
172

APPENDIX A: Field Programmable Gate Arrays:
An Introduction

A.1: Introduction

Field Programmable Gate Arrays and related devices have been revolutionizing microelectronic system de-
sign. This chapter provides an overview of FPGA technologies and tools.

A.2: Basic Technologies

Describing Field Programmable Gate Arrays is a little like the four blind-folded men who are presented with
an elephant. Each of the men grope around feeling different parts of the elephant and each gives a completely different
description of what they believe they are feeling. In an analogous manner we will try to describe FPGAs or at least
the parts we’ve been feeling around in. There are basically two divisions which separate FPGAs at an underlying tech-
nology level, these are one-time programmable and reprogrammable devices. The one-time programmable devices are
non-volatile and remain configured even when the device is powered down. On the reprogrammable side there are
devices that resemble EPROM, EEPROM, and SRAM technologies. This first level of distinction is illustrated in Fig-
ure 157.

Figure 157 One-time and Reprogrammable FPGAs

Just to add to the confusion there are also one-time programmable devices that are based on EPROM tech-
nology with the rational being economic. In these caes it makes more sense to develop your proto-type in a more ex-
pensive package (eg. ceramic with a quartz window) that allows for reprogramming and committing to a more in-
expensive plastic package for production.

Many of the basic ideas behind FPGAs can be found in the literature dating back several years and in a variety
of forms. Early researchers in the area of wafer scale integration looked at a variety of connection methods which
ranged from laser interconnection schemes to electronic switches. In addition, as engineers added flexibility to com-
modity ICs they became inherrently more programmable. Certainly the widespread use of PALs throughout the eight-
ies provided insights into the role of programmable logic in system integration. Also traditional gate arrays contributed
in a significant manner to the development of FPGAs. Traditional gate arrays consist of uncommitted logic and rout-

FPGAs

One-Time Programmable Reprogrammable

Fuse Antifuse SRAM

EPROM

EEPROM

173

ing resources that are connected up by the ASIC designer. In a similar manner an FPGA consists of uncommitted logic
and routing resources that are connected by the FPGA-ASIC designer. One of the main differences is that design cus-
tomization for a gate array takes place at a mask level in the manufacturing process while the design customization for
an FPGA takes place electronically on your desk, (the former requiring a "clean room" the latter a cluttered desk). The
following table contrasts FPGAs with more traditional Gate Arrays.

Table 16 is suitably vague in many of its comparisons which should allow for ample discussion. One thing
that is evident is that the traditional ASIC landscape is changing and that field programmable devices are a major rea-
son for the change. Although FPGAs often utilize extremelyaggressive IC processing technology it is unlikely that
they will ever compare with the density of "state of the art" mask programmable gate arrays. This is due to the fact that
some silicon area overhead is required in making the device programmable. This is illustrated in Figure 158 where a
simple interconnection is shown diagramatically as a masked interconnect, fused link, and a pass gate interconnection.

Table 16 FPGA - Gate Array Comparison

Catagory FPGA Gate Array Comment

Gate Count O(10K) O(100K) Order of Magni-
tude

NRE <$10,000 ~$100,000 Order of Magni-
tude

Performance
System Clock

<50MHz <150MHz Factor of 2

Design Tools Full Suite Full Suite pc -> workstation

Programmability Field Factory ms vs. month

Development Time Weeks Months

Design Revision Easy Hard ($$)

174

Figure 158 Silicon Overhead for Programmable Gate Arrays

Although Figure 158 is highly schematic in nature it illustrates many of the basic trade-offs amoung field pro-
grammable devices at a very low level which driectly effect performance. For example, the most common model for
first order performance estimations are derived from lumped element models of transistors and interconnect. The
masked programmable interconnect would have lower values of both parasitic capacitance as well as resistance as
compared to either of the FPGA devices illustrated.

