Information Theoretic Approach to Minimization of Logic Expressions, Trees, Decision **Diagrams and Circuits**

Outline

- Background
- Information Theoretic Model of Decision Trees (DTs) Design
- Minimization of Trees and Diagrams in Various Algebras
 - Arithmetic logic Expressions
 - Polynomial Expressions over GF(4)
- Experimental Study
- Summary and Future Work

Outline

- Information Theoretic Model of Free Galois Decision Tree Design
- Information Theoretic Model of Free Word-Level Decision Tree Design
- Galois-Sum of Galois-Multipliers Circuit Minimization
- Arithmetical Expressions Minimization
 Algorithm
- High generality of this type of methods

Shannon entropy

Entropy H(f) is a measure of switching activity $H(f) = p_{|f=0} \log_2 p_{|f=0} + p_{|f=1} \log_2 p_{|f=1}$

Definition

- Conditional entropy H(f / x) is the information of event f under the assumption that a given event x had occurred
- Mutual information *l(f;x)* is a measure of uncertainty removed by knowing *x*:
 l(f;x) = *H*(*f*) *H*(*f*/*x*)

Shannon entropy The information in an event *f* is a quantitative measure of the amount of uncertainty in this event

$$H(f) = -\sum_{i} p_{|f=i} \log_2 p_{|f=i}$$

Example.

Probability of 1 in f

 $H(f) = -(1/4) \log_2(1/4) -$ (3/4) $\log_2(3/4) = 0.81$ bit

Probability of 0 in f

Definitions: Information theoretic measures

• Conditional entropy H(f | x) is the information of event f under assumption that a given event x had occurred $H(f | x) = -\sum_{i} p_{|x=i} H(f|x=i)$

$$H(f|x_1) = -(1/2) \cdot 0 - (1/2) \cdot 1 = 0.5$$
 bit

 $H(f_{|x|=0}) = -(2/2) \log_2(2/2) - (0/2) \log_2(0/2) = 0 bit$

 $H(f_{|x|=1})=-(1/2) \log_2(1/2)-(1/2) \log_2(1/2)=1$ bit

Definitions: Information theoretic measures

Mutual information *l*(*f*;*x*) is a measure of uncertainty removed by knowing *x* :
 l(*f*;*x*) = *H*(*f*) - *H*(*f*/*x*)

History

Not known to logic synthesis community but known to Al people

- 1938 Shannon expansion
- 1948 Shannon entropy
- 1980- Shannon expansion + Shannon entropy for minimization of decision trees
- *ID3*
- C4.5 Ross Quinlan

Main results in application of information theory to logic functions minimization

- <u>1965</u> *ID3 algorithm* a prototype
- 1990 A. Kabakciouglu et al. »AND/OR decision trees design based on entropy measures
- 1993 A. Lloris et al.

»Minimization of multiple-valued logic functions using AND/OR trees

• 1998 D. Simovici, V.Shmerko et al. »Estimation of entropy measures on Decision Trees

Application of Information Theory to Logic Design

• Logic function decomposition:

- L. Jozwiak (Netherlands)

• Testing of digital circuits :

- V. Agrawal, P. Varshney (USA)

- Estimation of power dissipation: – M. Pedram (USA)
- Logic functions minimization:

Example of ID3 algorithm

	Attribut	te	Class
Furry?	Age?	Size?	(Decision)
Yes	Old	Large	Lion
Νο	Young	Large	Not Lion
Yes	Young	Medium	Lion
Yes	Old	Small	Not Lion
Yes	Young	Small	Not Lion
Yes	Young	Large	Lion
No	Young	Small	Not Lion
No	Old	Large	Not Lion
0.607	0.955	0.5	
1	Furry	/ - Yes: 3 Lior	ns, 2 Non-Lion
		<i>No:</i> 0,	3 Non-Lions
Entropy	H= (5/	/8) H _{furry} +(3/8)	H _{notfurry} = 0.607
	5 yeses	H _{furry} =log(5/8)	3 nos

Optimal decision tree

Where did the idea come from?

