$$
\frac{\text { Representation }}{\text { \& Logic }}
$$

Representation

We need a way to enter "world facts" into the computer in such a manner that the computer can reason ("make inferences") with and about them
normal English is insufficient

- too hard currently
- ambiguity
- how do we draw inferences in natural languages?

Physical Symbol Hypothesis (again)

Intelligence can be achieved by

- symbols that represent the significant aspects of the given problem domain
- operations on these basic \& compound symbols that generate potential solutions
- search to find the a solution among solutions

We've looked at \#3; now we examine \#1 \& \#2

Requirements for an AI language

Handle qualitative knowledge
Allow inference

- inference rules save us from explicitly writing down every fact ("deductive database")
Allow representation of general principles (rules) and specific situations (facts)
capture complex situations (time, change, etc.)
support meta-level reasoning
- analyzing one's knowledge, reasoning, learning, etc.
- stepping outside the system

First-order predicate calculus (FOPC)

The core representation language
In terms of representation, it is well-defined (mathematical logic)

In terms of reasoning, it is

- sound: inferences are correct
- complete: all possible inferences can be mechanically (syntactically) produced

Note: one can \& often does use FOPC as a representation language while using a more efficient (but less sound \& complete) reasoning system

Russell \& logical atomism

The belief that "the world can be analyzed into a number of separate things with relations and so forth" (1918)

- in opposition to a sort of holism which holds that not everything can be analyzed into parts \& put back together to form the original whole
© Methodology: take complex entities \& dissolve them into simple atoms
- we take a seemingly complex thing \& enumerate all of its properties \& relationships

Language

Problem: what are the atoms?
Solution: a logically perfect (ideal) language

- one-to-one mapping between facts in the world \& "words" (symbols)
- thus there is no ambiguity \& no inter-dependence regarding facts
- relations between facts
dwo categories
- atoms, relationships
- logical connectives: and, or, if-then, not, etc.

Propositional calculus

Rather than jumping right into FOPC, we begin with propositional calculus
FOPC's little brother

- No quantification
- No equality

"Data types"

Propositions

- Boolean-valued
- P, Q, R,...
- statements about the world
- R : it's-raining-now
- needn't be a single letter

Truth symbols

- true, false
- same meaning as in English

Connectives

and (\wedge)
or (\vee)
implies (\Rightarrow)
equivalent (\Leftrightarrow)
not (\neg)
used to combine simple statements into more complex ones

Truth tables

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
Faise	False	Trute	False	False	Trute	Trute
Faise	Trute	True	False	Trute	Trute	False
Trute	False	Faise	False	True	False	False
Trute	Trute	Faise	Trute	Trute	Trute	Trute

Well-formed formulae (wffs)

Sentences

- just like in a programming language, there are rules (syntax) for legally creating compound statements
- remember: we're always stating a truth about the world,
- hence every wff is something that has a Boolean value (it is either a true or a false statement about the world)

Syntax rules

Propositions ($\mathrm{P}, \mathrm{Q}, \mathrm{R}, \ldots$) are wffs
Truth symbols (true, false) are wffs
If A is a wff, so are $\neg \mathrm{A}$ and (A)
If A and B are wffs, so are

- $A \wedge B$
- $\mathrm{A} \vee \mathrm{B}$
- $\mathrm{A} \Rightarrow \mathrm{B}$
- $A \Leftrightarrow B$

Interpretation example

$[(P \vee Q) \wedge R] \Rightarrow(S \Leftrightarrow V)$
First, we need an interpretation

- truth values for our "atomic" sentences
- P : T; Q : F; R : T; S : F; V: T

Then evaluate

- $P \vee Q: T$
- $(\mathrm{P} \vee \mathrm{Q}) \wedge \mathrm{R}: T$
- $\mathrm{S} \Leftrightarrow \mathrm{V}$: F
- whole thing : F

Connectives

Think of connectives as functions that take truth values as their arguments and return a truth value

The output of these functions is determined by the previous truth tables
Just like a normal function that maps inputs to outputs;

- in this case, since the possible values are relatively few, we can enumerate all of them

Are these WFFs?

