
FPGAs & Synthesizable Verilog 

•  Quick tour of the Virtex 5 
•  Verilog 

  -- Modules 
  -- Combinational Logic (gates) 
  -- Sequential Logic (registers) 
  -- Memories 

•  Beehive Verilog tree 



Xilinx Virtex V FPGA 

XC5VLX110T: 
•  1136 pins, 640 IOBs 
•  CLB array: 54 cols x 160 rows = 69,120 LUTs 
•  148 36Kbit BRAMs = 5.3Mbits 
•  64 DSP48E (25x18 mul, 48-bit adder, acc) 
•  PCIe, 10/100/1000 Mb/s Ethernet MAC 

Figures from Xilinx Virtex II datasheet 



Virtex V CLB 

Figures from Xilinx Virtex V datasheet 



Figures from Xilinx Virtex V datasheet 
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Block Memories (BRAMs) 

32k x 1 – 1k x 36 
cascadable 

512 x 72 

8k x 4 – 512 x 72 



BRAM Operation 

BRAM 
Single-port 

Config. 
CLK 
WE 

Address 

Data_in Data_out 

2.1ns 



Wiring in FPGAs 

Figures from Xilinx App Notes 



Using an HDL description 
Using Verilog you can write an executable functional 
specification that 

• documents exact behavior of all the modules and their 
interfaces 

• can be tested & refined until it does what you want 

An HDL description is the first step in a mostly automated 
process to build an implementation directly from the 
behavioral model 

Logic Synthesis Place & route HDL 
description 

Gate 
netlist 

CPLD 
FPGA 

Stdcell ASIC •  HDL→ logic 
•  map to target library (LUTs) 
•  optimize speed, area 

•  create floor plan blocks 
•  place cells in block 
•  route interconnect 
•  optimize (iterate!) 

Physical design Functional design 



Basic building block: modules 

// single-line comments 
/* multi-line 
   comments 
*/ 
module name(input a,b,input [31:0] c,output z,output reg [3:0] s); 

  // declarations of internal signals, registers 

  // combinational logic: assign 

  // sequential logic: always @ (posedge clock) 

  // module instances 

endmodule 

In Verilog we design modules, one of which will be identified as 
our top-level module.  Modules usually have named, directional 
ports (specified as input, output) which are used to communicate 
with the module. 

Don’t forget this “;” 



Wires 
We have to provide declarations* for all our named wires (aka 
“nets”).   We can create buses – indexed collections of wires – by 
specifying the allowable range of indices in the declaration: 

wire a,b,z;              // three 1-bit wires 
wire [31:0] memdata;     // a 32-bit bus 
wire [7:0] b1,b2,b3,b4;  // four 8-bit buses 
wire [W-1:0] input;      // parameterized bus 

Note that [0:7] and [7:0] are both legitimate but it pays to 
develop a convention and stick with it.  Common usage is 
[MSB:LSB] where MSB > LSB; usually LSB is 0.  Note that we can 
use an expression in our index declaration but the expression’s 
value must be able to be determined at compile time.  We can also 
build unnamed buses via concatenation: 

{b1,b2,b3,b4}  // 32-bit bus, b1 is [31:24], b2 is [23:16], … 
{4{b1[3:0]},16’h0000}  // 32-bit bus, 4 copies of b1[3:0], 16 0’s 

* Actually by default undeclared identifiers refer to a 1-bit wire, but this means typos get 
you into trouble.  Specify “`default_nettype none” at the top of your source files to avoid 
this bogus behavior. 



Continuous assignments 

// 2-to-1 multiplexer with dual-polarity outputs 
module mux2(input a,b,sel, output z,zbar); 
  // again order doesn’t matter (concurrent execution!) 
  // syntax is “assign LHS = RHS” where LHS is a wire/bus 
  // and RHS is an expression 
  assign z = sel ? b : a; 
  assign zbar = ~z; 
endmodule 

If we want to specify a behavior equivalent to combinational logic, 
use Verilog’s operators and continuous assignment statements: 

Conceptually assign’s are evaluated continuously, so whenever a 
value used in the RHS changes, the RHS is re-evaluated and the 
value of the wire/bus  specified on the LHS is updated. 

This type of execution model is called “dataflow” since evaluations 
are triggered by data values flowing through the network of wires 
and operators. 

