28. January 2003

Presented by: Stefan Rondinelli

- 1. Motivation
- 2. Face Recognition
- 3. Speaker Identification
- 4. Bayes Net
- 5. Results

Automatic banking

Password-free computer login

Person dependent behavior

What are the requirements?

- Face must be found in any kind of background
- Should recognize a person despite wide variations in pose and facial expression
- > Don't let fool the system by a photograph

Face Detection and Tracking

1. Detect the face using skin color information

- The skin color is modeled with a mixture of Gaussians
- The model is trained with faces with varying skin tone and under different lighting conditions

Face Detection and Tracking

2. Detect the features (eyes, mouth, etc.)

=>> The positions of the features give an estimate of the pose

3. Warp the detected face to a frontal view

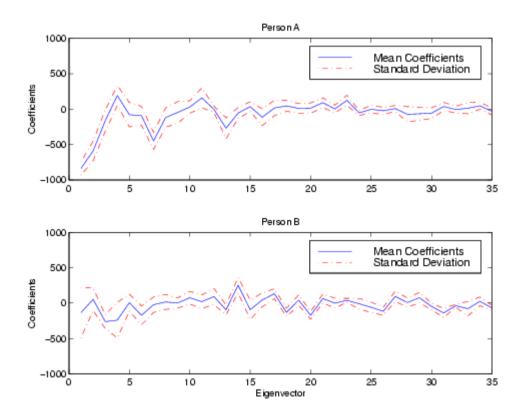
=>> Use the pose estimate and a 3D head model

Eigenspace Modeling

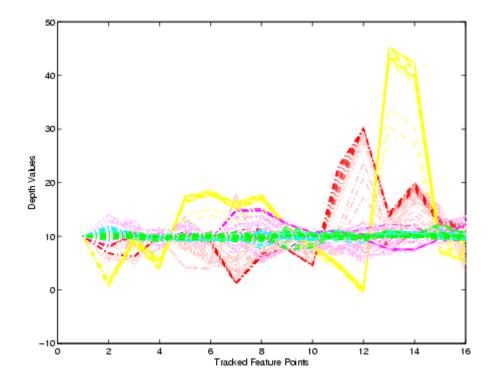
Preparation

- Search the face for exact positions of the features
- Normalize the face such that eyes and mouth are at fixed locations

Eigenspace Modeling

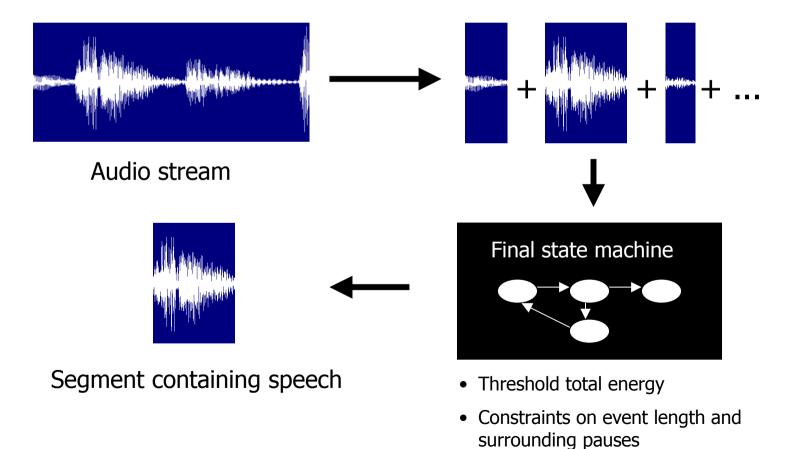

Convert from "pixel space" into "face space"

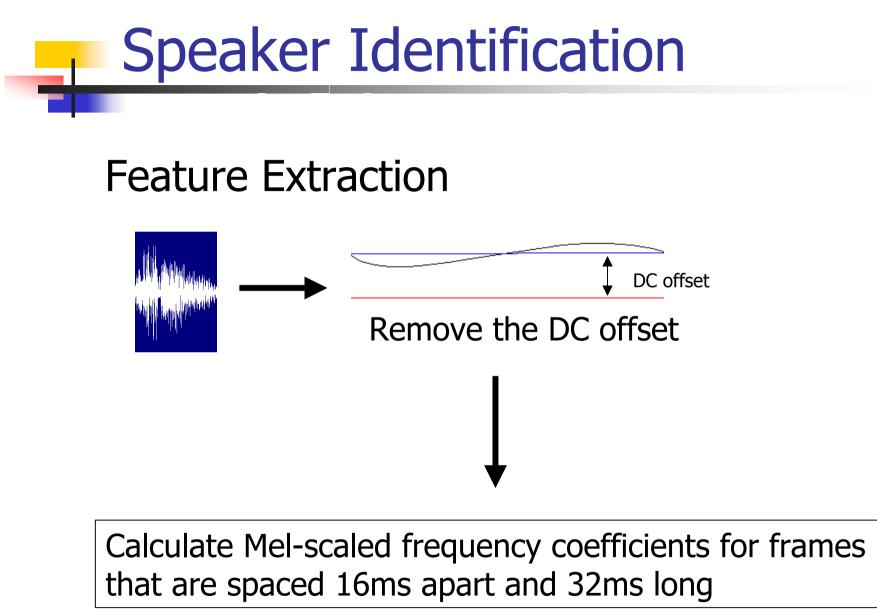
Basis vectors of the "face space"



The first 35 coefficients of two persons

Depth Estimate



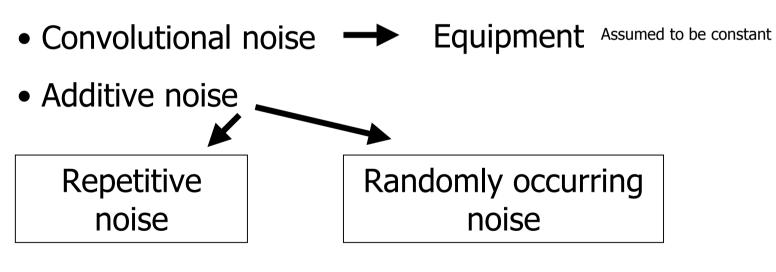

What are the requirements?