a P Q R
$a(P \wedge Q) \vee(R \vee S)$
$\mathrm{P} \Rightarrow \vee(\mathrm{Q} \wedge \mathrm{R})$

Example of k-rep in prop calc

R : "It is raining"
B : "Take the bus to class"
W : "Walk to class"
Some things to tell our agent

- $\mathrm{R} \Rightarrow \mathrm{B}$ ("If it is raining, (then) take the bus to class")
- $\neg \mathrm{R} \Rightarrow \mathrm{W}$ ("If it is not raining, (then) walk to class")

Ideally, we would like our agent to sense that it is raining \& then decide to take the bus

Validity

A wff is valid if it is true under all possible interpretations (i.e., all possible "variable settings") [use truth table to show this]

- $\mathbf{P} \vee \neg \mathbf{P}$ is valid
- if P is true, then the whole sentence is true
- if P is false, then $\sim \mathrm{P}$ is true and the whole sentence is true
- $(\mathbf{P} \wedge \neg \mathbf{Q}) \vee(\neg \mathbf{P} \wedge \mathbf{Q})$ isn't valid
- when P is true $\& Q$ is true, the sentence isn't true
- in order to not be valid, there only need exist one counter-example
- valid is also called a tautology

Satisfiable

A wff is satisfiable if some interpretation makes it true

Examples:

- P is satisfiable
- simply let P be true
- $\mathrm{P} \wedge \neg \mathrm{P}$ is not satisifiable
- if P is true, $\neg \mathrm{P}$ is false, the whole sentence is false
- if P is false, the whole sentence is false
- $\mathrm{P} \Rightarrow \mathrm{Q}$ is satisfiable
- several ways: P is true, Q is true; etc.
- A wff that cannot be satisfied is called a contradiction

Soundness

What is soundness?

An inference procedure is sound if it only generates entailed wffs

- a wff is entailed if it is necessarily true given the previously true wffs
- "necessarily true" means it is true given the previously true wffs on any interpretation (on any truth assignment to the symbols)
- this is written as $\mathbf{K B} \mid=\mathrm{A}$
- for example, $\{\mathrm{A} \Rightarrow \mathrm{B}, \mathrm{A}\} \mid=\mathrm{B}$
- examples of sound inference procedures are: modus ponens, resolution, and-introduction, etc.
- the wffs they generate a true under any interpretation

Why do we care about soundness?

Sound inference procedures are truth-preserving

- none of the wffs produced by the inference procedure contradict any of the given wffs or any of the other derived wffs
- all the wffs produced are consistent with all the wffs given or generated
- thus, any model for the original set of wffs is also a model for the derived set of wffs
- we can write this as: "For every $\mathrm{KB}|-\mathrm{A}, \mathrm{KB}|=\mathrm{A}$ "

What is a model?

A model is an interpretation that makes all the wffs in a set true

- for example, a model for $\{A \wedge B, \neg B \vee C\}$ is
- A : true, B : true, C : true
- note: there may be more than one model
- thus, $\mathrm{KB} \mid=\mathrm{A}$ means every model of KB is also a model of A
- every assignment of truth values to the wffs in KB that make all of the wffs in KB true, also make A true

What is an interpretation?

An interpretation is the assignment of facts to symbols (or: proposition letters)

- a fact is taken to be either true or false about the world
- thus, by providing an interpretation, we also provide the truth value of each of symbol
- example
- P : it-is-raining-here-now
- since this is either a true statement about the world or a false statement, the value of P is either true or false

Completeness

Completeness

We have shown what it means to be a sound inference procedure: we only generate entailed wffs
One other question we can ask is whether using our inference procedure we can generate all of the entailed wffs
If we are able to do so, we say that our inference procedure is complete

What is completeness?

An inference procedure is complete if it can find a proof for any sentence that is entailed

- that is, that it can generate all the wffs consistent with the "givens" using it's "operations"
What is complete?
- Are truth tables complete?
- When are the inference rules in some set of rules complete?

