Information Theoretic

 Approach to Minimization of Logic Expressions, Trees, Decision Diagrams and Circuits- Background
- Information Theoretic Model of Decision Trees (DTs) Design
- Minimization of Trees and Diagrams in Various Algebras
- Arithmetic logic Expressions
- Polynomial Expressions over GF(4)
- Experimental Study
- Summary and Future Work
- Information Theoretic Model of Free Decision Tree Design
- Information Theoretic Model of Free WordLevel Decision Tree Design
- Galois-Sum of Galois-Multipliers Circuit Minimization
- Arithmetical Expressions Minimization Algorithm
- High generality of this type of methods

Shannon entropy

Entropy $H(f)$ is a measure of switching activity

$H(f)=p_{\mid f=0} \log _{2} p_{\mid f=0}+p_{\mid f=1} \log _{2} p_{\mid f=1}$

Definition

Conditional entropy $H(f \mid x)$ is the information of event f under the assumption that a given event had occurred

- Mutual information $I(f ; x)$ is a measure of uncertainty removed by knowing x :

$$
I(f ; x)=H(f)-H(f \mid x)
$$

Shannon entropy

The information in an event f is a quantitative measure of the amount of uncertainty in this event

$$
H(f)=-\sum_{i} p_{\mid f=i} \log _{2} p_{\mid f=i}
$$

Probability of 1 in f
$H(f)=-(1 / 4) \log _{2}(1 / 4)-$
$(3 / 4) \log _{2}(3 / 4)=0.81$ bit

Probability of 0 in f

Definitions:

Information theoretic measures

- Conditional entropy $H(f \mid x)$ is the information of event f under assumption that a given event x had occurred

$$
H(f \mid x)=-\sum_{i} p_{\mid x=i} H(f \mid x=i)
$$

$x_{1} x_{2}$	f	
0	0	0
0	1	0
1	0	0
1	1	1

$$
H\left(f / x_{1}\right)=-(1 / 2) \cdot 0-(1 / 2) \cdot 1=0.5 \text { bit }
$$

$$
H\left(f_{\mid x 1=0}\right)=-(2 / 2) \log _{2}(2 / 2)-(0 / 2) \log _{2}(0 / 2)=0 \text { bit }
$$

$$
H\left(f_{|x|=1}\right)=-(1 / 2) \log _{2}(1 / 2)-(1 / 2) \log _{2}(1 / 2)=1 \text { bit }
$$

Definitions: Information theoretic measures

- Mutual information $I(f ; x)$ is a measure of uncertainty removed by knowing x :

$$
I(f ; x)=H(f)-H(f / x)
$$

Example.

$\mathrm{x}_{1} \mathrm{x}_{2}$	f	
0	0	0
0	1	0
1	0	0
1	1	1

Mutual information
Conditional Entropy
Entropy

History Not known to logic
synthesis community but known to Al people

- 1938 - Shannon expansion
- 1948 - Shannon entropy
- 1980- - Shannon expansion + Shannon entropy for minimization of decision trees
- ID3
- C4.5 - Ross Quinlan

Main results in application of information

 theory to logic functions minimization- 1965 ID3 algorithm - a prototype
- 1990 A. Kabakciouglu et al. »AND/OR decision trees design based on entropy measures
- 1993 A. Lloris et al. »Minimization of multiple-valued logic functions using AND/OR trees
- 1998 D. Simovici, V.Shmerko et al. »Estimation of entropy measures on Decision Trees

Application of Information Theory to Logic Design

- Logic function decomposition:
- L. Jozwiak (Netherlands)
- Testing of digital circuits :
- V. Agrawal, P. Varshney (USA)
- Estimation of power dissipation:
- M. Pedram (USA)
- Logic functions minimization:

Example of ID3 algorithm

	Attribute		Class
Furry?	Age?	Size?	(Decision)
Yes	Old	Large	Lion
No	Young	Large	Not Lion
Yes	Young	Medium	Lion
Yes	Old	Small	Not Lion
Yes	Young	Small	Not Lion
Yes	Young	Large	Lion
No	Young	Small	Not Lion
No	Old	Large	Not Lion
0.607	0.955	0.5	
	Furry	$\begin{aligned} & \text { Yes: } 3 \text { Lic } \\ & \text { No: 0, } \end{aligned}$	2 Non-Lion 3 Non-Lions
Entro	$H=(5 / 8)$	$H_{\text {furry }}+(3 / 8)$	otfurry $=0.607$

Attribute
Class
Furry?
1 Yes

Size
size

Optimal decision tree

Where did the idea come from?