A.2.1: Antifuse Devices

One popular family of FPGAs are based on "antifuses", which is an unfortunate term used for two materials

Masked Programmable Gate Array Direct Connection

a b

a b

Fused (Antifuse) Field Programmable Interconnect

Fused Region

Shared Programming Transistors

nmos pass transistor

a b

SRAM Storage Cell

Reprogrammable Field Programmable Interconnect

One-Time Programmable

175

that are "fused" together. Typically, a dielectric with a very high resistivity is sandwiched between two conductive
interconnect segments. The sandwich is then stressed with an applied voltage sufficient to break-down the dielectric
thereby connecting the two segments. The dielectric sandwich must have a sufficiently high break-down voltage such
that connections are not created during normal operation yet it must not require an enormous voltage that would break-
down field oxide regions or isolating dielectrics. Also a decoding scheme is required such that the applied voltage is
seen across the antifuse we want to program. This can be accomplished by decoding the transistor pair shown in figure
2, tieing one of the segments at ground and the other at the programming voltage (Vp). All other segments during pro-
gramming would be held at some intermediate voltage (e.g. Vp/2) such that any other potentally programmable con-
nection would only see Vp/2 volts across it.

Devices which employ antifuse technology are one-time programmable and non-volatile.

A.2.2: SRAM Devices

Perhaps the most popular type of FPGAs are those based on SRAM technology to maintain device configu-
ration. Although larger and slower than masked programmable gate arrays they offer considerable advantage due to
their inherrent reprogrammability. As illustrated in Figure 158, two segments are connected via an nmos pass transis-
tor whose state is determined by a cross coupled latch. This latch would be configured as part of a large shift register
when the device is being programmed. As with the antifuse devices the CMOS proccessing can be very agressive with
some fine tuning associated with the pass gates thenselves. For example, the nmos pass gate processing may be mod-
ified such that a reduced threshold voltage degradation is seen when passing a logical one. One of the immediate ad-
vantages of configuring the SRAM cells on a linear array is that only a small number of I/O pins are required when
configuring a device.

A.3: Common Features of FPGAs

There are several features common to all FPGAs; programmable I/O, logic, and interconnect. The basic ar-
chitecture of the antifuse and SRAM devices are illustrated in Figure 159.

Programmable I/O allows the designer to specify whether a pin is to be an input, output, or bi-directional port.
There may be several other programmable options under the designers direct control such as configuring pull-up de-
vices and slew rate control. Assignments of I/O pins is often accomadated on the schematic or explicitly specified
when placing and routing the design. In most cases a design can be more efficiently placed and routed if the I/O are
not made location specific giving the automated place and route tools more flexibility in optimizing the "layout". In
many proto-typing applications however the designer is constrained by predetermined I/O.

176

Figure 159 Typical Architectures of Antifuse and SRAM FPGAs

Programmable interconnect is also common to all FPGAs. Implementations vary but the basic notion is to be
able to connect I/O to logic modules and logic modules together. Interconnect resources may also include a hierachy
of interconnect allowing one to take advantage of local connections or buffered long lines for the distribution of global
signals. There is always a trade-off between silicon area dedicated for routing and area dedicated for logic. As FPGAs
are very general purpose devices they may not be ideal for all applications which may be either logic or routing inten-
sive. There are however a wide variety of alternatives offered within families of devices as well as an increasing
number of device families.

The final common element to all FPGAs are the logic modules themselves. With the antifuse devices they are
typically MUX based and within SRAM devices they are typically look-up table devices. In either case there is provi-
sions for sequential elements such as latches and flip-flops. Figure 160 illustrates schematically a logic cell implemen-

Logic
Module

x

Logic
Module

Logic
Module

Logic
Module

Segmented Routing Channel

I/O
Module

Programmed
Antifuse

Antifuse FPGA Archetecture

I/O
Module

I/O
Module

I/O
Module

I/O
Module

Logic
Module

Logic
Module

Programmable Interconnect

SRAM FPGA Archecture

x

x

x

177

tation of a simple function in both an antifuse and SRAM technology.

Figure 160 Logic Implementations in Antifuse and SRAM Technologies

A.4: Applications of FPGAs

Field programmable gate arrays are finding a variety of applications in a wide number of areas primarily due
to their flexibility. The following lists several areas where FPGAs are playing an increasingly important role. This list
is only representative and expandable through engineering creativity.

