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In This Talk

Object recognition in computer vision
– Brief definition and overview

Part-based models of objects
– Pictorial structures for 2D modeling

A Bayesian framework
– Formalize both learning and recognition 

problems

Efficient algorithms for pictorial structures
– Learning models from labeled examples
– Recognizing objects (anywhere) in images
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Object Recognition

Given some kind of model of an object
– Shape and geometric relations

– Two- or three-dimensional

– Appearance and reflectance – color, texture, …

– Generic object class versus specific object

Recognition involves
– Detection: determining whether an object is 

visible in an image (or how likely)

– Localization: determining where an object is in 
the image
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Our Recognition Goal

Detect and localize multi-part objects that 
are at arbitrary locations in a scene
– Generic object models such as person or car
– Allow for “articulated” objects
– Combine geometry and appearance
– Provide efficient and practical algorithms
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Pictorial Structures

Local models of appearance with non-local 
geometric or spatial constraints
– Image patches describing color, texture, etc.
– 2D spatial relations between pairs of patches

Simultaneous use of appearance and 
spatial information
– Simple part models alone too non-distinctive
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A Brief History of Recognition

Pictorial structures date from early 1970’s
– Practical recognition algorithms proved difficult

Purely geometric models widely used 
– Combinatorial matching to image features
– Dominant approach through early 1990’s
– Don’t capture appearance such as color, texture

Appearance based models for some tasks
– Templates or patches of image, lose geometry

• Generally learned from examples

– Face recognition a common application
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Other Part-Based Approaches

Geometric part decompositions
– Solid modeling (e.g., Biederman, Dickinson)

Person models
– First detect local features then apply geometric 

constraints of body structure (Forsyth & Fleck)

Local image patches with geometric 
constraints
– Gaussian model of spatial distribution of parts 

(Burl & Perona)
– Pictorial structure style models (Lipson et al)
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Formal Definition of Our Model

Set of parts V={v1, …, vn}
Configuration L=(l1, …, ln)
– Random field specifying locations of the parts

Appearance parameters A=(a1, …, an)
Edge eij, (vi,vj) ∈ E for neighboring parts
– Explicit dependency between li, lj
Connection parameters C={cij | eij ∈ E}
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Quick Review of Probabilistic Models

Random variable X characterizes events
– E.g., sum of two dice

Distribution p(X) maps to probabilities
– E.g., 2 → 1/36, 5 → 1/9, …

Joint distribution p(X,Y) for multiple events
– E.g., rolling a 2 and a 5
– p(X,Y)=p(X)p(Y) when events independent

Conditional distribution p(X|Y)
– E.g., sum given the value of one die

Random field is set of dependent r.v.’s 
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Problems We Address

Recognizing model Θ=(A,E,C) in image I
– Find most likely location L for the parts

• Or multiple highly likely locations

– Measure how likely it is that model is present

Learning a model Θ from labeled example 
images I1,…, Im and L1, …,Lm

– Known form of model parameters A and C
• E.g., constant color rectangle

− Learn ai: average color and variation

• E.g., relative translation of parts 
− Learn cij: average position and variation
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Standard Bayesian Approach

Estimate posterior distribution p(L|I,Θ)
– Probabilities of various configurations L given 

image I and model Θ
• Find maximum (MAP) or high values (sampling)

Proportional to p(I|L,Θ)p(L|Θ) [Bayes’ rule]
– Likelihood p(I|L,Θ): seeing image I given 

configuration and model
• Fixed L, depends only on appearance, p(I|L,A)

– Prior p(L|Θ): obtaining configuration L given 
just the model
• No image, depends only on constraints, p(L|E,C) 
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Class of Models

Computational difficulty depends on Θ
– Form of posterior distribution

Structure of graph G=(V,E) important
– G represents a Markov Random Field (MRF)

• Each r.v. depends explicitly on neighbors

– Require G be a tree
• Prior on relative location p(L|E,C) = ∏Ep(li,lj|cij)
• Natural for models of animate objects – skeleton
• Reasonable for many other objects with central 

reference part (star graph)
• Prior can be computed efficiently
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Class of Models 

