F'unctionsis
 Decomposition

1Y[sicilne

PLAN OF EVOLVABLE AND LEARNING HARDWARE LECTURES

－Ouf hardware ：the DEC－PERLE－1 board．
－Programming／designing environment for DEC－PERLE／XI LINX．
－Two dififferent concepts of designing Learning Hardware using the DEC－PERLE－1 board．
－Compare Jogjc versus ANN and GA approaches to learning．
－Introduce the concept of Learning Hardware
－Methods of knowledge representation in the Universal Logjic Maçj」f」e（U1JJ）」
－variants of Cube Calculus．
－A general－purpose computer with instructions specialized to operate on logic data：Cube Calculus Machine．
－Variants of cube calculus－arithmetics for combinatorial problems

Our approach to Cube Calculus Machine

DECOMPOSITIION IN HARDWARE

- Function Decomposition is at least an NP-hard problem.
- Most its stages are NP-hard problems.
- One approach to find solutions to NP-hard problem is not to aitternpt at the exact solution, but be satisfied with one which is near exact but obtainable in a reasonable time.
- This type of algoritinm is based on heuristics, or rules which can be applied which are likely to improve the solution.
Such algorithms, when implemented in hardware, can bring orders of magnitude speed-up
- We have chosen algorithms that are simple, easy, fast and can be relatively easy implemented in hardware.
- We showed that decomposition of fuzzy functions and relations can be reduced to decomposition of multi-valued functions and relations.

LEARNING
 HARDWARE
 METHODOLOGY

LEARNING BY FUNCTIONAL DECOMPOSITI ON MACHI NE

Design phillosophy of the FPGA implementation of a point algorithin.
Phases of the algorithm are executed sequentially, they are then loaded from the host memory, while the intermediate clata are stored in DEC-PERLE-1 memories betwveen stages.
We will show also how generic combinatorial problems are used in logic learning algorithms.
The ideas of graph coloring will be used for decomposing functions, and thus in Machine Learning

The decision table represents a data set, with labeled instances, each relating a set of attribute vallues to a class (the output concept).

Decomposition of the table is to
decompose the initial table into a hierarchy of decision tables, each of them no more decomposable.

Thus, each of these new tables, as well as the entire network are less
complex and easier to interpret than the original table.

Some regularities not seen in the original table can be found,
and the intermediate functions correspond to some features (concepts) of the data set.

Ashenhurst/Curtis

Decomposition has been
adopted to multiple-valued logic (ISMVL'97).

It applies iteratively the single

 decosipostion step, whosegoal is to decompose a function
$y=F(X)$ into $y=G(A, H(B))$,
where X is a set of input
attributes $x_{1}, x_{2}, \ldots, x_{n}$, and y is the class.

F, Є, छnd Hare functions

represented as clecision tables, i.e. possibly incomplete sets of attribute-value vectors with assigned classes.
A) Gnd ${ }^{\text {B }}$ are subsets of input aituributes, called firee and bound set, respectively, such that $A \cup B=X$

Functions G and H are developed in the
decomposition process and not predefined in any way

New concept $\mathrm{c}_{1}=\mathrm{H}(\mathrm{B})$ has been found.

The goal is to find the clecorngosition of the smallest complexity (DFC - Abu-Mostafa).

Example of Decomposition

Three possible non-trivial partitions of attributes that yield three different decompositions

$$
\begin{aligned}
& y=G_{1}\left(x_{1}, H_{1}\left(x_{2}, x_{3}\right)\right), \quad y=G_{2}\left(x_{2}, H_{2}\left(x_{1}, x_{3}\right)\right), \\
& y=G_{3}\left(x_{3}, H_{3}\left(x_{1}, x_{2}\right)\right) .
\end{aligned}
$$

The comparison shows that:

1. decision tables in the decomposition $y=G_{1}\left(x_{1}, H_{1}\left(x_{2}, x_{3}\right)\right)$ are smaller than those for $y=G_{2}\left(x_{2}, H_{2}\left(x_{1}, x_{3}\right)\right)$,
2. the new concept $c_{i}=H_{1}\left(x_{2}, x_{3}\right)$ uses only three values, whereas that for $H_{2}\left(x_{1}, x_{3}\right)$ uses four,
3. we found it hard to interpret decision tables G_{2} and H_{2}, whereas by inspecting H_{1} and G_{1} it can be easy to see that $c_{1}=\operatorname{MIN}\left(x_{2}, x_{3}\right)$ and $y=\operatorname{MAX}\left(x_{1}, c_{1}\right)$.
4. This can be even more evident with the assignment of values 0,1 , and 2 of a multi-valued variable $X_{i}: X_{i}{ }^{0}=l o, X_{i}{ }^{1}=m e, X_{i}{ }^{2}=h i$.

An example decision table $y=F\left(x_{1}, x_{2}, x_{3}\right)$

w_{1}	${ }_{2}$	x_{3}	ψ
10	19	b	b
10	10	hi	b
10	me	b	b
10	me	hi	me
10	hi	b	b
10	hi	hi	hi
10	hi	hi	hi
me	10	b	me
me	10	hi	me
me	me	b	me
me	me	hi	me
me	hi	b	me
me	hi	hi	hi
hi	19	b	hi
hi	10	hi	hi
hi	me	b	hi
hi	me	hi	hi
hi	hi	b	hi
hi	hi	hi	hi

Two one-step decompositions

DECOMPOSITION (cont)

-The following problems must be solved by an efficient decomposition algorithm:

1. how to select sets A and B ?
2. how to evaluate the quality of decompositions?

All known methods require nearly exhaustive searches that involve huge repetitions of basic operations.
-The assignment of values of c is trivial in case of a completely specififed function, which is, when decision table instances completely cover the attribute space.

Otherwise, when the function is incompletely specified, the relation of compatibility of columns is no longer transitive, and the graph coloring approach is used.

Column functions are calculated by a cofactor operation on the original function f.

The cofactor f_\{PriOD's of function f with respect to the literals from PROD is this function with all literals from PROD substituted to maximum constant value (constant value 1 in case of binary logic).

All functions are represented by arrays of cubes.

BASIC OPERAJJ ONJ」 COMPLETE『AUJOLOG U J COFACTORS

For a completely specified binary function, two columns n_1 and $n _2$ are compatible if the Boolean functions corresponding to them are a Boolean Tautology:

which is equivalent to:

where \# denotes the sharp (difference) operation on arrays of cubes, and ON is the set of true cubes in SOP form.

BASJC OPERAJJ O』JJJ I NCOMPLETE「AUTOLOG」 J戸 COFACIORS

For an incompletely specified binary function， two nodes of the graph for coloring are incompatible if the corresponding columns are not compatible（cannot be merged into one column）：
n＿1 incornpajicible $n_{1} 2$ iff（ $O N\left(n_{2} 1\right) \wedge$ OFF（ $\left.n _2\right) /=$ empiyset or $\left(\operatorname{ON}\left(n _2\right) / \Lambda\right.$ $\operatorname{OFF}\left(\mathrm{n} _1\right) /=$ emptyset

DECOMPOSITION IN HARDWARE

- Only tyyo basic operations, cofactor and Sharp are used for complete functions.
- Only cofactor and instersecion are used for incomplete functions.
\square In both cases, these operations are repeated many times on cubes from the cube arrays
\square Basic (mv) logic operators used for checking compatibility of columns of multiple-valued functions while creating the graph for coloring.

DECOMPOSITION IN HARDWARE

- Afiter creaition, the graph is colored in such a way that every two nodes linked by an edge obtain different colors, and the minimum number of colors is used.
- Graph coloring can be reduced to secpuences of basic logic operators.
- Concluding, in addition to cofiactoring, the partial combinatorial problems that are solved by our hardware decomposition processor DP are:
- set covering,
- graph coloring, - maximum clique.
- They are all NP-hard, and they all have many other applications in ML.