- ID3 algorithm have been used for long time in machine-learning systems for trees
- The principal paradigm: learning classification rules
- The rules are formed from a set of training examples
- The idea can be used not only to trees

Consider the truth table of a logic function as a special case of the decision table with variables replacing the tests in the decision table

Arithmetic Spectrum

Use arithmetic operations to make logic decisions

- Artificial Intelligence
- Testing of digital circuits :
- Estimation of power dissipation:
- Logic functions minimization for new technologies (quantum - Victor Varshavsky)

Arithmetic Spectrum

Use arithmetic operations to make logic decisions

- A or B becomes
- A exor B becomes
- A and B becomes
- not (A) becomes $(1-A)$ in arithmetics

Shannon expansion

Bit-Level

$f=\bar{X} f_{\mid x=0} \vee X f_{\mid x=1} \quad f=(1-x) f_{\mid x=0}+X f_{\mid x=1}$
Word-Level

$f=X f_{\mid x=0} \oplus X f_{\mid x=1}$

Positive Davio expansion

Bit-Level
Word-Level

$f=f_{\mid x=0} \oplus x\left(f_{\mid x=0} \oplus f_{\mid x=1}\right) \quad f=f_{\mid x=0}+x\left(f_{\mid x=1}^{-} f_{\mid x=0}\right)$

Negative Davio expansion

Bit-Level
 Word-Level

$f=f_{\mid x=1} \oplus \bar{x}\left(f_{\mid x=0} \oplus f_{\mid x=1}\right) f=f_{\mid x=1}+(1-x)\left(f_{\mid x=0}-f_{\mid x=1}\right)$

Example: switching function [0000 11100011 1111] ${ }^{\top}$

pseudo Binary
Moment Tree (BMT):
$\left\{p D_{A}, n D_{A}\right\}$
[0000 11100011 1111] ${ }^{\top}$

$f=(1-x 2) f_{\mid x 2=0}+x 2 f_{\mid x 2=1}$

$f=(1-x 2) f_{\mid x 2=0}+x 2 f_{\mid x 2=1}$

2-bit half-adder
2-bit multiplier

Problems of
 Free Word-Level Decision Tree Design

- Variable ordering
- Selection of decomposition

Benefit in Minimization

For a given switching function [0000 11100011 1111] ${ }^{\top}$

- Entropy
$H(f)=-(7 / 16) \log _{2}(7 / 16)-(9 / 16) \log _{2}(9 / 16)=0.99 \mathrm{bit}$
- Conditional Entropy
$\begin{aligned} H\left(f / x_{1}\right)= & -(5 / 16) \log _{2}(5 / 8)-(3 / 16) \log _{2}(3 / 8) \\ & -(2 / 16) \log _{2}(2 / 8)-(6 / 16) \log _{2}(6 / 8)=0.88 \text { bit }\end{aligned}$
- Mutual Information
$I\left(f ; x_{1}\right)=0.99-0.88=0.11$ bit

9 ones
 7 zeros

Entropy is large when there is as many zeros as ones

Entropy does not take into

 account where are they located
Entropy

$H(f)=-(7 / 16) \log _{2}(7 / 16)-(9 / 16) \log _{2}(9 / 16)=0.99$ bit

- Conditional Entropy
$H\left(f / x_{1}\right)=-(5 / 16) \log _{2}(5 / 8)-(3 / 16) \log _{2}(3 / 8)$
$-(2 / 16) \log _{2}(2 / 8)-(6 / 16) \log _{2}(6 / 8)=0.88$ bit
- Mutual Information
($\left.f ; x_{1}\right)=0.99-0.88=0.11$ bit

Entropy is measure of function complexity

Now the same idea will be applied to Galois Logic

Shannon and Davio expansions in GF(4)

Shannon entropy

Information theoretic criterion in minimization of polynomial expressions in GF(4)

New Idea

Linearly Independent Expansions in any Logic

Shannon entropy

Merge two concepts

Shannon

 decomposition
Shannon entropy

Entropy is reduced:

 Information is increased:

IDEA: Shannon Entropy + Decision Tree

 measures for arithmetic

- Arithmetic Shannon

$$
H^{S_{A}}(f \mid x)=p_{\mid x=0} \cdot H\left(f_{\mid x=0}\right)+p_{\mid x=1} \cdot H\left(f_{\mid x=1}\right)
$$

- Arithmetic positive Davio

$$
H^{p D_{A}}(f \mid x)=p_{\mid x=0} \cdot H\left(f_{\mid x=0}\right)+p_{\mid x=1} \cdot H\left(f_{\mid x=1}-f_{\mid x=0}\right)
$$

