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In This Talk

Object recognition in computer vision
- Brief definition and overview
Part-based models of objects

- Pictorial structures for 2D modeling

A Bayesian framework

- Formalize both learning and recognition
problems

Efficient algorithms for pictorial structures
- Learning models from labeled examples
- Recognizing objects (anywhere) in images
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Object Recognition

= Given some kind of model of an object
- Shape and geometric relations
- Two- or three-dimensional
- Appearance and reflectance - color, texture, ...
- Generic object class versus specific object

= Recognition involves

- Detection: determining whether an object is
visible in an image (or how likely)

- Localization: determining where an object is in
the image
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Our Recognition Goal

» Detect and localize multi-part objects that
are at arbitrary locations in a scene
- Generic object models such as person or car
- Allow for “articulated” objects
- Combine geometry and appearance
- Provide efficient and practical algorithms




Pictorial Structures

= Local models of appearance with non-local
geometric or spatial constraints
- Image patches describing color, texture, etc.
- 2D spatial relations between pairs of patches

= Simultaneous use of appearance and
spatial information
- Simple part models alone too non-distinctive
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A Brief History of Recognition

= Pictorial structures date from early 1970’s

- Practical recognition algorithms proved difficult
= Purely geometric models widely used

- Combinatorial matching to image features

- Dominant approach through early 1990’s

- Don'’t capture appearance such as color, texture
= Appearance based models for some tasks

- Templates or patches of image, lose geometry
e Generally learned from examples
- Face recognition a common application
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Other Part-Based Approaches

= Geometric part decompositions
- Solid modeling (e.g., Biederman, Dickinson)
= Person models

- First detect local features then apply geometric
constraints of body structure (Forsyth & Fleck)

» Local image patches with geometric
constraints

- Gaussian model of spatial distribution of parts
(Burl & Perona)

- Pictorial structure style models (Lipson et al)
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Formal Definition of Our Model

Set of parts V={v;y, ..., V,}

Configuration L=(ly, ..., |,)

- Random field specifying locations of the parts
Appearance parameters A=(ay, ..., a,)
Edge e;;, (v;,v;) € E for neighboring parts
- Explicit dependency between I, Ij
Connection parameters C={c; | ¢; € E}
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Quick Review of Probabilistic Models

Random variable X characterizes events

- E.g., sum of two dice

Distribution p(X) maps to probabilities
-E.g., 2 >1/36,5—>1/9, ..

Joint distribution p(X,Y) for multiple events
- E.g., rollinga2and a5

- p(X,Y)=p(X)p(Y) when events independent

Conditional distribution p(X]|Y)
- E.g., sum given the value of one die

Random field is set of dependent r.v.’s

-

Problems We Address

= Recognizing model ®=(A,E,C) in image I
- Find most likely location L for the parts
e Or multiple highly likely locations
- Measure how likely it is that model is present

» Learning a model ® from labeled example
images I1,...,, Imand L1, ...,L™
- Known form of model parameters A and C
e E.g., constant color rectangle
— Learn a;: average color and variation
e E.g., relative translation of parts
- Learn c¢;: average position and variation
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Standard Bayesian Approach

» Estimate posterior distribution p(L|I,®)
- Probabilities of various configurations L given
image I and model ©
e Find maximum (MAP) or high values (sampling)
= Proportional to p(I|L,®)p(L|®) [Bayes’ rule]
- Likelihood p(I|L,®): seeing image I given
configuration and model
e Fixed L, depends only on appearance, p(I|L,A)
- Prior p(L|®): obtaining configuration L given
just the model
e No image, depends only on constraints, p(L|E,C)
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Class of Models

= Computational difficulty depends on ®
- Form of posterior distribution
= Structure of graph G=(V,E) important
- G represents a Markov Random Field (MRF)
e Each r.v. depends explicitly on neighbors
- Require G be a tree
* Prior on relative location p(L|E,C) = IIgp(l;llc;)
e Natural for models of animate objects - skeleton

e Reasonable for many other objects with central
reference part (star graph)

e Prior can be computed efficiently
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Class of Models