Likelihood p(I|L,A) = ∏ip(I|li,ai)
– Product of individual likelihoods for parts

• Good approximation when parts don’t overlap

Form of connection also important – space 
with “deformation distance”
– p(li,lj|cij) ∝ η(Tij(li)-Tji(li),0,Σij)

• Normal distribution in transformed space

– Tij, Tji capture ideal relative locations of parts 
and Σij measures deformation
• Mahalanobis distance in transformed space 

(weighted squared Euclidean distance)
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Bayesian Formulation of Learning

Given example images I1, …, Im with 
configurations L1, …, Lm

– Supervised or labeled learning problem

Obtain estimates for model Θ=(A,E,C)
Maximum likelihood (ML) estimate is
– argmaxΘ p(I1, …, Im, L1, …, Lm |Θ)
– argmaxΘ ∏kp(Ik,Lk|Θ) independent examples

Rewrite joint probability as product –
appearance and dependencies separate
– argmaxΘ ∏kp(Ik|Lk,A) ∏kp(Lk|E,C)
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Efficiently Learning Models

Estimating appearance p(Ik|Lk,A)
– ML estimation for particular type of part

• E.g., for constant color patch use Gaussian 
model, computing mean color and covariance

Estimating dependencies p(Lk|E,C)
– Estimate C for pairwise locations, p(lik,ljk|cij)

• E.g., for translation compute mean offset 
between parts and variation in offset

– Best tree using minimum spanning tree (MST) 
algorithm
• Pairs with smallest relative spatial variation
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Example: Generic Face Model

Each part a local image patch
– Represented as response to oriented filters

– Vector ai corresponding to each part

Pairs of parts constrained in terms of their 
relative (x,y) position in the image
Consider two models: 5 parts and 9 parts
– 5 parts: eyes, tip of nose, corners of mouth
– 9 parts: eye split into pupil, left side, right side
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Learned 9 Part Face Model

Appearance and structure parameters 
learned from labeled frontal views
– Structure captures pairs with most predictable 

relative location – least uncertainty
– Gaussian (covariance) model captures 

direction of spatial variations – differs per part
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Each part represented as rectangle
– Fixed width, varying length
– Learn average and variation 

• Connections approximate revolute joints

– Joint location, relative position, 
orientation, foreshortening

– Estimate average and variation

Learned 10 part model
– All parameters learned

• Including “joint locations”

– Shown at ideal configuration

Example: Generic Person Model
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Bayesian Formulation of Recognition

Given model Θ and image I, seek “good”
configuration L
– Maximum a posteriori (MAP) estimate

• Best (highest probability) configuration L
• L*=argmaxL p(L|I,Θ)

– Sampling from posterior distribution
• Values of L where p(L|I,Θ) is high

− With some other measure for testing hypotheses

Brute force solutions intractable
– With n parts and s possible discrete locations 

per part, O(sn)
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Efficiently Recognizing Objects

MAP estimation algorithm
– Tree structure allows use of Viterbi style 

dynamic programming
• O(ns2) rather than O(sn) for s locations, n parts
• Still slow to be useful in practice (s in millions)

– New dynamic programming method for finding 
best pair-wise locations in linear time
• Resulting O(ns) method
• Requires a “distance” not arbitrary cost

Similar techniques allow sampling from 
posterior distribution in O(ns) time
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The Minimization Problem

Recall that best location is
– L*= argmaxLp(L|I,Θ)=argmaxLp(I|L,A)p(L|E,C)

Given the graph structure (MRF) just 
pairwise dependencies
– L*= argmaxL ∏V p(I|li,ai) ∏E p(li,lj|cij)

Standard approach is to take negative log
– L*= argminL ΣV mj(lj) + ΣE dij(li,lj)

• mj(lj)=-log p(I|lj,aj) – how well part vj matches 
image at lj

• dij(li,lj)=-log p(li,lj|cij) – how well locations li,lj
agree with model
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Minimizing Over Tree Structures

Use dynamic programming to minimize
ΣV mj(lj) + ΣE dij(li,lj)
Can express as function for pairs Bj(li) 
– Cost of best location of vj given location li of vi