- ID3 algorithm have been used for long time in <u>machine-learning systems for</u> trees
- The principal paradigm: learning classification rules
- The rules are formed from a set of <u>training examples</u>
- The idea can be used not only to trees

Summary

Idea

Consider the truth table of a logic function as a special case of the decision table with variables replacing the tests in the decision table

Arithmetic Spectrum

Use arithmetic operations to make logic decisions

- Artificial Intelligence
- <u>Testing</u> of digital circuits :
- Estimation of power dissipation:
- Logic functions minimization for new technologies (quantum - Victor Varshavsky)

Arithmetic Spectrum

Use arithmetic operations to make logic decisions

- A or B becomes A + B AB in arithmetics
- A exor B becomes A + B -2AB in arithmetics
- A and B becomes A * B in arithmetics
- not (A) becomes (1 A) in arithmetics

Positive Davio expansion

 $f = f_{|x=0} \oplus x(f_{|x=0} \oplus f_{|x=1}) \quad f = f_{|x=0} + x(f_{|x=1} - f_{|x=0})$

Negative Davio expansion

HH

Moment Tree (BMT): $\{pD_A, nD_A\}$ Free pseudo Kronecker Binary Moment Tree (KBMT): $\{S_A, pD_A, nD_A\}$

[0000 1110 0011 1111]^T

Free pseudo Kronecker Binary Moment Tree (KBMT): $\{S_A, pD_A, nD_A\}$

 $f = (1-x2) f_{|x2=0} + x2 f_{|x2=1}$

$f = (1-x2) f_{|x2=0} + x2 f_{|x2=1}$

Word-Level Decision Trees for arithmetic functions $\downarrow f$ \downarrow

pD_A

0

×2

pD_A

XA

2-bit half-adder

pD_A

0

pD

x3

2-bit multiplier

X-2

pD_A

pD

XA

2

0

Problems of Free Word-Level Decision Tree Design

- Variable ordering
- Selection of decomposition

Benefit in Minimization

For a given switching function [0000 1110 0011 1111]^T

- Entropy
- $H(f) = -(7/16) \log_2(7/16) (9/16) \log_2(9/16) = 0.99 bit$
- Conditional Entropy $H(f | x_1) = -(5/16) \log_2(5/8) - (3/16) \log_2(3/8)$ $-(2/16) \log_2(2/8) - (6/16) \log_2(6/8) = 0.88 \text{ bit}$
- *Mutual Information I*(*f*;*x*₁)=0.99 - 0.88 = 0.11 *bit*

9 ones

7 zeros

Entropy is large when there is as many zeros as ones

Entropy does not take into account where are they located

Entropy

 $H(f) = -(7/16) \log_2(7/16) - (9/16) \log_2(9/16) = 0.99 bit$

Conditional Entropy

 $H(f | x_1) = -(5/16) \log_2(5/8) - (3/16) \log_2(3/8)$

 $-(2/16) \log_2(2/8) - (6/16) \log_2(6/8) = 0.88 bit$

• *Mutual Information I*(*f*;*x*₁)=0.99 - 0.88 = 0.11 *bit* Entropy is measure of function complexity Now the same idea will be applied to Galois Logic

Shannon and Davio expansions in GF(4) Shannon entropy

Information theoretic criterion in minimization of polynomial expressions in GF(4)

New Idea

Linearly Independent Expansions in any Logic

Shannon entropy

Information theoretic criterion in minimization of trees, lattices and flattened forms in this logic

Entropy is reduced: Information is increased:

IDEA: Shannon Entropy + Decision Tree

Information theoretic measures for arithmetic

- Arithmetic Shannon $H^{S_A}(f | x) = p_{|x=0} \cdot H(f_{|x=0}) + p_{|x=1} \cdot H(f_{|x=1})$
- Arithmetic positive Davio $H^{pD_{A}}(f | x) = p_{|x=0} \cdot H(f_{|x=0}) + p_{|x=1} \cdot H(f_{|x=1} - f_{|x=0})$
- Arithmetic negative Davio $H^{nD_A}(f | x) = p_{|x=1} \cdot H(f_{|x=1}) + p_{|x=0} \cdot H(f_{|x=0} - f_{|x=1})$