A.4.1: Logic Integration

In many cases there is an opportuinty to migrate an existing design from small and medium scale integration
to FPGAs. It may not be viable to move to a masked gate array but the economics of a more integrated system may
allow for the deign to be migrated to FPGAs. The flexibility of being able to design and prototype the newer FPGA
design may also lead to improvements in design and in production test. With the relatively low cost of FPGAs addi-
tional features may be added and evaluated and integrated into the product if desired. This may prove to be very effi-
cient as interfaces continue to evolve across a spectrum of "standards".

A.4.2: Rapid Prototyping

B

A

Vdd

2- input AND Gate

Muxed Based Implementation

Antifuse Technology

Y

A B Y

0
0
1
1

0
1
0
1

0
0
0
1

X

Antifuse

X

X X

X

X

Programmable Look-Up Table

3-8
Sel.

0
1

A

B

C

e.g.
0
0

1
1

0

SRAM Based Technology

0
1

0

A
B

C

178

With increased emphasis on epeditious system design to get your product to market FPGAs are and will con-
tinue to play a major role. FPGAs allow for rapid hardware design revisions to be made without the risk of waiting
several months and several 10s of thousands of dollars in first-time correct silicon. This is particularly important in
fields where standards are either evolving rapidly or don’t yet exist.

A.4.3: System Level Testing

System level testing is in part the functional and structural test of a microelectronic product. FPGAs and in
particular reprogrammable devices afford the system designer the resources that may not otherwise be available or eco-
nomically feasible in other technologies. Boundary scan is one example where FPGAs are very usefull in system level
test. For example, with respect to PCB testing the designer may develop or utilize the boundary scan resources avail-
able from the vendor. The advantage of developing ones own scheme is in incresing the flexibility of boundary scan.
For example, in testing a PCB one FPGA may become a boundary scan master in effect interfacing the board to a
boundary scan test environment. Pattern generators and signature analyzers may be easily implemented providing pat-
terns to test the board at-speed as well as compacting responses. Application specific test programs such as testing
memory or measuring memory access time may be developed to allow the designer to in-system test a non-boundary
scan compliant memory device with a production test such as walking ones or march test. These types of hardware
overheads would be difficult to justify in the majority of products if the overhead were to remain resident, the advan-
tage of a reprogrammable FPGA here is that these test programs can be stored in memory and used as required. Once
these tests are completed the system can in many cases be reconfigured to eliminate the fault or design error.

A.4.4: In Field Modification, Repair and Updating

In a similar manner to that of system level testing FPGAs offer a considerable advantage in being able to be
reconfigured "in-system" or in the case of an antifuse device reprogramming the device to account for design revisions
or modifications. Again the advantage of the reprogrammable device is the potential of in-field repair in a remote man-
ner. The basic idea is for the engineer to remotely login to the user‘s product, run a series of diagnostics and attemt to
repair the system by reconfiguring the the hardware by downloading a new configuration bit stream. This is a more
likely scenario in a telecom application where access to the product is part of its system features. The cost of system
repair for a company is definitely more if an engineer or technician has to make a service call as opposed to repair from
and engineers desk. He or she may repair a product in several cities in one day without ever leaving their workstation.

A.4.5: Hardware Software Co-design

FPGAs offer an exciting opportunity in the area of hardware software co-design as they do in rapid prototyp-
ing environments. FPGAs make the distintion of hardware and software somewhat blurry. The advantage is that there
is increased opportunity for the design of hardware and software to be more concurrent as opposed to the hardware
engineers developing the hardware first and the software designers writing code for essentially fixed hardware. This
does not make the problem simpler but gains made here will defintely expedite product development. In addition, im-
plementation of often vague specifications do not have to be cast in stone during the preliminary satges of system de-
sign.

A.4.6: Dynamic Reconfiguration

Dynamic reconfiguration applies essentially to re-programmable devices. However, the overhead associated
with changing a design dynamically has to be considered. For the serial SRAM based devices reconfiguration may
take several milliseconds. This overhead would have to be justified as a hardware context switch. It would be desirable
to be able to reconfigure the hardware in one clock cycle. Duty cycle time may be used to download the device but the
context switch should proceed quickly. The SRAM based devices could accomadate this if shadow registers were em-
ployed. There is also a question of application and economics which would have to be addressed by the FPGA vendor
as schemes such as shadow registers would consume considerable silicon realistate.