- Arithmetic negative Davio

$$
H^{n D_{A}}(f \mid x)=p_{\mid x=1} \cdot H\left(f_{\mid x=1}\right)+p_{\mid x=0} \cdot H\left(f_{\mid x=0}-f_{\mid x=1}\right)
$$

Information theoretic criterion for Decision Tree design

- Each pair (x, ω) brings the portion of information

$$
I(f ; x)=H(f)=H^{\omega}(f \mid x)
$$

- The criterion to choose the variable x and the decomposition type ω

$$
H^{\omega}(f \mid x)=\min \left(H^{\omega}{ }_{j}\left(f \mid x_{i}\right) \mid \operatorname{pair}\left(x_{i j}, \omega_{j}\right)\right)
$$

Algorithm to minimize arithmetic expressions INFO-A

- Evaluate information measures: $H^{\omega}\left(f \mid x_{i}\right)$ for each variable
- Pair (x, ω) that corresponds to $\min \left(H^{\omega}(f \mid x)\right)$ is assigned to the current node

1.Evaluate Information measures for 1-bit half-adder:

$H^{S_{A}}\left(f \mid X_{2}\right)$, $H^{p D_{A}}\left(f \mid x_{1}\right)$, $H^{\rho_{A} D_{A}}\left(f \mid x_{2}\right)$, $H^{n D_{A}}\left(f \mid x_{1}\right)$, $H^{n D_{A}}\left(\boldsymbol{f} \mid \boldsymbol{x}_{2}\right)$

2. Pair $\left(x_{1}, p D_{A}\right)$ that corresponds to $\min \left(H^{p D_{A}}\left(f \mid x_{1}\right)\right)=0.5$ bit is assigned to the current node

How does the algorithm work?

1.Evaluate Information measures:

$H_{A}\left(f \mid X_{2}\right)$,
$H^{p D_{A}}\left(f \mid x_{2}\right)$,
$H^{n D_{A}}\left(f \mid x_{2}\right)$
2.Pair $\left(x_{2}, S_{A}\right)$ that corresponds to $\min \left(H^{S_{A}}\left(f \mid x_{2}\right)\right)=0$ is assigned to the current node

$$
f=x_{1}+x_{2}
$$

Main idea

NMM/s

Conversion with optimization of:
-variables ordering,
$\$$ Decision
\sum Table
-decomposition type

Decision Trees and expansion types

Multi-terminal GF(4) 4-S Pseudo Reed-Muller GF(4) 4-pD, 1-4-nD,

$$
2-4-n D, 3-4-n D
$$

Pseudo Kronecker GF(4) 4-S, 4-pD, 1-4-nD,

Analogue of Shannon decomposition in GF(4)

$$
\begin{aligned}
& \text { Pair }(x, 4-S) \\
& f=J_{0}(x) \cdot f_{x=0}+J_{1}(x) \cdot f_{\mid x=1}+J_{2}(x) \cdot f_{\mid x=2}+J_{3}(x) \cdot f_{\mid x=3} \\
& f_{\mid x=0}\left(f_{\mid x=1} f_{\mid x=2} f_{\mid x=3}\right.
\end{aligned}
$$

Analogue of positive Davio decomposition in GF(4)

$$
\begin{aligned}
& \text { Pair }(x, 4-p D) \downarrow \boldsymbol{f} \\
& f_{x=0} f_{X=1}+3 f_{x=2}+2 f_{x=3} \\
& f=f_{x=0}+x \cdot\left(f_{x=1}+3 f_{x=2}+2 f_{x=3}\right) \\
& +x^{2} \cdot\left(f_{x=1}+2 f_{x=2}+3 f_{x=3}\right) \\
& +x^{3} \cdot\left(f_{\mid x=0}+f_{\mid x=0}+f_{x=2}+f_{\mid x=3}\right)
\end{aligned}
$$

Analogue of negative Davio decomposition in GF(4)

Pair $(x, k-4-n D) \quad f^{k_{-} x}$ is a complement of x :

How to minimize polynomial expressions via Decision Tree

- A path in the Decision tree corresponds to a product term
- The best product terms (with minimal number of literals) to appear in the quasi-minimal form can be searched via Decision Tree design
- The order of assigning variables and decomposition types to nodes needs a criterion

Minimization of polynomial expressions in GF(4) means the design of Decision Trees with variables ordered by using some criterion

