First Order

Predicate

Calculus

Propositional logic v. FOPC

Propositional calculus deals only with facts

- P : I-love-all-dogs
- facts are either true or they are false

Predicate calculus makes a stronger commitment to what there is (ontology)

- objects: things in the world (no truth value)
- properties \& relations of and between objects (truth value)
FOPC breaks facts down into objects \& relations
- can be seen as an extension of propositional logic

Predicate calculus

Terms refer to objects in the world

- John, Mary, etc.
- functions (one-to-one mapping)
- these terms do not have a truth value assigned to them

Predicates [propositions with arguments]

- marriedTo(John, Mary)

Quantifiers

- $\forall x[$ valuable(x)]
- $\exists x[$ valuable(x)]

Equality: do two terms refer to the same object?

Terms

Logical expressions that refer to objects

- Constants (by convention, capitalized)
- e.g., Sue
- Variables (by convention, lower case)
- used with quantifiers
- e.g., X
- Functions
- MotherOf(Sue)
- since functions represent objects, we can nest them
- MotherOf(MotherOf(Ann))
- don't need explicit names
- LeftFootOf(John)

Sentences

Just as in propositional logic, sentences have a truth-value
In FOPC, only relations (predicates) have truth-values
Thus, terms alone are not wffs
They must be (part of) an argument to a predicate

Making sentences

Atomic sentences: a single predicate

- married(Sue, FatherOf(Ann))

Complex sentences

- just as in propositional logic, we can make more complicated sentences by combining predicates using connectives
- or, and, implies, equivalence, not
- quantifiers
- equality

Quantifiers

Allows us to express properties of categories of objects without listing all of the objects
Universal

- $\forall \mathrm{x}[\mathbf{P}(\mathrm{x})]: \mathrm{T}$ if $\mathrm{P}(\mathrm{x})$ is true for every object in our interpretation
- e.g., all men are mortal

Existential

- $\exists \mathbf{x}[\mathbf{P}(\mathbf{x})]: \mathrm{T}$ if $\mathrm{P}(\mathrm{x})$ is T for some object in our interpretation
- e.g., I love some dog

Equality

An in-fix predicate

- but a predicate all the same [returns true or false]
- e.g., FatherOf(John) = Henry
a term $\mathrm{A}=$ term B is shorthand for equal(termA, termB)
- doesn't have to be in-fix; convenient

Will be true if termA \& termB refer to the same object

Backus-Naur form

Sentence \rightarrow AtomicSentence
| Sentence Connective Sentence
| Quantifier Variable,... Sentence
$\mid \neg$ Sentence
| (Sentence)
Atomic Sentence \rightarrow Predicate (Term,...)
| Term = Term

BNF (cont.)

Term \rightarrow Function (Term,...)
| Constant
| Variable
Connective $\rightarrow \Rightarrow|\wedge| \vee \mid \Leftrightarrow$
Quantifier $\rightarrow \forall \mid \exists$

BNF (cont.)

Constant $\rightarrow \mathrm{A}\left|\mathrm{X}_{1}\right|$ John $\mid \ldots$
Variable $\rightarrow \mathrm{a}|\mathrm{x}| \mathrm{s} \mid \ldots$
Predicate \rightarrow before \mid hasColor \mid raining $\mid \ldots$
Function \rightarrow MotherOf \mid LeftLegOf $\mid \ldots$

Well Formed Formulas (WFFs)?

tall(john)
MotherOf(john)
mother(john, mary)
John = brother(Bill)

- equal(john, brother(Bill))
$F\left(p(1)^{\wedge} q(2)\right)$

English \rightarrow FOPC

"Every rational number is a real number"
$\forall x[r a t i o n a l(x) \Rightarrow \operatorname{real}(\mathrm{x})]$
What about

- $\forall \mathrm{x}[\mathrm{rational}(\mathrm{x}) \wedge \operatorname{real}(\mathrm{x})]$?
- $\exists \mathrm{x}[\operatorname{rational}(\mathrm{x}) \wedge \operatorname{real}(\mathrm{x})]$?
- $\forall \mathrm{x}[\neg \mathrm{real}(\mathrm{x}) \vee \operatorname{rational}(\mathrm{x})]$?

