

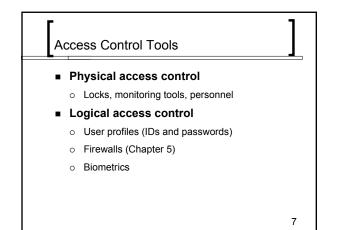
Access Control

- Definitions
 - Access control is the <u>policy-driven</u> limitation of access to systems, data, and dialogs
- What to control?
- Who should have access?
- What can they do?

2

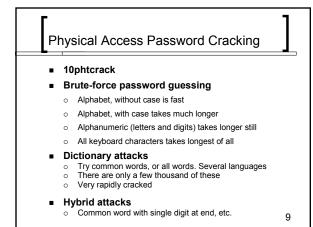
Access Control Elements of Access Control User authentication: whether a role or individual should have any access at all User authorization: exactly what the role or individual should be allowed to do to the resource.

Physical Access Control: Building Security Basics


- Single point of (normal) entry to building
- Fire doors with closed-circuit television (CCTV) and alarms
- Security centers
- Interior doors: avoid piggybacking
- Training security personnel AND employees
- Dumpster diving
- Drive shredding programs for discarded disk drives that do more than reformat drives
- Data Wiring Security

Physical Access Control: Access Cards

Technologies


- o Magnetic Stripe Cards
- Smart Cards
- o Tokens
- Card Cancellation
 - Requires a central system
- PINs
 - Can be short
 - Provide two-factor authentication (PIN + card)

4

Logical Access Control: User Profiles:

- Cracking Passwords Difficult
- Hacking Super accounts
 - o UNIX: Hacking root
 - Windows: administrator
 - o NetWare: supervisor
 - Hacking root rare; usually can only hack ordinary user account
 - May elevate privileges of user account to take root action

gure 2-3: F		
Password Length In Characters	Alphabetic, No Case (N=26)	Alphabetic, Case Sensitive (N=52)
1	26	52
2	676	2,704
4	456,976	7,311,616
6	308,915,776	19,770,609,664
8	2.08827E+11	5.34597E+13
10	1.41167E+14	1.44555E+17

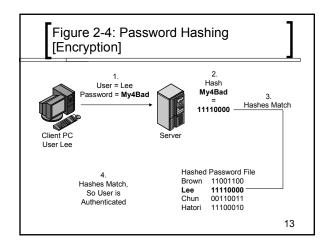
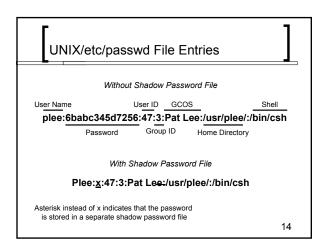
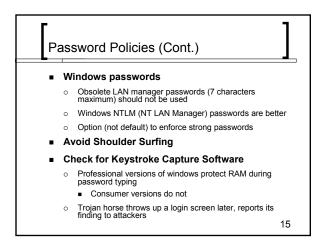
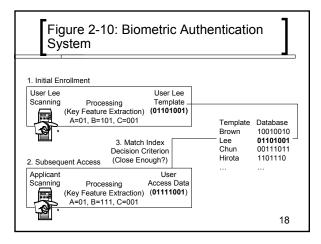


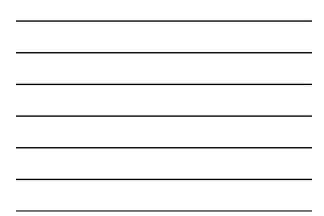
Figure 2-2: Password Length						
Password Length In Characters	Alphanumeric: Letters And Digits (N=62)	All Keyboard Characters (N=80)				
1	62	80				
2	3,844	6,400				
4	14,776,336	40,960,000				
6	56,800,235,584	2.62144E+11				
8	2.1834E+14	1.67772E+15				
10	8.39299E+17	1.07374E+19				

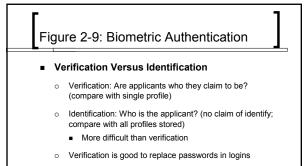




Testing and enforcing password policies


Windows Client PC Software


- BIOS passwords allow boot-up security
 Can be disabled by removing battery
- Screen savers with passwords allow awayfrom-desk security
- Windows professional provides some security with required login


16

Logical Control: Biometrics

- Biometric Authentication
 - o Based on body measurements and motions
- Biometric Systems (Figure 2-10)
 - o Enrollment
 - o Later access attempts
 - Acceptance or rejection

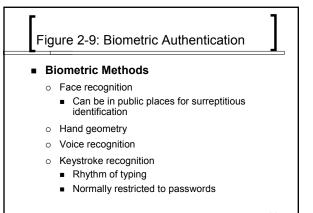
o Identification is good for door access (no need to enter ID)