This is true for any type

 of logic.$$
\begin{aligned}
& \text { Shannon entropy }+ \\
& \text { decomposition in } \mathrm{CF}(4) \\
& \text { Pair }(x, 1-4-n D) \\
& H(f \mid x)=p_{p_{\mid x=0}} \cdot H\left(f_{0}\right)+p_{\mid x=2} \cdot H\left(f_{2}\right)+ \\
& f_{0}=f_{\mid x=3} \cdot H\left(f_{3}\right)+p_{\mid x=1} \cdot H\left(f_{\mid x=1}\right)
\end{aligned}
$$

Information theoretic criterion for Decision Tree design

- Each pair (x, ω) carries a portion of information

$$
\|(f ; x)=H(f)-H^{\omega}(f \mid x)
$$

- The criterion to choose the variable x and the decomposition type ω $H^{\omega}(f \mid x)=\min \left(H^{\omega_{j}}\left(f \mid x_{i}\right) \mid\right.$ pair $\left.\left(x_{i}, \omega_{j}\right)\right)$

INFO-MV Algorithm

- Evaluate information measures: $H^{\circ}\left(f \mid x_{\mathrm{i}}\right)$ for each variable
- Pair (x, ω) that corresponds to $\min \left(H^{\omega}(f \mid x)\right)$ is assigned to the current node

Example:

How does the algorithm work?
$f=[00002310213$ 0321]

1.Evaluate Information measures:

that corresponds to $\min \left(H^{4-p D}\left(f \mid X_{2}\right)\right)=0.75$ bit is assigned to the current node

How does the algorithm work?

1.Evaluate information measures:

$H^{4-S}\left(f \mid x_{1}\right)$,
$H^{1-4-n D}\left(f \mid x_{1}\right)$,
$H^{3-4-n D}\left(f \mid x_{1}\right)$
2.Pair ($x_{1}, 4-\$$) that corresponds to $\min \left(H^{4-S}\left(f \mid x_{1}\right)\right)=0$ is assigned to the current node

Plan of study

Comparison with arithmetic generalization of Staircase strategy
(Dueck et.al., Workshop on Boolean problems 1998)

Comparison with INFO algorithm (bit-level trees)
(Shmerko et.al., TELSIKS'1999)

INFO-A algorithm

INFO-A against Staircase strategy

Test
 Staircase (Dueck et.al. 98)

xor5
squar5
rd73
newtpla2
Total

L/t
80/0.66
56/0.06
448/0.80
1025/185.20

L/t 80/0.00
24/0.00 333/0.01
55/0.12
1609/186.72
EFFECT 3.3 times ${ }^{\uparrow}$
L / t - the number of literals / run time in seconds

INFO-A against table-based generalized Staircase

- Staircase strategy manipulates matrices

- Staircase

INFO-A
(BMT)
■INFO-A
(KBMT) moment tree (wordlevel)
KBMT - free Kronecker Binary Moment tree (word-level) terms and literals, for 15 benchmarks

INFO-A against bit-level algorithm INFO

Test	INFO (Shmerko et.al. 99)	INFO-A
	T/ \boldsymbol{t}	T / \boldsymbol{t}
xor5	$5 / 0.00$	$31 / 0.00$
z4	$32 / 0.04$	$7 / 0.00$
inc	$32 / 0.20$	$41 / 0.45$
log8mod	$39 / 1.77$	$37 / 0.03$
Total	$109 / 2.01$	$116 / 0.48$
	EFFECT 4 times \uparrow	

T / t - the number of products / run time in seconds

Advantages of using Word-Level

Decision Trees to minimize arithmetic functions (squar, adder, root, log)

- PSDKRO - free pseudo Kronecker tree (bit-level)
- BMT - free binary moment tree (wordlevel)
- KBMT- free

Kronecker Binary Moment tree (wordlevel)
 terms and literals, for 15 benchmarks

Advantages of using bit-level DT to minimize symmetric functions

- PSDKRO - free pseudo Kronecker tree (bit-level)
- BMT - free binary moment tree (word-level)
- KBMT - free

Kronecker Binary Moment tree (wordlevel)

-INFO
(PSDK
RO)
\square INFO-A (BMT)
\square INFO-A (KBMT)

Concluding remarks for

 arithmetic
What new results have been obtained?