More English \rightarrow FOPC

There is a prime number greater than 100

- $\exists \mathrm{x}[$ prime $(\mathrm{x}) \wedge$ greaterThan $(\mathrm{x}, 100)]$
- $\exists \mathrm{x}[\mathrm{prime}(\mathrm{x}) \wedge \mathrm{x}>100]$

There is no largest prime

- no-largest-prime
- $\forall \mathrm{x}[$ prime $(\mathrm{x}) \Rightarrow \exists \mathrm{y}[$ prime $(\mathrm{y}) \wedge$ greaterThan(y , x)]

Every number has an additive inverse

- $\forall \mathrm{x}[$ number(x) $\Rightarrow \exists \mathrm{y}[$ equal(Plus(x, y), 0)]

Mixing quantifiers

Everyone likes a dog

- $\forall \mathrm{x}\left[\operatorname{human}(\mathrm{x}) \Rightarrow \exists \mathrm{y}\left[\operatorname{dog}(\mathrm{y})^{\wedge} \operatorname{likes}(\mathrm{x}, \mathrm{y})\right]\right]$

There's one dog everyone likes

- $\exists \mathrm{y}\left[\operatorname{dog}(\mathrm{y})^{\wedge} \forall \mathrm{x}[\right.$ human $(\mathrm{x}) \Rightarrow$ likes $\left.(\mathrm{x}, \mathrm{y})]\right]$

Everyone likes a different dog

- $\forall x\left[\operatorname{human}(x) \Rightarrow \exists y\left[\operatorname{dog}(y)^{\wedge} \operatorname{likes}(x, y)^{\wedge}\right.\right.$ $\left.\left.\forall \mathrm{z}\left[\operatorname{human}(\mathrm{z})^{\wedge} \operatorname{likes}(\mathrm{z}, \mathrm{y})\right] \Rightarrow \mathrm{x}=\mathrm{z}\right]\right]$

Location of quantifiers

Everyone likes a dog

- $\forall \mathrm{x}[\operatorname{human}(\mathrm{x}) \Rightarrow \exists \mathrm{y}[\operatorname{dog}(\mathrm{y}) \wedge \operatorname{likes}(\mathrm{x}, \mathrm{y})]]$

What about

- $\forall \mathrm{x}[\exists \mathrm{y}[(\operatorname{human}(\mathrm{x}) \wedge \operatorname{dog}(\mathrm{y})) \Rightarrow \operatorname{likes}(\mathrm{x}, \mathrm{y})]]$
- human(Jim) : T; human(Spot) : F;
- $\operatorname{dog}(\operatorname{Jim}):$ F; $\operatorname{dog}($ Spot $):$ T;
- likes(Jim,Jim) : T; likes(Jim,Spot) : F;
- likes(Spot,Jim) : F; likes(Spot,Spot) : T
s.In general, never use $\exists \mathrm{x}$ with \Rightarrow, and don't use $\forall \mathrm{x}$ with \wedge

What is the truth-value of FOPC wffs? FOPC interpretations

The "user" must provide a finite list of objects in the world

- "universe of discourse"

For each function, a mapping from
"parameter setting" to an object in the world

- e.g., Father(John) maps to "Bill"

For each predicate, a mapping from each "parameter setting" to true or false

Determining truth-value of FOPC wff

Specify an interpretation, I
Obtain truth-values of

- predicates
- look up functions until only constants remain \& then look up the truth value of the predicate
- termA = termB
- look up functions until only constants remain; true if same constant; false otherwise
- wffA connective wffB
- compute the truth-value of the wffs
- use connective's truth table to determine the truth-value of compound wff (same for \neg)

Truth-value for quantifiers

$\forall x$ wff(x)

- successively replace x by each constant in the interpretation
- if wff(constant) is true for every case, then $\forall x(w f f)$ is true
ヨx wff(x)
- same as above, but wff(constant) has only to be true once
assume constants list is never empty