Should work also in a noisy environment

Event Detection

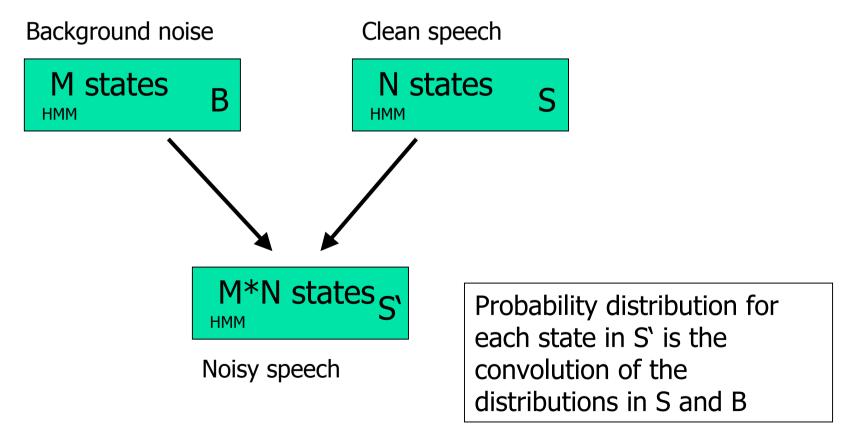
Modeling

One HMM (Hidden Markov Model) for each person


Initialization

by using segmental k-means **Maximization of the model likelihood** by using the EM algorithm (Expectation-Maximization)

Background Adaption


2 types of noise

eg. motor noise eg. thunder in a rain storm

Background Adaption

Background Adaption

HMM Models	Speech Only	Speech + Noise
Speech Only (S)	71.5%	23.1%
Adapted (S')	N/A	65.4%
Corrupted (C)	N/A	69.2%

- HMM S: Clean Speech
- HMM S': Clean Speech * Noise
- HMM C: Clean Speech and Noise (for evaluation)

Confidence Scores

Distance from Face Space (DFFS)

 $DFFS(x) = ||x - \overline{x}||_{Eigenspace}$

Aggregate Model Likelihood (AML)

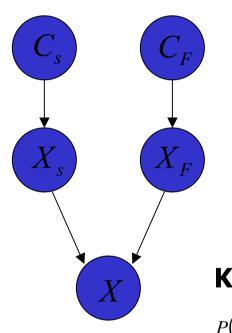
$$AML(x) = \log\left(\sum_{j} P(x \mid Model_{j})\right)$$

Maximum-Probability to Average-Probability Distance (MPAP)

$$MPAP(x) = \max_{j} \{P(X = j)\} - \frac{1}{N} \sum_{j} P(X = j)$$

Convert measures into probabilities:

Let p(M(x)) = pdf



Confidence Score	${\operatorname{Speech}}$	Face
DFFS	N/A	$55.3\%,\!90.0\%$
AML	50.2%, 47.6%	N/A
MPAP	$71.4\%,\!50.3\%$	$99.1\%,\!53.4\%$

Comparison of Confidence Scores: Prediction rates of Correct Recognition (left) and Wrong Recognition (right)

- The percentages are based on the correlation between the confidence scores and the correctly or incorrectly recognized test cases.
- 50% (chance) means that the confidence score is uncorrelated with recognition

Bayes Net

- C_{s} Speech Confidence
- C_F Face Confidence
- X_s Speaker Identity
- X_F Face Identity
- *X* Person Identity

Other probabilities:

 $P(C_i)$ Recognition rate for

each classifier

Knowledge sources:

 $P(X | X_i)$ Classifier's probability for each person $P(X_i | C_i)$ Confidence in the classifier Where C_i = {reliable, not reliable}, X_i = {j|j∈ Client database}

 $P(X) = P(X \mid X_S)P(X_S \mid C_S)P(C_S) + P(X \mid X_F)P(X_F \mid C_F)P(C_F)$

Modality	Per Image/Clip	Per Session
Audio	71.2~%	80.8~%
Video	83.5~%	88.4~%
Audio + Video	93.5~%	100 %

Modality	Per Image/Clip
Audio	92.1% (28.8%)
Video	97.1% (17.7%)
Audio + Video	99.2% (55.3%)

Modality	Per Image/Clip	Per Session
Audio	97.8~%~(0.2%)	98.5 % (0%)
Video	99.1%(0.2%)	99.6 % (0%)
Audio + Video	99.5~%~(0.3%)	100 % (0%)

Using only the most reliable image/clip pair

Recognition Rates (Zero Rejection Threshold)

Recognition Rates (Optimal Rejection Threshold): the rejection rates are in parentheses

Verification Rates (Optimal Rejection Threshold): false acceptance rates are in parentheses