
 to read: to read:
Chapter 10,Chapter 10, Russel Russel & & NorvigNorvig

2

What will be discussedWhat will be discussed

• Inference machines
– Logic programming (Prolog) and theorem

provers

• Next
– Production systems
– Semantic networks and Frames

3

4

Necessary to implement
efficiently

• Complex inferences
• STORE and FETCH

Store

• KB = some form of knowledge base in which
intermediate and permanent knowledge is stored

• TELL
– TELL(KB, A ∧ ¬ B), TELL(KB, ¬ C ∧ D)
– [A, ¬ B, ¬ C, D]

• Array of list of conjuncts
– Costs: check: O(1)

• check: O(n)

6

Data-structures

• List of array is inefficient O(n).
• Hash table (O(1)) : P of ¬P

– but not P ∧ Q ⇒ R
– Brother(John, x)

• cannot solve: Brother(John, Richard) for
query Exist x Brother(John, x).

Key
P F
Q T
R F

7

Table indexing
• implicative normal form.
• predicate symbol.
• Other:

– positive literals
– negative literals

8

ASK(KB, Brother(Jack, Ted))

Key Positive Negative Conclusion Premisse

Brother Brother(Richard, John)
Brother(Ted,Jack
Brother(Jack, Bobbie)

¬Brother(Ann,Sam) Brother(x,y)
∧ Male(y)⇒

Brother(y,x)

Brother(x,y) ∧ Male(y)
⇒ Brother(y,x)

Brother(x,y)⇒ Male(x)

Male Male(Jack)
Male(Ted)

¬Male(Ann) Brother(x,y) ⇒

Male(x)
Brother(x,y) ∧ Male(y)

⇒ Brother(y,x)

Brother(Richard,John)
Brother(Ted,Jack)∧ Brother(Jack,Bobbie)
¬Brother(Ann,Sam)
Brother(x,y)⇒Male(x)
Brother(x,y) ∧ Male(y)⇒Brother(y,x)
Male(Jack)∧ Male(Ted) ∧ … ∧ ¬ Male(Ann) ∧ …

9

Tree-based indexing
Predicate?

Brother

Arg1?

Arg2?

John

Jack variable

Brother(John,Jack)
Brother(John, x)
Brother(Ted, x)

Ted

Arg2?

variable

Program lengthProgram length

Language

Fortran
Cobol
Ada
PL/I

C
Pascal
Basic

MProlog

Length in pages

36
25
24
22
22
20
19
 9

1. 1. Imperative Imperative ProgrammingProgramming

It is described, how the problem should be solved

• Assembler

• ADA

• BASIC

• C / C++

• COBOL

• FORTRAN

• Java

• Modula

• PASCAL

• Perl

• PL/1

• Simula

• Smalltalk

• und viele mehr...

2. 2. Functional Functional ProgrammingProgramming

Program is a set of Functions.

• Lisp

• Logo

• Haskell

• ML

• Hope

• Scheme

• Concurrent
Clean

• Erlang

• NESL

• Sisal

• Miranda

Example of ProgramsExample of Programs
in in functional Languagesfunctional Languages

(print "Hello World")

(let ((a 0))
(while (< a 20)
(princ a) (princ " ")
(setq a (+ a 1))

)
)

fun iter (a,b) =
if a <= b then (print(Int.toString(a*a)^" "); iter(a+1,b))
else print "\n";

iter(1,10);

fun iter 0 = ""
| iter n = (iter(n-1); print(Int.toString(n*n)^" "); "\n");

print(iter 10);

Object-oriented ProgrammingObject-oriented Programming
LanguagesLanguages

• Object-oriented programming languages
provide an alternative approach

• The problem is broken into modules
called objects
– consist of both the data and the instructions

which can be performed on that data

Object-oriented ProgrammingObject-oriented Programming
LanguagesLanguages

• Smalltalk was the earliest such language
– designed from start to be OOP based

• More recent OOP languages include
– C++ - the C language with OOP extensions
– Java - designed for use with the Internet

• Java is likely to become increasingly common
– as you can use it to build application programs into

your web pages

Object oriented ProgrammingObject oriented Programming

It is being developed within all three paradigms
below:

•Smalltalk

•Java

•Eiffel

•C++

•Object Pascal

•XLISP

•Haskell

• others...

