


Representation

❧ We need a way to enter “world facts” into
the computer in such a manner that the
computer can reason (“make inferences”)
with and about them

❧ normal English is insufficient
● too hard currently

• ambiguity
• how do we draw inferences in natural languages?



Physical Symbol Hypothesis
(again)

❧ Intelligence can be achieved by
● symbols that represent the significant aspects of

the given problem domain
● operations on these basic & compound symbols

that generate potential solutions
● search to find the a solution among solutions

❧ We’ve looked at #3; now we examine #1 & #2



Requirements for an AI language
❧ Handle qualitative knowledge
❧ Allow inference

● inference rules save us from explicitly writing down every fact
(“deductive database”)

❧ Allow representation of general principles (rules) and
specific situations (facts)

❧ capture complex situations (time, change, etc.)
❧ support meta-level reasoning

● analyzing one’s knowledge, reasoning, learning, etc.
● stepping outside the system



First-order predicate calculus (FOPC)
❧ The core representation language
❧ In terms of representation, it is well-defined

(mathematical logic)
❧ In terms of reasoning, it is

● sound: inferences are correct
● complete: all possible inferences can be

mechanically (syntactically) produced

❧❧ Note:Note: one can & often does use FOPC as a
representation language while using a more
efficient (but less sound & complete) reasoning
system



Russell & logical atomism
❧ The belief that “the world can be analyzed

into a number of separate things with
relations and so forth” (1918)

● in opposition to a sort of holism which holds
that not everything can be analyzed into parts &
put back together to form the original whole

❧ Methodology: take complex entities &
dissolve them into simple atoms

● we take a seemingly complex thing &
enumerate all of its properties & relationships



Language
❧ Problem: what are the atoms?
❧ Solution: a logically perfect (ideal) language

● one-to-one mapping between facts in the world &
“words” (symbols)

• thus there is no ambiguity & no inter-dependence
regarding facts

● relations between facts
❧ Two categories

● atoms, relationships
● logical connectives: and, or, if-then, not, etc.



Propositional calculus

❧ Rather than jumping right into FOPC, we
begin with propositional calculus

❧ FOPC’s little brother
● No quantification
● No equality



“Data types”
❧ Propositions

● Boolean-valued
● P, Q, R,…

• statements about the world
• R : it’s-raining-now
• needn’t be a single letter

❧ Truth symbols
● true, false
● same meaning as in English



Connectives
❧ and (∧ )
❧ or (∨ )
❧ implies (⇒)
❧ equivalent (⇔)
❧ not (¬ )
❧ used to combine simple statements into

more complex ones



Truth tables



Well-formed formulae (wffs)

❧ Sentences
● just like in  a programming language, there are

rules (syntax) for legally creating compound
statements

● remember: we’re always stating a truth about
the world,

• hence every wff is something that has a Boolean
value (it is either a true or a false statement about
the world)



Syntax rules
❧ Propositions (P, Q, R, …) are wffs
❧ Truth symbols (true, false) are wffs
❧ If A is a wff, so are ¬A and (A)
❧ If A and B are wffs, so are

● A ∧  B
● A ∨  B
● A⇒ B
● A ⇔ B



Interpretation example
❧ [(P ∨  Q) ∧  R] ⇒ (S ⇔ V)
❧ First, we need an interpretation

● truth values for our “atomic” sentences
● P : T; Q : F; R : T; S : F; V : T

❧ Then evaluate
● P ∨  Q : T
● (P ∨  Q) ∧  R : T
● S ⇔ V : F
● whole thing : F



Connectives

❧ Think of connectives as functions that take
truth values as their arguments and return a
truth value

❧ The output of these functions is determined
by the previous truth tables

❧ Just like a normal function that maps inputs
to outputs;

● in this case, since the possible values are
relatively few, we can enumerate all of them



Are these WFFs?

❧ P Q R
❧ (P ∧  Q) ∨  (R ∨  S)
❧ P ⇒ ∨  (Q ∧  R)



Example of k-rep in prop calc
❧ R : “It is raining”
❧ B : “Take the bus to class”
❧ W : “Walk to class”
❧ Some things to tell our agent

● R ⇒ B (“If it is raining, (then) take the bus to
class”)

● ¬ R ⇒ W (“If it is not raining, (then) walk to
class”)

❧ Ideally, we would like our agent to sense that it
is raining & then decide to take the bus



Validity
❧ A wff is valid if it is true under all possible

interpretations (i.e., all possible “variable
settings”) [use truth table to show this]

● P ∨∨∨∨  ¬¬¬¬  P is valid
• if P is true, then the whole sentence is true
• if P is false, then ~P is true and the whole sentence

is true

● (P ∧∧∧∧  ¬¬¬¬ Q) ∨∨∨∨  (¬¬¬¬P ∧∧∧∧  Q) isn’t valid
• when P is true & Q is true, the sentence isn’t true
• in order to not be valid, there only need exist one

counter-example

● valid is also called a tautology



Satisfiable
❧ A wff is satisfiable if some interpretation makes

it true
❧ Examples:

● P is satisfiable
• simply let P be true

● P ∧  ¬P is not satisifiable
• if P is true, ¬P is false, the whole sentence is false
• if P is false, the whole sentence is false

● P ⇒ Q is satisfiable
• several ways: P is true, Q is true; etc.

● A wff that cannot be satisfied is called a contradiction





What is soundness?
❧ An inference procedure is sound if it only

generates entailed wffs
● a wff is entailed if it is necessarily true given the

previously true wffs
● “necessarily true” means it is true given the

previously true wffs on any interpretation (on any
truth assignment to the symbols)

● this is written as KB |= A
• for example, {A ⇒ B, A} |= B

● examples of sound inference procedures are: modus
ponens, resolution, and-introduction, etc.

