

Propositional logic v. FOPC

- >> Propositional calculus deals only with *facts*
 - P : I-love-all-dogs
 - facts are either true or they are false
- Predicate calculus makes a stronger commitment to what there is (ontology)
 - *objects*: things in the world (no truth value)
 - *properties & relations* of and between objects (truth value)
- So FOPC breaks facts down into objects & relations
 - can be seen as an extension of propositional logic

Predicate calculus

- So Terms refer to objects in the world
 - John, Mary, etc.
 - *functions* (one-to-one mapping)
 - these terms do *not* have a truth value assigned to them
- Se **Predicates** [propositions with arguments]
 - marriedTo(John, Mary)

So Quantifiers

- $\forall x[valuable(x)]$
- $\exists x[valuable(x)]$

Se **Equality:** do two terms refer to the same object?

Terms

Se Logical expressions that refer to objects

- **Constants** (by convention, capitalized)
 - e.g., Sue
- Variables (by convention, lower case)
 - used with quantifiers
 - e.g., x
- Functions
 - MotherOf(Sue)
 - since functions represent objects, we can nest them
 - MotherOf(MotherOf(Ann))
 - don't need explicit names
 - LeftFootOf(John)

<u>Sentences</u>

Just as in propositional logic, <u>sentences</u> <u>have a truth-value</u>

- In FOPC, only relations (predicates) have truth-values
- Shus, *terms* alone are not wffs
- So They must be (part of) an argument to a *predicate*

Making sentences

- Atomic sentences: a single predicate
 - married(Sue, FatherOf(Ann))
- Sources Sentences
 - just as in propositional logic, we can make more complicated sentences <u>by combining</u> predicates using connectives
 - or, and, implies, equivalence, not
 - quantifiers
 - equality

Quantifiers

Allows us to express properties of categories of objects without listing all of the objects

So Universal

- ∀x[P(x)] : T if P(x) is true for *every* object in our interpretation
- e.g., all men are mortal

Section 2014 Section 2014

- $\exists x[P(x)] : T \text{ if } P(x) \text{ is } T \text{ for } some \text{ object in our interpretation}$
- e.g., I love some dog

Equality

- An in-fix predicate
 - but a predicate all the same [returns true or false]
 - e.g., FatherOf(John) = Henry
- termA = termB is shorthand for
 equal(termA, termB)
 - doesn't have to be in-fix; convenient
- So Will be true if termA & termB refer to the same object

Backus-Naur form Sentence \rightarrow AtomicSentence | Sentence Connective Sentence Quantifier Variable,... Sentence $|\neg$ Sentence (Sentence) Atomic Sentence \rightarrow Predicate (Term,...) | Term = Term

BNF (cont.)

Term \rightarrow Function (Term,...) | Constant | Variable Connective $\rightarrow \Rightarrow | \land | \lor | \Leftrightarrow$ Quantifier $\rightarrow \forall | \exists$

BNF (cont.)

Constant $\rightarrow A | X_1 |$ John | . . . Variable $\rightarrow a | x | s |$. . . Predicate \rightarrow before | hasColor | raining | . . . Function \rightarrow MotherOf | LeftLegOf | . . .

Well Formed Formulas (WFFs)?

<u>English \rightarrow FOPC</u>

- Se "Every rational number is a real number"
 Se ∀x[rational(x) ⇒ real(x)]
 Se What about
 - $\forall x [rational(x) \land real(x)]?$
 - $\exists x[rational(x) \land real(x)]?$
 - $\forall x[\neg real(x) \lor rational(x)]?$

<u>More English \rightarrow FOPC</u>

So There is a prime number greater than 100

- $\exists x[prime(x) \land greaterThan(x, 100)]$
- $\exists x[prime(x) \land x > 100]$
- So There is no largest prime
 - no-largest-prime
 - ∀x[prime(x) ⇒ ∃y[prime(y) ∧ greaterThan(y, x)]]
- Severy number has an additive inverse
 - $\forall x[number(x) \Rightarrow \exists y[equal(Plus(x, y), 0)]$

Mixing quantifiers

Sector Everyone likes a dog • $\forall x[human(x) \Rightarrow \exists y[dog(y) \land likes(x, y)]]$ So There's one dog everyone likes • $\exists y [dog(y) \land \forall x [human(x) \Rightarrow likes(x, y)]]$ Everyone likes a different dog • $\forall x [human(x) \Rightarrow \exists y [dog(y) \land likes(x, y) \land$ $\forall z[human(z) \land likes(z, y)] \Rightarrow x = z]$