= Likelihood p(I|L,A) = [I;p(I]l;,a;)
- Product of individual likelihoods for parts
e Good approximation when parts don’t overlap

= Form of connection also important - space
with “deformation distance”
- p(li/ljlci) o« (T -T5(1),0,Z)
e Normal distribution in transformed space

- Ty, Ty capture ideal relative locations of parts
and X; measures deformation

e Mahalanobis distance in transformed space
(weighted squared Euclidean distance)
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Bayesian Formulation of Learning

Given example images 11, ..., I™ with
configurations L1, ..., L™

- Supervised or labeled learning problem
Obtain estimates for model ®=(A,E,C)
Maximum likelihood (ML) estimate is

- argmaxg p(It, ..., Im, L, ., L™ |@®)

- argmaxg [1,p(I%,L*%|®) independent examples
Rewrite joint probability as product -
appearance and dependencies separate
- argmaxg [1,p(IK|L¥,A) TTp(L*|E,C)
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Efficiently Learning Models

= Estimating appearance p(Ik|Lk,A)
- ML estimation for particular type of part
e E.g., for constant color patch use Gaussian
model, computing mean color and covariance
= Estimating dependencies p(LX|E,C)
- Estimate C for pairwise locations, p(l¥,l;k|c;;)

e E.g., for translation compute mean offset
between parts and variation in offset

- Best tree using minimum spanning tree (MST)
algorithm
e Pairs with smallest relative spatial variation
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Example: Generic Face Model

= Each part a local image patch
- Represented as response to oriented filters

- Vector a; corresponding to each part

= Pairs of parts constrained in terms of their
relative (x,y) position in the image

= Consider two models: 5 parts and 9 parts
- 5 parts: eyes, tip of nose, corners of mouth
- 9 parts: eye split into pupil, left side, right side
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Learned 9 Part Face Model

= Appearance and structure parameters
learned from labeled frontal views

- Structure captures pairs with most predictable
relative location - least uncertainty

- Gaussian (covariance) model captures
direction of spatial variations - differs per part
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Example: Generic Person Model

= Each part represented as rectangle
- Fixed width, varying length
- Learn average and variation
e Connections approximate revolute joints

- Joint location, relative position,
orientation, foreshortening

- Estimate average and variation

= Learned 10 part model

- All parameters learned
e Including “joint locations”
- Shown at ideal configuration
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Bayesian Formulation of Recognition

= Given model ® and image I, seek “good”
configuration L
- Maximum a posteriori (MAP) estimate
e Best (highest probability) configuration L
e L*=argmax p(L|I,®)
- Sampling from posterior distribution
¢ Values of L where p(L|I,®) is high
— With some other measure for testing hypotheses
= Brute force solutions intractable

- With n parts and s possible discrete locations
per part, O(s")
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Efficiently Recognizing Objects

= MAP estimation algorithm
- Tree structure allows use of Viterbi style
dynamic programming
e O(ns2) rather than O(s") for s locations, n parts
e Still slow to be useful in practice (s in millions)
- New dynamic programming method for finding
best pair-wise locations in linear time
e Resulting O(ns) method
e Requires a “distance” not arbitrary cost

= Similar techniques allow sampling from
posterior distribution in O(ns) time
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The Minimization Problem

= Recall that best location is
- L*= argmax p(L|I,®)=argmax p(I|L,A)p(L|E,C)
= Given the graph structure (MRF) just
pairwise dependencies
- L*= argmax [y p(I|l;,;a;) T1g p(li, il ciz)
= Standard approach is to take negative log
- L*= argmin_ 2y, my(l;) + Zg d(1;,1;)
e m;(l;)=-log p(I|l;,a;) - how well part v; matches
image at |;

e d;;(li,1;)=-log p(l;,ljlc;;) — how well locations I;,1;
agree with model
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Minimizing Over Tree Structures

» Use dynamic programming to minimize
2y my(ly) + Zg dy(l )
= Can express as function for pairs By(l;)
— Cost of best location of v; given location [; of v;
= Recursive formulas in terms of children
G of v,
- B;(1i)) = miny ( my(ly) + dy(1i,1;) + 2 Be(l5) )
- For leaf node no children, so last term empty

