

Passwords	5 (II)	
 Password len early 1990's) 	igths at some univer :	rsity (from a study in the
Length	Number	Percentage
1	55	0.4
2	87	0.6
3	212	2
4	449	3
5	1260	9
6	3035	22
7	2917	21
8	5772	42
Dr. Shlomo Kipnis	Fall 2003/2004	Hebrew University 6

Passwords (III)

Common situation:

- \succ Short passwords (between 4 and 8 characters)
- > English words (few thousands)
- > Names (few hundreds)
- > Personal data (easy to obtain)
- > Combinations of above (easy to compute)
- > Passwords are written somewhere (easy to find)
- > Password in many systems (break one break all)

Dr. Shlomo Kipnis

Fall 2003/2004

Passwords (IV) ✤ Attacks on passwords: Password guessing > Searching for passwords > Online dictionary attacks > Offline password cracking > Sniffing communication lines > Social engineering Hebrew University 7 Dr. Shlomo Kipnis Fall 2003/2004 Hebrew University 8

Hebrew University 12

Passwords (VII)			Passwords (VIII)			
 Password break 	ing recipes:		 Password break 	king recipes (continued)	:	
> Try default passwords used in standard system accounts			Use a Trojan horse to steal users' passwords			
Exhaustively se	Exhaustively search all short passwords			Eavesdrop to communication lines		
Try words from online dictionaries			Get access to passwords files			
 Collect and try data that is related to users (user names, family member names, birth dates, identification numbers, etc.) 			 Analyze the (hashed / encrypted) passwords file Get from machine to machine with OS facilities and/or with known passwords Pretend to be a legitimate user and ask the administrator to issue you a new password Pretend to be a legitimate administrator and ask the user to disclose the password 			
 Try common combinations of user data (e.g., reverse writing, adding digits at end of passwords, etc.) Look for written passwords 						
Dr. Shlomo Kipnis	Fall 2003/2004	Hebrew University 11				

Passwords (IX)

- System recommendations:
 - > Educate users of importance of password security
 - > Monitor user accounts for suspicious behavior
 - > Lock account after a number of unsuccessful login attempts
 - > Keep password file encrypted or hashed
 - > Use password strengthening mechanisms (e.g. Unix salt)
 - Keep password files in secure locations (directories in the file system, special servers, etc.)
 - Request users to change passwords frequently
 - > Run password cracking tests and disallow weak passwords

> Use passwords only as one factor in authentication process

Hebrew University 13

Dr. Shlomo Kipnis

Fall 2003/2004

Passwords (X)

Password selection recommendations:

- Use combinations of letters, upper-case, lower-case, digits, other characters
- Change passwords frequently
- > Use different passwords in different systems
- > Use random passwords (8-10 characters long)
- > Use readable passwords (16-20 characters)
- > Use pass-phrases (30-40 character sentences)

```
Dr. Shlomo Kipnis
```

Fall 2003/2004

Hebrew University 14

asswor	ds (XI)		Passwords (XII)	
Password	Administration Scenario:		✤ <u>Summary</u> :		
> Admin:	Passwords must be changed every	90 days	➤ Accurate neg	gative	
> User:	Changes the password to the same	e password	> Not accurate	e positive	
➤ Admin:	Check that password is changed to	a new one	≻ Secret user o	data	
> User:	Changes the password and change	es again to the old one	> Secret serve	r data	
> Admin:	Tracks last \mathbf{n} passwords and check	s that password is new	> Eagy to broad	k	
> User:	Changes the password n+1 times a	nd returns to old one	F Edsy to brea	ĸ	
> Admin:	Disallows more than one password	change per day	Simple to op	erate	
> User:	Changes to the same password with	th 1, 2, 3, at the end	➤ Portable		
➤ Admin:	Disallows passwords that are "too similar" to old ones		> Transferable		
> User:	Invents a random password and w	rites it down on paper	≻ Not easily re	vocable	
r. Shlomo Kipnis	Fall 2003/2004	Hebrew University 15	Dr. Shlomo Kipnis	Fall 2003/2004	Hebrew University 1

etrics (I)			Biometrics ((II)	
ometrics consists nysiological prope ertain properties eed to select prop > Easy to detect	of checking physica erties of a person are highly unique to perties that are:	II, biological or each person	 Finger Prints: 2-D geomet 3-D geomet Liveliness cf Capacitance 	ry ry necks (pulse, temperature, e / resistance checks	etc)
Provide high levels of accuracyNeed to maintain database of biometrics parameters		 Relatively accu Needs mainten Acceptance lev 	rate nance rel is increasing		
pnis	Fall 2003/2004	Hebrew University 17	Dr. Shlomo Kipnis	Fall 2003/2004	Hebrew U

One-Time Passwords (II) ✤ S/Key: \succ Card stores seed X₀ of a hash chain of length N

- > Server stores end of hash chain: $X_N = H^{(N)}(X_0)$
- > User submits password $X_i = H^{(N-i)}(X_0)$ at use i
- > Need to administer after N uses

key

clock PIN

Hebrew University 34

Server