Location of quantifiers

Severyone likes a dog

• $\forall x[human(x) \Rightarrow \exists y[dog(y) \land likes(x, y)]]$

So What about

- $\forall x[\exists y[(human(x) \land dog(y)) \Rightarrow likes(x, y)]]$
 - human(Jim) : T; human(Spot) : F;
 - dog(Jim) : F; dog(Spot) : T;
 - likes(Jim,Jim) : T; likes(Jim,Spot) : F;
 - likes(Spot,Jim) : F; likes(Spot,Spot) : T

In general, never use $\exists x \text{ with } \Rightarrow$, and don't use $\forall x \text{ with } \land$

What is the truth-value of FOPC wffs? FOPC interpretations

- So The *"user"* must provide a finite list of objects in the world
 - "universe of discourse"
- For each *function*, a <u>mapping</u> from "parameter setting" to an object in the world
 e.g., Father(John) maps to "Bill"
 For each *predicate*, a <u>mapping</u> from each

"parameter setting" to true or false

Determining truth-value of FOPC wff

- Specify an interpretation, I
- So Obtain truth-values of
 - predicates
 - look up functions until only constants remain & then look up the truth value of the predicate
 - termA = termB
 - look up functions until only constants remain; true if same constant; false otherwise
 - wffA connective wffB
 - compute the truth-value of the wffs
 - use connective's truth table to determine the truth-value of compound wff (same for ¬)

Truth-value for quantifiers

$\forall x wff(x)$

- successively replace x by each constant in the interpretation
- if wff(constant) is true for every case, then
 ∀x(wff) is true
- $\Im \exists x wff(x)$
 - same as above, but wff(constant) has only to be true once
- sasume constants list is never empty

Representing change

So On(BlockA, BlockB)

- this is either T or F
- there is no way to change this fact in "basic" FOPC
- Solution: "time stamp" wffs
 - add one more parameter to all predicates indicating *when* they are true
 - On(BlockA, BlockB, S0)
 - On(BlockA, BlockC, S1)
 - where S0 & S1 are situations or states

Changing the world

- Acting (operator applications) changes states (situations) into other states
- Service We need a name for the new state
 - Use functions!
 - In particular, the function Result
 - maps an action and a state to a new state
 - Result(<action>, <state>) \Rightarrow <state>
 - simply a fancy name for a state, just as FatherOf(---) is a fancy name for some man

Block-world example

 ∀x,y,z,s[block(x) ∧ block(y) ∧ table(z) ∧ state(s) ∧ on(x, z, s) ∧ clear(x, s) ∧ clear(y, s)] ⇒ state(Result(Stack(x, y), s)) ∧ on(x, y, Result(Stack(x, y), s)) ∧ clear(x, Result(Stack(x, y), s)) ∧ ¬clear(y, Result(Stack(x, y), s))

Sequences of action)

What's missing?

So What do we know about c in the new state?

- This is a case of the *frame problem*: knowing what stays the same as we move from state to state (like frames in a movie)
- *Blocks stay clear unless something is placed on them during stacking"

 $\forall u, x, y, s[clear(u, s) \land \neg(u = y) \Rightarrow clear(u, s) \land \neg(u = y) \Rightarrow clear($

Example

Se Painting a house does not change who owns it
Se ∀s,h,p[state(s) ∧ house(h) ∧ human(p) ∧ owns(p, h, s) ⇒ owns(p, h, Result(paint(h), s))]

Alternate approach

- Say properties stay the same unless a specific action performed
- $\forall u,x,s,a \ [block(u) \land state(s) \land action(a) \land clear(u, s) \land \neg(a = Stack(x, u)) \land \neg(a = CoverWithBlanket(u)) \land \neg(a = Smash(u)) => clear(u, Result(a, s)]$
- So This usually leads to fewer rules, but it is less modular
 - when new actions defined, we have to double check every such rule to see if it needs editing

Problems with formalization

So Qualification problem

- can we ever really write down all the "preconditions" for a real-world action?
- E.g., starting a car

So **Ramification** problem

- need to represent implicit consequences of actions
- moving car from A to B also moves its steering wheel, spare tire, etc.
- can be handled but becomes tedious

Computer Science Lab University of Wisconsin, Madison