Information theoretic criterion for Decision Tree design

Each pair (x,ω) brings the portion of information

$$I(f;x) = H(f) - H^{\omega}(f|x)$$

 The criterion to choose the variable x and the decomposition type ω
 H^ω(f |x)=min(H^ω; (f |x_i)| pair (x_i,ω_i)) Algorithm to minimize arithmetic expressions INFO-A

Evaluate information measures:
 H^{\omega}(f | x_i) for each variable

 Pair (x, ω) that corresponds to min(H^ω (f | x)) is assigned to the current node

1.Evaluate Information measuresfor 1-bit half-adder: $H^{S_A}(f|x_1),$ $H^{S_A}(f|x_2),$ $H^{pD_A}(f|x_1),$ $H^{pD_A}(f|x_2),$ $H^{nD_A}(f|x_1),$ $H^{nD_A}(f|x_2),$

2.Pair (x_1, pD_A) that corresponds to $min(H^{pD_A}(f|x_1))=0.5$ bit is assigned to the current node

How does the algorithm work?

1.Evaluate Information measures: $H^{S_A}(f | x_2),$ $H^{pD_A}(f | x_2),$ $H^{nD_A}(f | x_2)$ 2.Pair (x_2, S_A) that corresponds to $min(H^{S_A}(f | x_2))=0$ is assigned to the current node

Main idea

Decision Table Optimization of: •variables ordering, •decomposition type

Decision Trees and expansion types **Multi-terminal GF(4)** 4 - SPseudo Reed-Muller GF(4) 4-pD, 1-4-nD, 2-4-nD, 3-4-nD **Pseudo Kronecker GF(4)** 4-S, 4-pD, 1-4-nD, 2-4-nD, 3-4-nD We always use **FREE Decision Trees**

Analogue of Shannon decomposition in GF(4)

 $f = J_0(x) \cdot f_{|x=0} + J_1(x) \cdot f_{|x=1} + J_2(x) \cdot f_{|x=2} + J_3(x) \cdot f_{|x=3}$

Analogue of positive Davio decomposition in GF(4) Pair (*x,4-pD*) $\begin{array}{c} & x^{2} \\ & & \\$ $f_{|x=1} + 3f_{|x=2} + 2f_{|x=3}$
$$\begin{split} f &= f_{|x=0} + x \cdot (f_{|x=1} + 3f_{|x=2} + 2f_{|x=3}) \\ &+ x^2 \cdot (f_{|x=1} + 2f_{|x=2} + 3f_{|x=3}) \\ &+ x^3 \cdot (f_{|x=0} + f_{|x=0} + f_{|x=2} + f_{|x=3}) \end{split}$$

Analogue of negative Davio decomposition in GF(4)

How to minimize polynomial expressions via Decision Tree

- A path in the Decision tree corresponds to a product term
- The best product terms (with minimal number of literals) to appear in the quasi-minimal form can be searched via Decision Tree design
- The order of assigning variables and decomposition types to nodes needs a criterion

Summary of GF(4) logic

Minimization of polynomial expressions in GF(4) means the design of Decision Trees with variables ordered by using some criterion

This is true for any type of logic.

Shannon entropy + decomposition in GF(4) Pair (*x,1-4-nD*) ₄ $f_{3} = f_{|x=0} + f_{|x=0} + f_{|x=2} + f_{|x=3}$ $f_{2} = f_{|x=0} + 3f_{|x=2} + 2f_{|x=3}$ 0 $f_0 = f_{|x=0} + 2f_{|x=2} + 3f_{|x=3}$ t_{| x=1} $H(f \mid x) = \rho_{\mid x=0} \cdot H(f_0) + \rho_{\mid x=2} \cdot H(f_2) + \rho_{\mid x=3} \cdot H(f_3) + \rho_{\mid x=1} \cdot H(f_{\mid x=1})$

Information theoretic criterion for Decision Tree design

Each pair (x,ω) carries a portion of information

 $I(f;x) = H(f) - H^{\omega}(f|x)$

The criterion to choose the variable x and the decomposition type \omega

 $H^{\omega}(f | \mathbf{x}) = min(H^{\omega_j}(f | \mathbf{x}_j) | pair(\mathbf{x}_i, \omega_j))$

INFO-MV Algorithm

 Evaluate information measures: *H*^{\u0}(*f* | *x*_i) for each variable

 Pair (x,ω) that corresponds to min(H^ω(f |x)) is assigned to the current node

Example: How does the algorithm work?