Truth tables

Te Truth tables are sound and complete

- they enumerate every combination of truth values
- as the number of literals increases, the size of the truth table grows exponentially ($2^{\text {(\# of literals) })}$)
- thus, they will be able to "prove" every entailed wff (using the definitions of the connectives)
- for a truth table, a proof is simply the truth table itself
- they are sound because they simply enumerate all of the truth possibilities

Inference rules

The inference rules are rather $\mathrm{ad} h o c$
They are sound (they only derive entailed wffs), but they aren't complete

- for example, they cannot prove that de Morgan's law is valid
- $\neg(\mathrm{A} \vee \mathrm{B}) \Rightarrow\left(\neg \mathrm{A}^{\wedge} \neg \mathrm{B}\right)$
- $\neg\left(\mathrm{A}^{\wedge} \mathrm{B}\right) \Rightarrow(\neg \mathrm{A} \vee \neg \mathrm{B})$
- Solution:
- add more inference rules (how many are enough?),
- use truth tables (too tedious),
- use a different inference procedure

Direction

We want to devise methods for deducing new facts that logically follow from old facts regardless of the interpretation

- i.e., things that are necessarily true, rather than possibly true
- we will use valid propositions (tautologies) to produce new wffs;
- since tautologies don't change the truth "mapping" of the original wff, the new wff will have the same "mapping"

Review

Propositional calculus is a precise way to tell our computer facts about the world
Syntax says what is a "grammatical" sentence
Semantics says whether or not a wff is true, given the truth values of our "primitive"/atomic propositions (compositional semantics)

- truth tables define the semantics of our five connectives ($\wedge, \vee, \Rightarrow, \Leftrightarrow, \neg)$
Interpretations are how we (users) tell the computer the truth value of the primitive propositions

Deduction in

Propositional

calculus

Deduction in Propositional calculus

Inference rules allow us to deduce new wffs from known ones

Notation
<given wffs that match these patterns>
<we can deduce this>

And-elimination

Given: $A_{1} \wedge A_{2} \wedge \ldots \wedge A_{n}$
We can deduce: A_{i}
If a conjunct is true, so is each individual wff that it is composed of

And-introduction

Given: $A_{1}, A_{2}, \ldots, A_{n}$
We can deduce: $A_{1} \wedge A_{2} \wedge \ldots \wedge A_{n}$
if we know a bunch of wffs are true, their conjunctive combination is true

Double-negation elimination

Given: $\neg \neg \mathrm{A}$
We can deduce: A
Two negations cancel out

- think of $-(-9)=9$

Double-negation introduction

Given: A
We can deduce: $\neg \neg \mathrm{A}$

Or-introduction

Given: A
We can deduce: $A \vee B$
If A is true, then $A \vee B$ is also, for any B

Modus Ponens

Given: $\mathrm{A} \Rightarrow \mathrm{B}$, and also given A
We can deduce: B
Alternatively:

- Given: $\neg \mathrm{A} \vee \mathrm{B}$, and also given A
- B

If we "believe" a rule, and we know the the antecedent is true, we can deduce that the conclusion is true

Unit resolution

Given: $\mathrm{A} \vee \mathrm{B}$, and also given $\neg \mathrm{B}$
We can deduce: A
Alternate form

- $\neg \mathrm{A} \Rightarrow \mathrm{B}, \neg \mathrm{B}$
- A

Really, just a variant of modus ponens
If at least one of two wffs is true (A or B) \& we know one is false, then the other must be true

Resolution [hard one]

Given: $\mathrm{A} \vee \mathrm{B}$, and also $\neg \mathrm{B} \vee \mathrm{C}$
We can deduce: A \vee C
Alternatively:

- Given: $\neg A \Rightarrow B$, and also $B \Rightarrow C$
- $\neg \mathrm{A} \Rightarrow \mathrm{C}$

Case analysis on the possible values of B

Proof as a search task

State representation: a list of wffs that are true

Operators: our inference rules
Start state: our "givens" (what is true initially)
Goal state: the wff to prove is in our state's list of known wffs

Proof form

Write down and number (for reference) all the "givens"
Generate new sentences using inference rules

- justify by listing the rule used \& the numbers of the wffs used
- can use previously deduced wffs, not limited to the givens
- give a number to each newly deduced wff

When the desired wff (that which is to be shown) is generated, we're done

- question: what is our search strategy?

Sources

Computer Science, University of Wisconsin, Madison.