Representing change

On(BlockA, BlockB)

- this is either T or F
- there is no way to change this fact in "basic" FOPC

Solution: "time stamp" wffs

- add one more parameter to all predicates indicating when they are true
- On(BlockA, BlockB, S0)
- On(BlockA, BlockC, S1)
- where S0 \& S1 are situations or states

Changing the world

Acting (operator applications) changes states (situations) into other states

We need a name for the new state

- Use functions!
- In particular, the function Result
- maps an action and a state to a new state
- Result(<action>, <state>) \Rightarrow <state>
- simply a fancy name for a state, just as FatherOf(---) is a fancy name for some man

Block-world example

$\forall \mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{s}[\operatorname{block}(\mathrm{x}) \wedge \operatorname{block}(\mathrm{y}) \wedge \operatorname{table}(\mathrm{z}) \wedge \operatorname{state}(\mathrm{s})$ \wedge on (x, z, s) \wedge clear $(\mathrm{x}, \mathrm{s}) \wedge$ clear $(\mathrm{y}, \mathrm{s})] \Rightarrow$ $\operatorname{state}(\operatorname{Result}(\operatorname{Stack}(x, y), s)) \wedge$ on $(\mathrm{x}, \mathrm{y}, \operatorname{Result}(\operatorname{Stack}(\mathrm{x}, \mathrm{y}), \mathrm{s})) \wedge$ clear(x, Result(Stack(x, y), s)) ^ $\neg c l e a r(y, \operatorname{Result}(\operatorname{Stack}(\mathrm{x}, \mathrm{y}), \mathrm{s})$
Could now almost use deductions to produce plans (sequences of action)

What's missing?

What do we know about c in the new state?
This is a case of the frame problem:
knowing what stays the same as we move from state to state (like frames in a movie)
"Blocks stay clear unless something is placed on them during stacking"
$\forall \mathrm{u}, \mathrm{x}, \mathrm{y}, \mathrm{s}[\operatorname{clear}(\mathrm{u}, \mathrm{s}) \wedge \neg(\mathrm{u}=\mathrm{y}) \Rightarrow \operatorname{clear}(\mathrm{u}$, Result(Stack(x, y), s))

Example

Painting a house does not change who owns it $\forall \mathrm{s}, \mathrm{h}, \mathrm{p}[$ state $(\mathrm{s}) \wedge$ house $(\mathrm{h}) \wedge \operatorname{human}(\mathrm{p}) \wedge$ $\operatorname{owns}(\mathrm{p}, \mathrm{h}, \mathrm{s}) \Rightarrow \operatorname{owns}(\mathrm{p}, \mathrm{h}, \operatorname{Result}(\mathrm{paint}(\mathrm{h}), \mathrm{s}))]$

Alternate approach

Say properties stay the same unless a specific action performed
$\forall \mathrm{u}, \mathrm{x}, \mathrm{s}, \mathrm{a}\left[\operatorname{block}(\mathrm{u})^{\wedge} \operatorname{state}(\mathrm{s})^{\wedge} \operatorname{action}(\mathrm{a})^{\wedge}\right.$ $\operatorname{clear}(\mathrm{u}, \mathrm{s})^{\wedge} \neg(\mathrm{a}=\operatorname{Stack}(\mathrm{x}, \mathrm{u}))^{\wedge} \neg(\mathrm{a}=$ CoverWithBlanket(u)) ${ }^{\wedge} \neg(\mathrm{a}=\operatorname{Smash}(\mathrm{u}))$ => clear(u, Result(a, s)]
This usually leads to fewer rules, but it is less modular

- when new actions defined, we have to double check every such rule to see if it needs editing

Problems with formalization

Qualification problem

- can we ever really write down all the "preconditions" for a real-world action?
- E.g., starting a car

Ramification problem

- need to represent implicit consequences of actions
- moving car from A to B also moves its steering wheel, spare tire, etc.
- can be handled but becomes tedious

Sources

Computer Science Lab
University of Wisconsin, Madison