• the wffs they generate a true under any interpretation



Why do we care about soundness?
❧ Sound inference procedures are truth-preserving

● none of the wffs produced by the inference
procedure contradict any of the given wffs or any of
the other derived wffs

● all the wffs produced are consistent with all the wffs
given or generated

● thus, any model for the original set of wffs is also a
model for the derived set of wffs

● we can write this as: “For every KB |- A, KB |= A”





What is a model?

❧ A model is an interpretation that makes all
the wffs in a set true

● for example, a model for {A ∧  B, ¬ B ∨  C} is
• A : true, B : true, C : true
• note: there may be more than one model

● thus, KB |= A means every model of KB is also
a model of A

• every assignment of truth values to the wffs in KB
that make all of the wffs in KB true, also make A true



What is an interpretation?

❧ An interpretation is the assignment of
facts to symbols (or: proposition letters)

● a fact is taken to be either true or false about the
world

● thus, by providing an interpretation, we also
provide the truth value of each of symbol

● example
• P : it-is-raining-here-now
• since this is either a true statement about the world

or a false statement, the value of P is either true or
false





Completeness

❧ We have shown what it means to be a sound
inference procedure: we only generate
entailed wffs

❧ One other question we can ask is whether
using our inference procedure we can
generate all of the entailed wffs

❧ If we are able to do so, we say that our
inference procedure is complete



What is completeness?

❧ An inference procedure is complete if it can
find a proof for any sentence that is entailed

● that is, that it can generate all the wffs
consistent with the “givens” using it’s
“operations”

❧ What is complete?
● Are truth tables complete?
● When are the inference rules in some set of

rules complete?



Truth tables

❧ Truth tables are sound and complete
● they enumerate every combination of truth values

• as the number of literals increases, the size of the truth
table grows exponentially (2(# of literals))

● thus, they will be able to “prove” every entailed
wff (using the definitions of the connectives)

• for a truth table, a proof is simply the truth table itself

● they are sound because they simply enumerate all
of the truth possibilities



Inference rules
❧ The inference rules are rather ad hoc
❧ They are sound (they only derive entailed wffs),

but they aren’t complete
● for example, they cannot prove that de Morgan’s law

is valid
• ¬ (A v B) ⇒ (¬A ^ ¬B)
• ¬ (A ^ B) ⇒ (¬A v ¬B)

● solution:
• add more inference rules (how many are enough?),
• use truth tables (too tedious),
• use a different inference procedure



Direction
❧ We want to devise methods for deducing new

facts that logically follow from old facts
regardless of the interpretation

● i.e., things that are necessarily true, rather than
possibly true

● we will use valid propositions (tautologies) to
produce new wffs;

• since tautologies don’t change the truth “mapping” of the
original wff, the new wff will have the same “mapping”



Review
❧ Propositional calculus is a precise way to tell our

computer facts about the world
❧ Syntax says what is a “grammatical” sentence
❧ Semantics says whether or not a wff is true,

given the truth values of our “primitive”/atomic
propositions (compositional semantics)

● truth tables define the semantics of our five
connectives (∧ , ∨ , ⇒, ⇔, ¬ )

❧ Interpretations are how we (users) tell the
computer the truth value of the primitive
propositions





Deduction in Propositional
calculus

❧ Inference rules allow us to deduce new wffs
from known ones

❧ Notation
<given wffs that match these patterns>

---------------------------------------------------
<we can deduce this>



And-elimination

❧ Given: A1 ∧  A2 ∧  … ∧  An

❧ We can deduce: Ai

❧ If a conjunct is true, so is each individual
wff that it is composed of



And-introduction

❧ Given: A1, A2, …, An

❧ We can deduce: A1 ∧  A2 ∧  … ∧  An

❧ if we know a bunch of wffs are true, their
conjunctive combination is true



Double-negation elimination

❧ Given: ¬¬ A
❧ We can deduce: A
❧ Two negations cancel out

● think of -(-9) = 9



Double-negation introduction

❧ Given: A
❧ We can deduce: ¬¬ A



Or-introduction

❧ Given: A
❧ We can deduce: A ∨  B
❧ If A is true, then A ∨  B is also, for any B



Modus Ponens

❧ Given: A ⇒ B, and also given A
❧ We can deduce: B
❧ Alternatively:

● Given: ¬A ∨  B, and also given A
● B

❧ If we “believe” a rule, and we know the the
antecedent is true, we can deduce that the
conclusion is true



Unit resolution
❧ Given: A ∨  B, and also given ¬B
❧ We can deduce: A
❧ Alternate form

● ¬ A ⇒ B, ¬ B
● A

❧ Really, just a variant of modus ponens
❧ If at least one of two wffs is true (A or B) &

we know one is false, then the other must be
true



Resolution [hard one]

❧ Given: A ∨  B, and also ¬B ∨  C
❧ We can deduce: A ∨  C
❧ Alternatively:

● Given: ¬A ⇒ B, and also B ⇒ C
● ¬ A ⇒ C

❧ Case analysis on the possible values of B



Proof as a search task
❧ State representation: a list of wffs that

are true
❧ Operators: our inference rules
❧ Start state: our “givens” (what is true

initially)
❧ Goal state: the wff to prove is in our

state’s list of known wffs



Proof form
❧ Write down and number (for reference) all the

“givens”
❧ Generate new sentences using inference rules

● justify by listing the rule used & the numbers of
the wffs used

● can use previously deduced wffs, not limited to the
givens

● give a number to each newly deduced wff
❧ When the desired wff (that which is to be

shown) is generated, we’re done
● question: what is our search strategy?



Sources
❧ Computer Science, University of Wisconsin,

Madison.