- For root node no parent, so second term
omitted
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Running Time

= Compute minimum using these equations
- Start with leaf nodes, build up sub-trees
= O(ns2) running time for n parts and s
locations of each part
— Each part pair defining one equation By(l;)
¢ O(s2) time per pair, O(n) pairs
= When d;; is distance don’t need to consider
location pairs
- Define By(l;) as a kind of distance transform
e For each location of v; minimum location of v;
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Classical Distance Transforms

» Defined for set of points, P,

Ap(X) = minycp [[X - y]|
- For each location x distance to nearest y in P
- Think of as cones rooted at each point of P

= Commonly computed on a grid T" using

Ap(X) = miny_r ( [Ix-y[] + 1g(y) )
- Where 15(y) = 0 when yeP, « otherwise
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Computing Distance Transforms

= Two pass algorithm for L; norm
- O(sD) time for s locations on a D-dim grid
- On each pass, min sum of mask and distance
array (“in place”)
= Simple method to approximate L, norms
= More involved exact method for L, that
also reports which point is closest
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Generalized Distance Transforms

Replace indicator function with arbitrary f
= Ad(x) = mingr ( [Ix -yl + f(y))

Intuitively, for grid location X, find y where
f(y) plus distance to x is “small”

- A distance plus a cost for each location
Change in A«(x) is bounded by change in x

- Small value of f "dominates” nearby large
values

This generalized distance transform (GDT)
computed same way as classic DT
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O(ns) Algorithm for MAP Estimate

= Can express By(l;) in recursive minimization
formulas as a GDT A«(T;(l;))
- Cost function for GDT
o f(y) = my(Tyi2(y)) + Z¢j B(T371(Y))
- T;; maps locations to space where difference
between |; and |; is a squared distance
e Distance zero at ideal relative locations
= Have n recursive equations

- Each can be computed in O(sD) time

e D is number of dimensions to parameter space
but is fixed (in our case D is 2 to 4)
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Recognizing Faces

Generic model of frontal view
- Using learned 5- and 9-part models
e Local oriented filters for parts
e Relatively small spatial variation in part locations
e Similar overall size and orientation of face
= MAP estimation to find best match

- Posterior estimate of configuration L is
accurate because parts do not overlap

- Consider all possible locations in image

- Runs at several frames per second on a
desktop workstation
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Example: Recognizing Faces

Example: Recognizing People

» Frontal view models
- Generic model using binary rectangles for parts
e Match to “difference image”
- Specific model using color rectangles for parts
e Match to original image
= Sampling posterior to find good matches

- Posterior estimate of L can be high for several
configurations due to overlap of parts

- Use best of 200 samples
e Measured using correlation (Chamfer matching)
- Search over all locations runs in under minute
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Sampling the Posterior

= Generate good possible matches as
hypotheses
- Locations where p(L|I,®) large
- Validate or compare using another technique
e Here use a correlation-like measure (Chamfer)
= Computation similar to MAP estimation
- Recursive equations, one per part
- Ability to solve each equation in linear time
¢ Via convolution with Gaussian

e Linear time dynamic programming
approximation using box filters (due to Wells)
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Example: Recognizing People




Variety of Poses

Variety of Poses




Samples From Posterior




Summary

= Pictorial structures combine local part
appearance and global spatial constraints
- Don’t try to localize parts first — exploit context
- Suitable for generic models of object classes

= Bayesian framework provides natural
learning problem - ML estimation
- Only requires placing part models in images;

structure and parameters are learned

» Practical algorithms for searching over all
possible locations in image
- Best match or good matches (high posterior)
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What's Next

Allow for occluded parts
- Make part likelihood p(I|l;,a;) a robust measure
Apply to tracking people in video
- Incorporate location at previous time frame
into prior
e Use for more efficient methods
Start with generic models and use to learn
person specific models
- Discriminate between people

Use person and face methods together
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