4-pD 0

f=[000 0231 0213 0321] .Evaluate Information measures: $H^{4-S}(f|X_1),$ $H^{4-S}(f|x_2),$ 2.Pair (x₂,4-pD) that corresponds to $min(H^{4-pD}(f|x_2))=0.75$ bit is assigned to the current node

How does the algorithm work?

 X_2

0

3

4-pD

Ω

4-S

1.Evaluate information measures: $H^{4-S}(f|x_1), H^{4-pD}(f|x_1), H^{2-4-nD}(f|x_1), H^{2-4-nD}(f|x_1), H^{2-4-nD}(f|x_1), H^{3-4-nD}(f|x_1)$ 2.Pair $(x_1, 4-S)$ that corresponds to min($H^{4-S}(f|x_1)$)=0 is assigned to the current node

Plan of study

Comparison with arithmetic generalization of *Staircase* strategy

(Dueck et.al., Workshop on Boolean problems 1998) Comparison with *INFO* algorithm (bit-level trees)

> (Shmerko et.al., TELSIKS'1999)

INFO-A algorithm

INFO-A against Staircase strategy

Test	<i>Staircase</i> (Dueck et.al. 98)	INFO-A
	L/t	L/t
xor5	80/0.66	80/0.00
squar5	56/0.06	24/0.00
rd73	448/0.80	333/0.01
newtpla2	1025/185.20	55/0.12
Total	1609/186.72	492/0.13
	EFFECT 3.3	times Î

L / t - the number of literals / run time in seconds

INFO-A against table-based generalized Staircase

- Staircase strategy manipulates matrices
- INFO-A is faster and produces 70 % less literals
- BMT- free binary moment tree (wordlevel)
- KBMT free Kronecker Binary Moment tree (word-level)

for 15 benchmarks

INFO-A against bit-level algorithm *INFO*

Test	INFO	INFO-A
(S	Shmerko et.al	. 99)
	T / t	T/t
xor5	5/0.00	31/0.00
z4	32/0.04	7/0.00
inc	32/0.20	41/0.45
log8mod	39/1.77	37/0.03
Total	109/2.01	116/0.48
		ECT 4 times

T/t-the number of products / run time in seconds

Advantages of using Word-Level Decision Trees to minimize arithmetic functions (squar, adder, root, log)

 PSDKRO - free pseudo Kronecker tree (bit-level) BMT - free binary moment tree (wordlevel) KBMT- free **Kronecker Binary** Moment tree (wordlevel)

Advantages of using bit-level DT to minimize symmetric functions

 PSDKRO - free pseudo Kronecker tree (bit-level)

 BMT - free binary moment tree (word-level)

 KBMT - free
 Kronecker Binary
 Moment tree (wordlevel)

8000 6000 4000 2000**Total number of** terms and literals, for 15 benchmarks

 INFO (PSDK RO)
 INFO-A (BMT)

INFO-A (KBMT) Concluding remarks for arithmetic What new results have been obtained? • New information theoretic interpretation of arithmetic Shannon and Davio decomposition

 New technique to minimize arithmetic expressions via new types of word-level Decision Trees

What improvements did it provide? 70% products and 60% literals less against known Word-level Trees, for arithmetic functions Now do the same for Galois Logic

Organization of Experiments

Symbolic Manipulations approach - *EXORCISM* (Song et.al.,1997)

Staircase strategy on Machine Learning benchmarks (Shmerko et.al., 1997)

INFO-MV algorithm

Experiments: *INFO* against Symbolic Manipulation

Test	<i>EXORCISM</i> (Song and Perkowski 97)	INFO	
bw	319 / 1.1	65 / 0.00	
rd53	57 / 0.4	45 / 0.00	
adr4	144 / 1.7	106 / 0.00	
misex1	82 / 0.2	57 / 0.50	
Total	602 / 3.4	273 / 0.50	
EFFECT 2 times			