- New information theoretic interpretation of arithmetic Shannon and Davio decomposition
- New technique to minimize arithmetic expressions via new types of word-level Decision Trees

What improvements did it provide?
70\% products and 60\% literals less against known Word-level Trees, for arithmetic functions

Now do the same for Galois Logic

Organization of Experiments

Symbolic

Manipulations
approach - EXORCISM
(Song et.al.,1997)

Staircase strategy on Machine Learning benchmarks
(Shmerko et.al., 1997)

INFO-MV algorithm

Experiments:
 INFO against Syssbolic Manjipulation

L / t - the number of literals / run time in seconds

Experiments: INFO-MV against Staircase strategy

Test Staircase
(Shmerko et.al., 97)

monks1te	$13 / 0.61$	$7 / 0.04$
monks1tr	$7 / 0.06$	$7 / 0.27$
monks2te	$13 / 0.58$	$7 / 0.04$
monks2tr	$68 / 1.27$	$21 / 1.29$
Total	$101 / 2.52$	$42 / 1.64$
	EFFECT 2.5 times	

T / \boldsymbol{t} - the number of terms / run time in seconds

Experiments:

 4-valued benchmarks (INFO-MV)Type of DT in GF(4)
Test Multi- Pseudo Pseudo Terminal Reed-Muller Kronecker

5xp1	$256 / 1024$	$165 / 521$	$142 / 448$
clip	$938 / 4672$	$825 / 3435$	$664 / 2935$
inc	$115 / 432$	$146 / 493$	$65 / 216$
misex1	$29 / 98$	$48 / 108$	$15 / 38$
sao2	$511 / 2555$	$252 / 1133$	$96 / 437$
Total	$1849 / 8781$	$1436 / 5690$	$982 / 4074$

T / L - the number of terms / literals

Extension of the Approach

Minimization on
 Word-level Trees

Minimization on
Ternary Decision
Trees

Minimization of incompletely specified functions

70% products and 60%
literals less against
known Word-level Trees
15% reduction of the number of products against ROETTD
30% improvement in the number of products against EXORCISM

Summary

Contributions of this approach

- New information theoretic interpretation of arithmetic Shannon and Davio decomposition
- New information model for different types of decision trees to represent AND/EXOR expressions in CF (4)
- New technique to minimize 4-valued AND/EXOR expressions in GF(4) via FREE Decision Tree design
- Very general approach to any kind of decision diagrams, trees, expressions, forms, circuits, etc
- Not much published - opportunity for our class and M.S or PH.D. thesis

Future work

Calculation of information measures on Decision Diagrams (no truth table is needed)

Extension toward other types of
 Decision Trees and
 Diagrams

Dramatical extension of size of the problem

Enlarging the area of application

Future work (cont)

Focus of our todays research is the linear arithmetic representation of circuits:

- linear word-level DTs
- linear arithmetic expressions

Linear arithmetic

 expression of parity (We use masking operator Ξ to extract the necessary bits from integer value of the function

Other Future Problems and Ideas

- Decision Trees are the most popular method in industrial learning system
- Robust and easy to program.
- Nice user interfaces with graphical trees and mouse manipulation.
- Limited type of rules and expressions
- AB @ CD is easy, tree would be complicated.
-Trees should be combined with functional decomposition this is our research

-More tests on real-life robotics data, not only medical databases
- 1. Write a Lisp program to create decision diagrams based on entropy principles
- 2. Modify this program using Davio Expansions rather than Shannon Expansions
- 3. Modify this program by using Galois Field Davio expansions for radix of Galois Field specified by the user.
- 4. Explain on example of a function how to create pseudo Binary Moment Tree (BMT), and write program for it.
- 5. As you remember the Free pseudo Kronecker Binary Moment Tree (KBMT) uses the following expansions $\left\{S_{A}, p D_{A}\right.$, $\left.n D_{A}\right\}:$
- 1) Write Lisp program for creating such tree
-2) How you can generalize the concept of such tree?
-6. Use the concepts of arithmetic diagrams for analog circuits and for multi-output digital circuits. Illustrate with circuits build from such diagrams.
- 7. How to modify the method shown to the GF(3) logic?
- 8. Decomposition:
-A) Create a function of 3 ternary variables, describe it by a Karnaugh-like map.
-B) Using Ashenhurst/Curtis decomposition, decompose this function to blocks
-C) Realize each of these blocks using the method based on decision diagrams.

Partially based on slides from

Information Theoretic Approach to Minimization of Arithmetic Expressions
 D. Popel, S. Yanushkevich
 M. Perkowski*, P. Dziurzanski, V. Shmerko

Technical University of Szczecin, Poland

* Portland State University

I nformation Theoretic Approach to Minimization of Polynomial

Expressions over GF(4)
D. Popel, S. Yanushkevich
P. Dziurzanski,
V. Shmerko

