

Two Schools of Thinking

- 1. Generative methods:
 - Bayesian school, pattern theory.
 - 1). Define patterns and regularities (graph spaces),
 - 2). Specify likelihood model for how signals are generated from hidden structures
 - 3). Learning probability models from ensembles of signals
 - 4). Inferences.

2. Discriminative methods:

The goal is to tell apart a number of patterns, say 100 people in a company, 10 digits for zip-code reading. These methods hit the discriminative target directly, without having to understand the patterns (their structures) or to develop a full mathematical description.

For example, we may tell someone is speaking English or Chinese in the hallway without understanding the words he is speaking.

"You should not solve a problem to an extent more than what you need" Lecture note for Stat 231-CS276A: Pattern Recognition and Machine Learning

Levels of task		
For example, there are many levels of tasks related to human face		
	 Face authentication (hypothesis test for one class) Face detection (yes/no for many instances). Face recognition (classification) 	
	4. Expression recognition (smile, disgust, surprise, angry)	
	Identifiability problem.	
	6. Face sketch and from images to cartoon	
	needs generative models.	
	7. Face caricature	
Т	 The simple tasks 1-4 may be solved effectively using discriminative methods.	
1	but the difficult tasks 5-7 will need generative methods	

Main Issues in Pattern Recognition

- 1. Feature selection and extraction --- What are good discriminative features?
- 2. Modeling and learning
- 3. Dimension reduction, model complexity
- 4. Decisions and risks
- 5. Error analysis and validation.
- 6. Performance bounds and capacity.
- 7. Algorithms

Lecture note for Stat 231-CS276A: Pattern Recognition and Machine Learning

What is a pattern

In a mathematical language, Grenander proposed to define patterns with the following components (1976-1995)

- 1. Regularity R=<G, S, ρ , Σ >
 - G --- a set/space of generators (the basic elements in a pattern), each generator has a number of "bonds" that can be connected to neighbors.
 - S --- a transformation group (such as similarity transform) for the generators
 - ρ --- a set of local regularities (rules for the compatibility of generators and their bounds
 - Σ --- a set of global configurations (graphs with generators being vertices and connected bonds being edges).

Lecture note for Stat 231-CS276A: Pattern Recognition and Machine Learning

2. Ai	n image algebra
	I = <c(),="" e="" r=""></c(>
	The regularity R defines a class of regular configurations $C(R)$. But such configurations are hidden in signals, when a configuration is projected to a sensor, some information may get lost, and there is an equivalence relationship E. The image algebra is a quotient space of $C(R)$. I.e. some instances are not identifiable by images
	In philosophy, patterns are our mental perception of world regularities.
3. A	probability p on C(R) and on I
	In a Bayesian term, this is a prior model on the configuration and the likelihood model for how the image looks like given a configuration.