PROCESシORS

- A SJMD processor that realizes the basic operations of Rough Sets theory of Zolzislaw Pawlak.

- A systolic processor to solve satisfiability and related problems that occur in many combinatorial optimization problems.

CONCLUSIONS

- Principles of́ Learning Hardware as a competing approach to Evolvable Hardware, and also as its generalization.
- Data Mining machiines.
- Universal Logic Machíne with several virtual processors.
\square DEC-PERLE-1 is a good medium to prototype such machines, its XC3090A chip is now obsolete.
\perp This can be much improved by using XC4085XL FPGA and redesigning the board.

Massively parallel architectures such as CBM based on new Xilinx series 6000 chips will allow even higher speedups.

Y. Abu-Mostafía (ed.), " Complexity in I niformation Theory," Springer Verlag, New York, 1988, p. 184.

- R.L. Ashenhurst, " The Decomposition of Switching Functions", Proc. Int. Symp. of Th. of Switching, \} 1957.
A. Buller, ' Artificicial Brain. Phantasies no more,"Proszynski i Ska, Warsaw, 1998, (in Polish).
P. Burkey, M, Perkowski, and A. Wielgus, " Ashenhurst/Curtis Decomposition of Fuzzy Functions and Relations," sulbmitted to Multiple-Valued Logic. An International Journal, Gordon and Breach Science Publishers, 1999.
R.E. Bryant, " Grap'h-based algorithms for boolean function manipulation", I EEE Transactions on Computers, C-35, No. 8, pp. 667-691, 1986.
E.F. Codd, " A Relational Model of Data for Large Shared Data Banks," Comm. ACM, 13, pp. 377-387.
H.A. Curtis, " 'A New Approach to the Design of Switching Circuits," Princeton, N.J ., Van Nostrand, 1962.
- D.L. Dietmeyer, ' ' Logic Design of Digital Systems," Allyn and Bacon, Boston, MA, 1971.
- K. Dill, and M. Perkowski, ‘ 'Minimization of Generalized Reed-Muller Forms with Genetic Operators," Proc. Genetic Programming '97 Conf., J uly 1997, Stanford Univ., CA.
- K. Dill, J. Herzog, and M. Perkowski, ' ' Genetic Programming and its Application to the Synthesis of Digital Logic," Proc. PACRI M '97, Canada, August 20-22, 1997.
- K. Dill, and M. Perkowski, ' ` Evolutionary Minimization of Generalized Reed-Muller Forms," Proc. ICCI MA'98 Conference\}, pp. 727-733, February 1998, Australia, published by World Scientific.
- B. Falkowski, I. Schaefier, M. Perkowski, '`Effective Computer Methods for the Calculation of Rademacher-Walsh Spectrum
for Completely and I incompletely Specified Boolean Functions," I EEE Trans, on Computer-Aided Design , pp. 1207 - 1226, October 1992.
C. Files, M. Perkowskj, '"An Error Reducing Approach to Machine Learning Using Multi-Valued Functional Decomposition," '" Proc. I SMVL'98, pp. 167-172, May 1998.
C. Files, M. Perkowski, ' 'Multi-Valued Functional Decomposition as a Machine Learning Method," \em Proc. ISMVL'98, pp. 173-178, May 1998.
J.M. Francioni, and A. Kandel, ' ' Decomposable Fuzzy-valued Switching Functions," Fuzzy Sets and Systems, Vol. 9, No. 1, pp. 41-68, 1983.
H. DeGaris, ' ' Evolvable Hardware: Genetic Programming of a Darwin Machine," In " Artificial Nets and Genetic Algorithms," R.F. Albrecht, C.R. Reeves and N.C. Steele (eds), Springer Verlag, pp. 441-449, 1993.
- H. DeGaris, ‘` Evolvable Hardware: Principles and Practice," CACM J ournal, August 1997.