Imperative: Functional: Declarative:
• various versions of Prolog

• others...

All new programming languages are All new programming languages are object - orientedobject - oriented

Object-oriented principle…..Object-oriented principle…..

4th Generation Languages4th Generation Languages
• 4GLs intended as design tools for particular

application domains
– meant to be used by non-programmers
– FIND ALL RECORDS WITH NAME

“SMITH”
• One class of 4GL is program generators

– generate a program based on specification of
problem to be solved

• 4GLs often found as part of database
packages
– Oracle, Sybase, etc.
– Use language called SQL

• Also called nonprocedural languages
– problem is defined in terms of desired results

rather than program procedures

4th Generation Languages4th Generation Languages

• Some languages take still other approaches
to programming
– Mainly used in special purpose areas
– Artificial Intelligence, Expert Systems

• Often called declarative or rule-based
languages

Declarative Programming LanguagesDeclarative Programming Languages

• Examples include
– Lisp (List Processing)
– Snobol (String Processing)
– Prolog (Programming in Logic)

• Prolog deals with objects and relationships
– declares facts
– defines rules
– asks questions

Declarative Programming LanguagesDeclarative Programming Languages

3. 3. Declarative Declarative ProgrammingProgramming

It is described, WHAT the problem is, but not how
to solve it.

Solution is found by the computer

• Prolog

• Goedel

• Escher

• Elf

• Mercury

Declarative Programming LanguagesDeclarative Programming Languages

PROLOG

PROgramming in LOGic

What meansWhat means PROLOG? PROLOG?

But recently compilers are
developed

• Horn form
• Negation by failure:
not(p) means p cannot
be proven

• (Closed World
Assumption)

History ofHistory of LogicLogic ProgrammingProgramming
• History is short
• Theoretical foundations in 1970s
• Kowalski
• First Prolog Interpreter - 1972

• by Alain Colmerauer in Marseilles
• In 1980 first commercial Prolog Interpreter

• Algorithm = Logics + Control
• Most known logic programming language = Prolog

– B ∧ C ⇒ A
– C ∧ B ⇒ A

• Programming by description
–describe the problem’s facts
–built-in inference engine combines and

uses facts and rules to make inferences
• These are true for any logic

programming approach, not only
Prolog

Predicate Logic in programming

Prolog Programming
• Declaring facts about objects and their

relationships --> likes (john,mary)
• Defining rules about objects and relationships
• Asking Questions about objects

sister-of(X,Y) :- female(X),
 parents(X,M,F),
 parent(Y,M,F)

Applications of PrologApplications of Prolog
• Expert systems (Diagnosis systems)
• Relational Data Bases
• mathematical Logic
• abstract Problem solving
• Simulation of human speech and communication
• formal verification of software and hardware
• robot planning and problem-solving
• automatic production and fabrication
• solving symbolic equations
• analysis of biochemical structures
• various areas of knowledge engineering

PrologProlog Language Example Language Example

male(jack).
male(jim).
female(jill). female(mary). female(anne).
father(jack,jim).
father(jack,mary). father(jack,anne).
mother(jill,jim). mother(jill,mary). mother(jill,anne).
brother(X,Y) :- father(Z,Y), father(Z,X), mother(W,Y), mother(W,X),

male(X).
sister(X,Y) :- father(Z,Y), father(Z,X), mother(W,Y), mother(W,X),

female(X).

?- brother(X, mary).

More family examples…..

