi-decomposition, with both XA and
XB not empty (Fig. 1), that leads to the fast reduction in the
component size (smaller area) and creation of well-balanced
netlists (shorter delay). Another difference between BDS and BI-

DECOMP is in the use of don’t-cares. BDS uses them locally, to
optimize the size of the BDD representation of one component.
BI-DECOMP uses don’t-cares locally and passes don’t-cares
(both external and locally generated) to the next decomposition
steps by allowing the generic bi-decomposition procedure to work
on incompletely specified functions.

9. CONCLUSIONS
We presented a new approach to decomposition of incompletely
specified multi-output functions into netlists of two-input
AND/OR/EXOR gates. The decomposition is based on Boolean
formulas with quantifiers that can be evaluated using a standard
BDD package. Our algorithm can be characterized as follows:

• The generated netlists are compact because it uses the EXOR
gates for EXOR-intensive circuits, exploits external and
internal don’t-cares, and achieves significant degree of
component reuse by applying an original caching technique.

• The netlists are well-balanced, which significantly reduces
the delay of the resulting circuit.

• The resulting netlists are 100% testable for single stuck-at
faults [8]. Test pattern generation can be integrated into the
decomposition algorithm with little if any increase in the
complexity and runtime.

The future work includes extending the algorithm to work with
arbitrary standard cell libraries, integration of ATPG into the
process of decomposition, and generalization of the algorithm for
multi-valued logic with potential applications in datamining [16].

10. ACKNOWLEDGEMENTS
The research was sponsored by the NSF grant for the
U.S./German collaborative research in functional decomposition
for datamining (grant #315/PPP/gű-ab). The first author has been
partially supported by a research grant from Intel Corporation.

11. REFERENCES
[1] R. L. Ashenhurst. “The decomposition of switching

functions”. Computation Lab, Harvard University, 1959,
Vol. 29, pp. 74-116.

[2] A. Curtis. New approach to the design of switching circuits.
Van Nostrand, Princeton, NJ, 1962.

[3] V. Bertacco, M. Damiani. "The Disjunctive Decomposition
of Logic Functions". Proc. of ICCAD 1997, pp. 78-82.

[4] S. Minato, G. De Micheli. "Finding All Simple Disjunctive
Decompositions Using Irredundant Sum-of-Products Forms".
Proc. of ICCAD 1998, pp. 111-117.

[5] T.Sasao, M.Matsuura. “DECOMPOS: An Integrated System
for Functional Decomposition”. Proc. of IWLS 1998,
pp. 471-477.

[6] D.Bochmann, F.Dresig, B.Steinbach, “A new decomposition
method for multilevel circuit design”. Proc. of Euro-DAC
1991, pp. 374 – 377.

[7] B. Steinbach, F. Schumann, M. Stockert. “Functional
Decomposition of Speed Optimized Circuits”. In Power and
Timing Modelling, D. Auvergne, R. Hartenstein, eds.,
Springer-Verlag, 1993, pp. 65-77.

[8] B. Steinbach, M. Stockert. “Design of Fully Testable Circuits
by Functional Decomposition and Implicit Test Pattern
Generation”. Proc. of VLSI Test 1994, pp. 22-27.

[9] B. Steinbach, A. Wereszczynski, “Synthesis of Multi-Level
Circuits Using EXOR-Gates”. Proc. of "IFIP WG 10.5 -
Workshop on Applications of the Reed-Muller Expansion in
Circuit Design", Japan, 1995, pp. 161 - 168

[10] C. Yang, M. Ciesielski, V. Singhal. "BDS: A BDD-based
Logic Optimization System". Proc. of DAC 2000, pp. 92-97.

[11] C.Yang, M.Ciesielski. “BDD-Based Logic Optimization
System”. Tech. Report CSE-00-1, February 2000.

[12] T. Sasao, J. Butler, “On bi-decomposition of logic
functions”, Proc. of IWLS 1997.

[13] R. E. Bryant, "Graph-Based Algorithms for Boolean
Function Manipulation", IEEE Trans. on Comp., Vol. C-35,
No. 8 (August, 1986), pp. 677-691.

[14] F. Somenzi. BDD package “CUDD v. 2.3.0.”
http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html

[15] E. Sentovich, et al. “SIS: A System for Sequential Circuit
Synthesis”, Tech. Rep. UCB/ERI, M92/41, ERL, Dept. of
EECS, Univ. of California, Berkeley, 1992.

[16] B. Steinbach, M. A. Perkowski, Ch. Lang. “Bi-
Decomposition of Multi-Valued Functions for Circuit
Design and Data Mining Applications.” Proc. of ISMVL
1999, pp. 50 – 58. http://www.informatik.tu-freiberg.de/
prof2/publikationen/ismvl99_final.ps.

Table 2. Comparison of delay-oriented decomposition results with SIS.

SIS
Benchmark

script.rugged + mapping + speed_up
BI-DECOMP

name ins outs gates levels area1 delay1 area2 delay2 Gates exors levels area delay time,c
9sym 9 1 235 18 487 30.0 486 28.5 83 26 11 226 17.1 0.39

alu4.pla 14 8 211 26 430 37.4 490 27.8 279 31 12 619 20.4 4.07
cps 24 109 1188 21 2428 54.5 2629 40.5 1733 130 13 3679 22.8 8.20

duke2 22 29 467 27 961 53.4 1280 39.0 684 70 12 1503 20.0 4.83
e64 65 65 253 125 506 169.0 798 32.3 1558 0 7 2999 11.2 3.46

misex3 14 14 717 30 1467 51.0 1528 42.2 1017 166 15 2414 27.8 6.87
pdc 16 40 415 20 861 31.0 955 29.8 328 30 8 712 14.5 1.48
spla 16 46 658 21 1350 31.2 1369 29.9 786 67 14 1691 23.3 2.36
vg2 25 8 107 14 214 20.4 234 13.3 259 39 11 601 18.3 7.91

Average 472 33.5 967 53.1 1085 31.4 747 62 11.4 1605 19.5 4.40
Ratio 100% 100% 89% 169% 100% 100% 158% 8% 34% 148% 62%

Table 3. Comparison of area-oriented decomposition results for EXOR-intensive circuits with SIS and BDS.

Benchmark SIS BDS BI-DECOMP
name ins outs gates area gates exors area time, c gates exors area time, c
5xp1 7 10 81 195 67 16 172 0.4 62 21 160 0.27
9sym 9 1 152 396 42 4 109 1.0 50 27 155 0.33
alu2 10 6 217 524 230 53 632 2.8 198 61 519 1.60

alu4.blif 14 8 409 996 582 124 1655 15.9 508 126 1264 5.83
cordic 23 2 34 94 47 16 126 0.5 33 15 121 10.32
f51m 8 8 58 139 56 11 174 0.3 40 15 110 0.16
rd53 5 3 22 47 25 6 72 0.2 21 8 67 0.06
rd73 7 3 106 258 45 8 133 0.8 39 19 122 0.22
rd84 8 4 192 468 62 12 189 1.4 54 25 166 0.43
t481 16 1 407 1023 15 5 45 0.3 17 6 65 1.43
z4ml 7 4 20 59 20 6 53 0.1 30 6 61 0.11

Average 154.5 435 108.2 23.7 305 2.15 95.6 29.9 256 1.89
Ratio 100% 100% 70% 100% 70% 100% 62% 126% 59% 88%