LHS must be of type wire 



Boolean operators 
•  Bitwise operators perform bit-oriented operations on vectors 

•   ~(4’b0101) = {~0,~1,~0,~1} = 4’b1010 
•  4’b0101 & 4’b0011 = {0&0, 1&0, 0&1, 1&1} = 4’b0001 

•  Reduction operators act on each bit of a single input vector 
•   &(4’b0101) = 0 & 1 & 0 & 1 = 1’b0 

•  Logical operators return one-bit (true/false) results 
•   !(4’b0101) = 1’b0 

~a NOT 

a & b AND 

a | b OR 

a ^ b XOR 

a ~^ b 
a ^~ b 

XNOR 

Bitwise Logical 
!a NOT 

a && b AND 

a || b OR 

a == b 
a != b 

[in]equality 
returns x when x 
or z in bits. Else 

returns 0 or 1 
a === b 
a !== b 

case [in]
equality 

 returns 0 or 1 
based on bit by bit 

comparison 

&a AND 

~&a NAND 

|a OR 

~|a NOR 

^a XOR 

~^a 
^~a 

XNOR 

Reduction 

Note distinction between ~a and !a 
when operating on multi-bit values 



Other operators 

a ? b : c If a then b else c 
Conditional 

-a negate 

a + b add 

a - b subtract 

a * b multiply 

a / b divide 

a % b modulus 

a ** b exponentiate 

a << b logical left shift 

a >> b logical right shift 

a <<< b arithmetic left shift 

a >>> b arithmetic right shift 

Arithmetic 

a > b greater than 

a >= b greater than or equal 

a < b Less than 

a <= b Less than or equal 

Relational 



Numeric Constants 

Constant values can be specified with a specific width and radix: 

123         // default: decimal radix, 32-bit width 
’d123       // ’d = decimal radix 
’h7B        // ’h = hex radix 
’o173       // ’o = octal radix 
’b111_1011  // ’b = binary radix, “_” are ignored 
’hxx        // can include X, Z or ? in non-decimal constants 
16’d5       // 16-bit constant ‘b0000_0000_0000_0101 
11’h1X?     // 11-bit constant ‘b001_XXXX_ZZZZ 

By default constants are unsigned and will be extended with 0’s 
on left if need be (if high-order bit is X or Z, the extended bits 
will be X or Z too).  You can specify a signed constant as follows: 

8’shFF      // 8-bit twos-complement representation of -1 

To be absolutely clear in your intent it’s usually best to explicitly 
specify the width and radix. 

6.111 Fall 2008 14 Lecture 3 



Hierarchy: module instances 

// 4-to-1 multiplexer 
module mux4(input d0,d1,d2,d3, input [1:0] sel, output z); 
  wire z1,z2; 
  // instances must have unique names within current module. 
  // connections are made using .portname(expression) syntax. 
  // once again order doesn’t matter… 
  mux2 m1(.sel(sel[0]),.a(d0),.b(d1),.z(z1));  // not using zbar 
  mux2 m2(.sel(sel[0]),.a(d2),.b(d3),.z(z2)); 
  mux2 m3(.sel(sel[1]),.a(z1),.b(z2),.z(z)); 
  // could also write “mux2 m3(z1,z2,sel[1],z,)” NOT A GOOD IDEA! 
endmodule 

Our descriptions are often hierarchical, where a module’s 
behavior is specified by a circuit of module instances: 

Connections to a module’s ports are made using a syntax that 
specifies both the port name and the wire(s) that connects to it, 
so ordering of the ports doesn’t have to be remembered.  

This type of hierarchical behavioral model is called “structural” 
since we’re building up a structure of instances connected by 
wires.  We often mix dataflow and structural modeling when 
describing a module’s behavior. 
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Parameterized modules 
// 2-to-1 multiplexer, W-bit data 
module mux2 #(parameter W=1)  // data width, default 1 bit 
            (input [W-1:0] a,b, 
             input sel, 
             output [W-1:0] z); 
  assign z = sel ? b : a; 
  assign zbar = ~z; 
endmodule 

// 4-to-1 multiplexer, W-bit data 
module mux4 #(parameter W=1)  // data width, default 1 bit 
            (input [W-1:0] d0,d1,d2,d3, 
             input [1:0] sel, 
             output [W-1:0] z); 
  wire [W-1:0] z1,z2; 

  mux2 #(.W(W)) m1(.sel(sel[0]),.a(d0),.b(d1),.z(z1)); 
  mux2 #(.W(W)) m2(.sel(sel[0]),.a(d2),.b(d3),.z(z2)); 
  mux2 #(.W(W)) m3(.sel(sel[1]),.a(z1),.b(z2),.z(z)); 
endmodule 

could be an expression evaluable at compile time; 
if parameter not specified, default value is used 