Another Prolog ExampleAnother Prolog Example
• predicate calculus is good to

describe attributed relational
worlds such as hierarchical
graphs

• Facts, rules, queries
link(algol60, c)
link(algol60, simula)
link(c, c++)
link(simula, smalltalk)
link(c++, java)
path(X,Y) :- link(X,Y).
path(X,Y) :- link(X,Z), path(Z,Y).
?- path(algol60, java).
?- path(java, smalltalk).
?- path(c, X).

link(algol60,Z), path(Z,java).
link(algol60,c), path(c,java).

path(algol60, java).

true

link(c++,java)true

link(c,Z), path(Z,java).
link(c,c++), path(c++,java).true

Hierarchies and graphs
are also good for Prolog

Properties of Prolog

• Negation as failure: If I can’t prove it,
it must be false.

Not(p) :- p, !, fail.
Not(p) :- true.

• Unification: Matching in two directions
?- f(X,b)=f(a,Y).
X=a
Y=b

Prolog’s machine
• Backward Chaining

– to prove <the head>, prove <the body>

• cut!
• Logic variables
• check in unification algorithm

– x=Pred(x) would lead to
Pred(Pred(Pred(Pred

membermember
:- means <==

Example 1Example 1

Member continuedMember continued
∀ x,l Member(x,[x|l])

∀ x,y,l Member(x,l) ⇒

Member(x, [y|l])

member(X,[X|L]).

member(X,[Y|L]) :-
member(X, L).

Member(x,[x|l])
Member(x, [y|l])⇐
 Member(x,l)

Capital letters
Small letters

Member(x,[x|l])

Member(x,l) ⇒

Member(x, [y|l])

Transformation sequence

Programming inProgramming in Prolog Prolog
 Prolog structures:

– clause

– depth first

– ∧ = ,

– P ∨∨∨∨ Q = P ; Q

a:-
b, c.

a:-
e; f.

f.
d.
b.

OR

Prolog trace
 trace, a.
 Call: (7) a ?
 Call: (8) b ?
 Exit: (8) b
 Call: (8) c ?
 Fail: (8) c ?
 Redo: (7) a ?
 Call: (8) e ?
 Fail: (8) e ?
 Call: (8) f ?
 Exit: (8) f
 Exit: (7) a

a:-
b, c.

a:-
e; f.

f.
d.
b.

7

8
a

d
c

oror

e f

ororandand

b

Facts
Rules

Fundamental structure of PROLOGFundamental structure of PROLOG

Knowledge base

Questions

bilden

Asked questions are compared to
facts and rules through Prolog
inference machine giving
answers yes and no

FactsFacts
Example:

• ‘man eats‘.

• it_snows.

• costly(gold).

• man(daniel).

• married(john,mary).

• has(john,gold).

• father(hans, gabriel).

Prolog description:
• Man eats.

• It snows.

• Gold is costly

• Daniel is a man.

• John is married to Mary.

• John has Gold.

• Hans ist a father of Gabriel.

Natural meaning:

FactsFacts

married (john, mary) .

Predicate

Arguments

married(john,mary) is not the same as
married(mary,john) .

Prolog does not know what the fact means.

You have to provide this knowledge

Like transitivity or commutativity of
relations.

FactsFacts
Example:

has(john, gold).

has(john, book).

married(john, mary).

maried(joe, barbara).

Given facts: Questions to Prolog Interpreter:

?- has(john,gold).
yes

?- married(joe, fish).
no

VariablesVariables
Knowledge base:

 has(john,X)
X is a Variable.
Prolog answers:

 X = gold
 X = book

Variables start from capital or underline.

_ is an anonymous variable.

Has john something?

has(john, gold).

has(john, book).

married(john, mary).

maried(joe, barbara).

ArithmeticsArithmetics
Example l: factorial

fact(0,1).

fact(N,X) :- N > 0, M is N - 1, fact(M,Y), X is N * Y.

?- fact(0,N).

N = 1

FUNCTION fact(N : Integer) : Integer;
BEGIN

IF N = 0 THEN fact := 1
ELSE IF N > 0 THEN fact := N * fact(N-1);

END;

Calling: ?- fact(6,N).