Recursive formulas in terms of children 
Cj of vj

– Bj(li) = minlj ( mj(lj) + dij(li,lj) + ΣCj Bc(lj) )
– For leaf node no children, so last term empty 
– For root node no parent, so second term 

omitted
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Running Time

Compute minimum using these equations
– Start with leaf nodes, build up sub-trees

O(ns2) running time for n parts and s 
locations of each part
– Each part pair defining one equation Bj(li) 

• O(s2) time per pair, O(n) pairs

When dij is distance don’t need to consider 
location pairs
– Define Bj(li) as a kind of distance transform

• For each location of vj minimum location of vi
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Classical Distance Transforms

Defined for set of points, P, 
∆P(x) = miny∈P ||x - y||

– For each location x distance to nearest y in P
– Think of as cones rooted at each point of P

Commonly computed on a grid Γ using
∆P(x) = miny∈ Γ ( ||x - y|| + 1B(y) )

– Where 1B(y) = 0 when y∈P, ∞ otherwise
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Computing Distance Transforms

Two pass algorithm for L1 norm
– O(sD) time for s locations on a D-dim grid
– On each pass, min sum of mask and distance 

array (“in place”)

Simple method to approximate Lp norms
More involved exact method for L2 that 
also reports which point is closest
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Generalized Distance Transforms

Replace indicator function with arbitrary f
– ∆f(x) = miny∈Γ ( ||x - y|| + f(y) )

Intuitively, for grid location x, find y where 
f(y) plus distance to x is “small”
– A distance plus a cost for each location

Change in ∆f(x) is bounded by change in x
– Small value of f “dominates” nearby large 

values

This generalized distance transform (GDT) 
computed same way as classic DT
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O(ns) Algorithm for MAP Estimate

Can express Bj(li) in recursive minimization 
formulas as a GDT ∆f(Tij(li))
– Cost function for GDT 

• f(y) = mj(Tji
-1(y)) + ∑Cj Bc(Tji

-1(y)) 

– Tij maps locations to space where difference 
between li and lj is a squared distance
• Distance zero at ideal relative locations

Have n recursive equations 
– Each can be computed in O(sD) time

• D is number of dimensions to parameter space 
but is fixed (in our case D is 2 to 4)
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Recognizing Faces

Generic model of frontal view
– Using learned 5- and 9-part models

• Local oriented filters for parts
• Relatively small spatial variation in part locations
• Similar overall size and orientation of face

MAP estimation to find best match
– Posterior estimate of configuration L is 

accurate because parts do not overlap
– Consider all possible locations in image
– Runs at several frames per second on a 

desktop workstation
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Example: Recognizing Faces
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Example: Recognizing People

Frontal view models
– Generic model using binary rectangles for parts

• Match to “difference image”

– Specific model using color rectangles for parts
• Match to original image

Sampling posterior to find good matches
– Posterior estimate of L can be high for several 

configurations due to overlap of parts 
– Use best of 200 samples

• Measured using correlation (Chamfer matching)

– Search over all locations runs in under minute
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Sampling the Posterior

Generate good possible matches as 
hypotheses
– Locations where p(L|I,Θ) large
– Validate or compare using another technique

• Here use a correlation-like measure (Chamfer)

Computation similar to MAP estimation
– Recursive equations, one per part
– Ability to solve each equation in linear time

• Via convolution with Gaussian
• Linear time dynamic programming 

approximation using box filters (due to Wells)

32

Example: Recognizing People
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Variety of Poses
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Variety of Poses
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Samples From Posterior
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Model of Specific Person
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Summary

Pictorial structures combine local part 
appearance and global spatial constraints
– Don’t try to localize parts first – exploit context
– Suitable for generic models of object classes

Bayesian framework provides natural 
learning problem – ML estimation
– Only requires placing part models in images; 

structure and parameters are learned

Practical algorithms for searching over all 
possible locations in image
– Best match or good matches (high posterior)
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What’s Next

Allow for occluded parts
– Make part likelihood p(I|li,ai) a robust measure

Apply to tracking people in video
– Incorporate location at previous time frame 

into prior
• Use for more efficient methods

Start with generic models and use to learn 
person specific models
– Discriminate between people

Use person and face methods together