Experiments: *INFO-MV* against Staircase strategy

Test	Staircase (Shmerko et.al., 97)	INFO-MV	
monks1te	13 / 0.61	7 / 0.04	
monks1tr	7 / 0.06	7 / 0.27	
monks2te	13 / 0.58	7 / 0.04	
monks2tr	68 / 1.27	21 / 1.29	
Total	101 / 2.52	42 / 1.64	
EFFECT 2.5 times			

T/t - the number of terms / run time in seconds

Experiments:					
4-valued benchmarks (INFO-MV)					
	Test	Ty Multi- Terminal	be of DT in GF Pseudo Reed-Muller	(4) Pseudo r Kronecker	
5	xp1	256/ 1024	165/ 521	142/ 448	
С	lip	938/ 4672	825/ 3435	664/ 2935	
ir	nc	115/ 432	146/ 493	65/ 216	
n	nisex1	29/ 98	48/ 108	15/ 38	
S	ao2	511/ 2555	252/ 1133	96/ 437	
	Total	1849/ 8781	1436/ 5690	982/4074	

T/L - the number of terms / literals

Extension of the Approach

Minimization on Word-level Trees 70% products and 60% literals less against known Word-level Trees

Minimization on Ternary Decision Trees 15% reduction of the number of products against ROETTD

Minimization of incompletely specified functions **30%** improvement in the number of products against EXORCISM

Summary Contributions of this approach

- New information theoretic interpretation of arithmetic Shannon and Davio decomposition
- New information model for different types of decision trees to represent AND/EXOR expressions in GF(4)
- New technique to minimize 4-valued AND/EXOR expressions in GF(4) via FREE Decision Tree design
- Very general approach to any kind of decision diagrams, trees, expressions, forms, circuits, etc
- Not much published opportunity for our class and M.S or PH.D. thesis

Future work

Calculation of information measures on Decision Diagrams (no truth table is needed) Dramatical extension of size of the problem

Extension toward other types of Decision Trees and Diagrams

Future work (cont)

Focus of our todays research is the linear arithmetic representation of circuits:

- linear word-level DTs
- linear arithmetic expressions

We use masking operator Ξ to extract the necessary bits from integer value of the function

Other Future Problems and Ideas

- Decision Trees are the most popular method in industrial learning system
- Robust and easy to program.
- Nice user interfaces with graphical trees and mouse manipulation.
- Limited type of rules and expressions
- AB @ CD is easy, tree would be complicated.
- •Trees should be combined with functional decomposition this is our research
- A Problem for ambitious how to do this combination??
- More tests on real-life robotics data, not only medical databases

Questions and Problems

 1. Write a Lisp program to create decision diagrams based on entropy principles

• 2. Modify this program using Davio Expansions rather than Shannon Expansions

• 3. Modify this program by using Galois Field Davio expansions for radix of Galois Field specified by the user.

• 4. Explain on example of a function how to create pseudo Binary Moment Tree (BMT), and write program for it.

• 5. As you remember the Free pseudo Kronecker Binary Moment Tree (KBMT) uses the following expansions $\{S_A, pD_A, nD_A\}$:

• 1) Write Lisp program for creating such tree

•2) How you can generalize the concept of such tree?

Questions and Problems (cont)

• 6. Use the concepts of arithmetic diagrams for analog circuits and for multi-output digital circuits. Illustrate with circuits build from such diagrams.

- 7. How to modify the method shown to the GF(3) logic?
- 8. Decomposition:

•A) Create a function of 3 ternary variables, describe it by a Karnaugh-like map.

•B) Using Ashenhurst/Curtis decomposition, decompose this function to blocks

•C) Realize each of these blocks using the method based on decision diagrams.

Partially based on slides from

Information Theoretic Approach to Minimization of Arithmetic Expressions

D. Popel, S. Yanushkevich M. Perkowski*, P. Dziurzanski, V. Shmerko

Technical University of Szczecin, Poland

* Portland State University

Information Theoretic Approach to Minimization of Polynomial Expressions over GF(4) D. Popel, S. Yanushkevich P. Dziurzanski, V. Shmerko