Example: A Simple Counter 

0 1 

0 
1 

0 

+1 

enb 
clr 

clk 

// 4-bit counter with enable and synchronous clear 
module counter(input clk,enb,clr, 
               output reg [3:0] count); 
  wire [3:0] next_count = clr ? 4’b0 : 
                          enb ? count+1 : 
                          count; 
  always @(posedge clk) count <= next_count; 
endmodule 

count 
4 4 

Inside always: LHS must be of type reg, always use <= 



Example: Shift Register 

clk 

// shift register 
reg q1,q2,out; 
always @(posedge clk) begin 
  q1 <= in; 
  q2 <= q1; 
  out <= q2; 
end 

out 

clk clk 

in 
q1 q2 

Non-blocking assignment (<=) semantics: 
   1) evaluate all RHS expressions in all active blocks 
   2) after evals complete, assign new values to LHS 

// shift register 
reg q1,q2,out; 
always @(posedge clk) q1 <= in; 
always @(posedge clk) q2 <= q1; 
always @(posedge clk) out <= q2; 



FPGA Memories 

•  Distributed memory (built using LUTs as RAMs) 
–  Combinational (w/o clock) read + sync (w/ clock) write 
–  32/64/128/256 x 1 using a one or more LUTs 
–  Wider using multiple LUTs in parallel 
–  Multiple read ports; fake by building multiple copies of memory 
–  (* ram_style = “distributed” *) pragma 

•  Block memory (built using BRAMs) 
–  True dual port: two read/write ports 
–  Both reads and writes are synchronous (need clock edge!) 
–  Widths of 1 to 36 bits, Depths of 32k to 1k 
–  Special 512 x 72 hack 
–  FIFO support built-in 
–  (* ram_style = “block” *) pragma 



Example: register file 

// 16-entry 32-bit register file 
(* ram_style = “distributed” *) 
reg [31:0] regfile[15:0]; 
wire [4:0] a_addr,b_addr,w_addr; 
wire [31:0] a_data,b_data,w_data; 
wire weRF; 

// async read 
assign a_data = regfile[a_addr]; 
assign b_data = regfile[b_addr]; 

// sync write 
always @(posedge clk) 
  if (weRF & w_addr != 0) regfile[w_addr] <= w_data; 



Example: instruction cache 

 (* ram_style = "block" *) 
 reg [31:0] instCache[1023:0];  // 1k x 32 bram 
 reg [9:0] instAddr; 
 always @(posedge clock) begin 
    if (~stall | ~Ihit) instAddr <= Iaddr; 
    if (~Dmiss & (RDdest == whichCore)) 
      instCache[{pcx[9:3], cacheAddr}] <= RDreturn; 
 end 
 assign instx = instCache[instAddr]; 

 (* ram_style = "distributed" *) 
 reg [20:0] instTag[127:0];  // 128 x 21 distributed mem 
 assign Itag = instTag[pcx[9:3]]; 
 always @(posedge clock) begin 
   if (writeItag) instTag[pcx[9:3]] <= pcx[30:10]; 
 end; 



Verilog Links 

•  Quick reference manual for “modern” Verilog (Verilog-2001) w/ 
examples: 

•  http://www.sutherland-hdl.com/online_verilog_ref_guide/
verilog_2001_ref_guide.pdf 

•  Open-source Verilog simulation 
–  http://www.icarus.com/eda/verilog/ 
–  http://gtkwave.sourceforge.net/ 



Beehive 
Verilog 



Simulating Beehive 

•  ssh beehive@ra.csail.mit.edu 
•  mkdir yourname 
•  cd yourname 
•  tar xfz ../beehive_sim.tgz 
•  cd beehive 
•  make | more 

6.111 Fall 2008 Lecture 1 24 



Verilog Assignment #1 

•  Current behavior of lock unit: 
–  P 

•  Read i/o space with AQ[2:0] = 5, AQ[8:3] = lock # 
•  Returns 2 if core already has lock 
•  Otherwise sends Preq message on ring, converted to Pfail if 

another core owns lock 
–  If Preq makes it all around the ring, set lock, return 1 
–  If Preq converted to Pfail, return 0 

–  V 
•  Write i/o space with AQ[2:0] = 5, AQ[8:3] = lock # 
•  If core owns lock, clear lock bit 
•  If core doesn’t own lock, send Vreq message on ring, which 

causes owner to clear their lock bit 
•  New behavior 

–  Return 2 if core already has lock, or if it was the previous owner of 
the lock and no Preq messages have been seen for that lock (in which 
case set the lock bit).  Hint: need more than two lock states… 
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Verilog Assignment #2 

•  Implement broadcast Messages 
•  Suggestions 

–  Use a message destination of 0 to indicate broadcast 
–  Modify messenger to receive messages destined for either its core 

number or 0 
–  Modify messenger to remove broadcast messages it placed on the 

ring 
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