19

Figure 2-9: Biometric Authentication

- Precision
 - False acceptance rates (FARs): Percentage of unauthorized people allowed in
 - False rejection rates (FRRs): Percentage of authorized people rejected
 - Vendor claims tend to be exaggerated through tests under ideal circumstances

User Acceptance is Crucial


- Fingerprint recognition has a criminal connotation
- o Some methods difficult to use, require disciplined group

20

Figure 2-9: Biometric Authentication

Biometric Methods

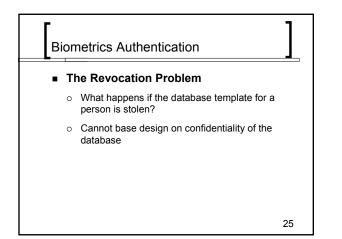
- Fingerprint recognition
 - Simple, inexpensive, well-proven
 - Can be defeated with copies
- Iris recognition
 - Very low FARs
 - High FRR rate can harm acceptance
- o Signature recognition
 - Pattern and writing dynamics

22

Figure 2-9: Biometric Authentication

- Biometric Standards
- Poor standardization (Itd interoperability)

Biometrics Effectiveness


- o Airport face recognition mostly has false positives
 - 4-week face recognition trial at Palm Beach International Airport
 - Scanned 958 times; Only recognized 455 times
 - Recognition rate fell if wore glasses (especially tinted), looked away
 - Would be worse with larger database (250 pictures)
 - Would be worse if photographs were not good

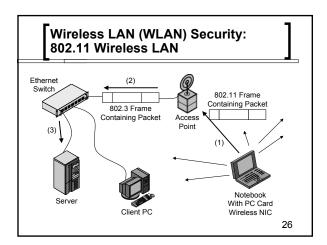
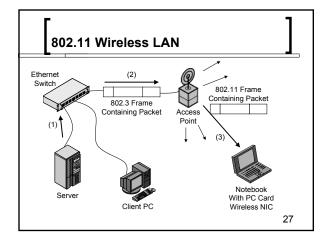

23

Figure 2-9: Biometric Authentication


Can Biometrics be Fooled?

- DOD 270-person test indicates poor acceptance rates when subjects not attempting to evade
 - Face recognition recognized person only 51 percent of time and Iris recognition only 94 percent of the time.
- o Other research: evasion often successful for some methods
 - German magazine fooled most face & fingerprint recognition systems
 - Prof. Matsumoto fooled fingerprint sensors 80% of time with gelatin finger created from latent print on a glass

Multiple 802.11 Standards

Standard	Rated Speed (a)	Unlicensed Radio Band	Effective Distance (b)
802.11b	11 Mbps	2.4 GHz	~30-50 meters
802.11a	54 Mbps	5 GHz	~10-30 meters
802.11g	54 Mbps	5 GHz	?

Notes: (a) Actual speeds are much lower and decline with distance. (b) These are distances for good communication; attackers can read some signals and send attack frames from longer distances.

28

Wireless LAN (WLAN) Operations

Uses Spread Spectrum transmission

o Signal spread over a broad range of frequencies

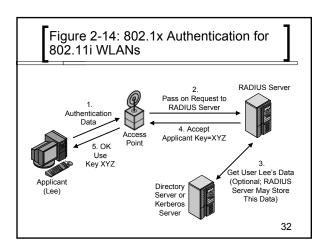
- Methods used by military are hard to detect
- But in 802.11 does not provide security
- 802.11 methods easy to detect so devices can find each other; used to prevent frequencydependent propagation problems rather than for security
- SSIDs (service set identifier)
 - Mobile devices must know access point's SSID 29

Wired Equivalent Privacy (WEP)

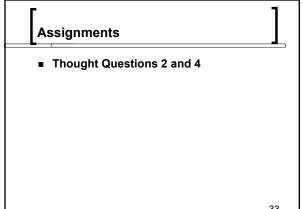
- Early WLAN security
- Not enabled by default!!
- Uses 40-bit or 128-bit encryption keys
 40-bit too small; 128-bit OK

 - Uses shared passwords (All stations AP)

 Difficult to change, so rarely changed
- Flawed security algorithms


802.1x and 802.11i (Figure 2-14)

Basic Operations


- o Authentication server: access decisions
- o User data server: holds data on individuals
- Access point: gives out individual keys for secure exchange 0

Authentication:

- o Uses Extensible Authentication Protocol (EAP)
 - Offers many options for authentication (MD5 CHAP, TLS, TTLS)