A.4.7: Application Specific Co-Processors

Application specific co-processors are devices configured to run off a host such as a workstation. These co-

179

processor boards would then be responsible for specific operations which are more easily perfomed in hardware al-
though un-economical to be resident hardware. As an example, there are many operations which are well suited to
hardware in Genetic Algorithms that can be off-loaded to a reconfigurable FPGA board that would speed operations
such as string cross-over and string copying. There are other applications in number sieving that could utilize special-
ized reprogrammable hardware as a co-processor. Artificial Neural Networks represents another area where various
applications require different topologies and where reprogrammablility would be very useful. The nice thing about a
reprogrammable co-processor is that it would have a potential use in several application areas that on their own not
justify a dedicated co-processor. Another reprogrammable application may be an interface card that supports a wide
variety of interfaces.

A.5: More Field Programmable Devices

There are a number of relatively new devices that are either emerging or will emerge over the next few years.

A.5.1: Analog Field Programmable Devices

In a similar manner to digital gate arrays and subsequent FPGAs analog FPGAs will also become available
following analog gate arrays. Several basic question remain such as the mode of operation. Should these devices pro-
vide basic building blocks such as operation amplifiers withj programmable interconnect, resistors and capacitors, or
perhaps more fundamental blocks such as current mirrors and conveyors? Certainly in an education environment these
devices would be very nice to have. Likely also of considerable value in prototyping.

A.5.2: Field Programmable Interconnect Devices

A relatively new comer to field programmable device arena is field programmable interconnect devices.
These devices are typically very large pin-out devices which when configured connect various inputs to outputs. Ex-
amples of programmable interconnect devices are provided by Aptix and I-Cube. Although applications are just
emerging it seems fairly clear that they could play a major role in proto-type development and in large hardware em-
ulators. One of the advantages for microelectronic proto-typing is having a flexible PCB such that FPGAs could place
and routed without locking down specific I/O. This typically allows the automated FPGA place and route tools to more
efficiently utilize available logic and routing resources. Configuring the I/O would then become the reponsibility if
the programmable interconnect device. Similarly the use of reporgrammable interconnect in applications where in-
service repair is required would be an attractive application.

A.5.3: Asynchronous Field Programmable Arrays

Although most microelectronic systems rely on synchronization and clocking there is an incresing interest in
asynchronous logic design. It is inherrently more difficult to design and test asynchronous devices but there are also
several advantages associated with power distribution and speed that make asynchronous devices very attractive.
There is also considerable reserach in synthesis and formal verification which will make asynchronous design more
attractive. It is not unreasonable that an FPGA would fundamental building blocks such as arbitors, micropipelines,
and C-elements become commercially available. There have been several efforts where commercial FPGAs have been
utilized for asynchronous designs with a logical extension being commercially available FPGAs with fundamental
asynchronous building blocks.

A.6: Research Areas

There are an increasing number of research areas associated with the area of field programmable devices.
These range from improving synthesis methods targeting FPGAs, improving the basic architectures associated with
logic blocks and routing resources, improving place and route tools, basic research on sub-micron devices and tech-
nologies. Figure 161 illustrates a modeling and prototyping environment involving FPGAs in the design cycle.

180

Figure 161 Research and Education FPGA Proto-typing Environment

For Further Reading

There is an increasing number of journal papers and conference papers being presented each year with em-
phasis on FPGAs and programmable devices. A good starting place for a literature review is the special issue of the
IEEE Proceedings July 1993. There is a special section on FPGAs with numerous references.

Microcontroller

FPGARAM

Programmable
Interconnect

ASIC type

Tools:
VHDL Synthesis

Schematic

Partitioning Tools

Board Level
Tools

Cross Development Tools

Specification
Capture

High Level Modelling

Simulation

Soft Prototype

Microcontroller

ASIC
Test Tools

ASIC

Board Level