N = 720

ArithmeticsArithmetics
Example l: Fibonacci Sequence

fib(0,1).

fib(1,1).

fib(N,X) :- N1 is N - 1, N2 is N - 2, fib(N1,X1), fib(N2,X2), X is X1 + X2.

?- fib(11,N).

N = 144

Calling: ?- fib(4,N).

N = 5

ArithmeticsArithmetics

+ - * / Addition, Subtraction, Multiplication, Division
mod Modulo
// ^ Integer-Division, Power
() Priority
is result of arithmetic calculation
> < larger, smaller
=> =< larger or equal, smaller or equal
=:= equal arithmetic
=\= non-equal arithmetic

Infix: (4 + 1)*4 Postfix: *(4,+(4,1))

ListsLists

[1,2,3,4,5]

[1 | [2 | [3 | [4]]]]

[father, ‘Hello‘, 1, 3, maried(john,mary)]

[1, [2,3,4], 5] nested list

[] empty list

[Head | Tail] = [1,2,3,4]

Head = 1

Tail = [2,3,4]

[X, Y, Z] = [1, 2, 3]
X = 1
Y = 2
Z = 3

Unification
(Pattern-Matching)

ListsLists
Calculate the length of a list:

list_length([], 0).
list_length([H | T], N) :- list_length(T,M), N is M + 1.

Calculate number of elements in a list:

count_element([], Element, 0).
count_element([H|T], Element, Sum) :-

H = Element, count_element(T, Element, X), Sum is X + 1.
count_element([H|T], Element, Sum) :-

count_element(T, Element, Sum).

Member predicate in a list:

member(E, [E|T]).
member(E, [H|T) :- member(E,T).

ListsLists
Concatenation:

concat([], L, L).
concat([H|T], L, [H|NeueListe]) :- concat(T,L,NeueListe).

StructuresStructures

time(datum(16,5,1999),hour(18,30)).

book(author(clocksin,mellish), title(‘Programming in PROLOG‘)).

cd(band(metallica), title(‘Load‘), length(67)).
cd(band(metallica), title(‘Reload‘), length(72)).

?- cd(band(metallica), title(X), _). Gives all titles of Metallica.

time(16,5,1999,18,30).

book(clocksin, mellsih, ‘Programming in PROLOG‘).

Example of Example of BacktrackingBacktracking
man(john).
man(george).

is_father_of(george, mary).
is_father_of (george, john).
is_father_of (harry, sue).
is_father_of (edward, george).

is_son_of(X,Y) :- is_father_of(Y,X), man(X).

?- is_son_of(X,Y).

X = john
Y = george

X = george
Y = edward

read(X). Reads from keyboard in X
write(X). writes X .
get(Ascii). Reads in Ascii.
put(Ascii). Writes in ASCII.
nl. New line.
tab(N). Writes N spaces.

tell(DATEI). opens Datei.
told(DATEI). closes Datei.
append(DATEI). Appends to Datei.

true always true
fail not true

54

TheoremTheorem Provers Provers
• Not only Horn Clauses (complete FOL)

• Other search techniques (e.g. iterative
deepening).

• Other treatment of NOT

• New logic programming languages

55

Additional reading:Additional reading:
• Read section 10.3 :

– Compilation of Logic Programs
– Other Logic Programming Languages
– Advanced control facilities

SummarySummary
Resolution

Resolution proofs

Answering questions

Resolution strategies

Extensions

Programming paradigms

Declarative Languages

Prolog

Resolution

Resolution proofs

Answering questions

Resolution strategies

Extensions

Programming paradigms

Declarative Languages

Prolog

Reading for the next time
Logic Programming Systems
(chapter 10)

“Knowledge Engineering”
Chapter 8 in R&N

Reading for the next time
Logic Programming Systems
(chapter 10)

“Knowledge Engineering”
Chapter 8 in R&N

Sources
1. Richard Benjamins
2. Luger and Stubblefield book has

many excellent Prolog examples
in later chapters.

2. Michael Neumann

eMail
neumann@s-direktnet.de
Homepage
http://www.s-direktnet.de/homepages/neumann/index.htm