\$hitip://www sijp.atr. co.jp/ sim degaris

- S. Grygjel, and M. Perkowski, " ' New Compact Representation of Mujtiple-Valued Functions, Relations, and Non-deterministic State Macriines," Proc. JCCD'98, October 1998.
\square T. Higuchij, M. I wata, and W. Liu (eds), ' 'Evolvable Systems: From Biology to Hardware," Lecture Notes in Computer Science, ; No. 1259, Proc. First Intern. Conf. I CES'96, Tsukuba, Japan, October 1996, Springer Verlag, 1997.
L. Jozwiak, M.A. Perkowski, D. Foote, ' ' Massively Parallel Structures of Specialized Reconfigurable Cellular Processors for Fast Symbolic Computations," Proc. MPCS'98 - The Third International Conference on Massively Parallel Computing Systems, Colorado Springs, Colorado - USA, April 6-9, 1998.
- T. Luba, J. Rybnik, ' 'Algorithmic Approach to Discernibility Function with Respect to Attributes and Object Reduction," Int. Workshop on Rough Sets, \} Poznan 1992.
- T. Luioa, " Decomposition of multiple-valued functions", \{lem Proc. 25th ISMVL, 1995, pp. 256-261.
- R. Malvi, M. Perkowskij, andl L. Jozwiak, ' 'Exact Graph Coloring for Functional Decomposition: Do we Need it?," pp. 1-10, Proceedings of 3rd International Workshop on Boolean Problems, Freiberg University of Mining and Technology, Institute of Computer Science, September 17-18, 1998.
C. Mead, ' 'Analog VLSI And Neural Systems," Addilison Wesley Pub., April 1989.
R.S. Michalskj and J. B. Larson, ' ' Inductive inference of vl decision rules," in Workshop in Pattern-Directed Inference Systems, Hawaii, May 1977.
R.S. Michalski, I. Bratko, and M. Kubat, ' ' Machine Learning and Data Mining: Methods and Applications," Wiley and Sons, 1998.
- D. Michie, ' ' Machine Learning in the next five years," Proc. EWSL'88, 3rd European Working Session on Learning, Glasgow, Pitman, London, 1988.
L. Ngulyen, M, Perkowski, N. Goldstein, '`PALMINI - Fast Boolean Mininimizer for Personal Computers," Proc, of the JEEE/ACM 24tín Design Automation Conference, pp. 615-621, Miami, Florida, June 28 - July $1,1987$.
Z Pawlalk, "Rough Sets, Theoretical Aspects of Reasoning about Dati,"" Kluwer Academic Publishers, 1991.
M. Perkowski, ' 'Systolic Architecture for the Logic Design Machine," Proc, of the I EEE and ACM International Conference on Computer Aided Design - ICCAD'85, pp. 133-135, Santa Clara, 19-21 November 1985
M. Perkowski, S. Wang, W.K. Spiller, A. Legate, E. Pierzchala, - ' Ovulo-Computer: Application of I mage Processing and Recognition to Mucus Ferning Patterns," Proc. of the Third IEEE Symposium on Computer-Based Medical Systems, pp. 52 59, Chapel Hill, North Carolina, J une 3-6, 1990.
M.A. Perkowskj, " A Universal Logic Machine," invited acdlress, Proc of the 22nd IEEE International Symposium on Multiple Vallued Logic, ISMML'92, pp. 262 - 271, Sendai, Japan, May 27-29, 1992.
M. A. Perkowskj, M. Chrzanowska-J eske, ’ ' Multiple-ValuedInpuit TANJ Networks," Proc. ISMVL'94, pp. 334-341, Boston, MA, May 25-27, 1994.
M. A. Perkowskí, J. Ross, D. Gadd, J.A. Goldman, and N. Song, Application of ESOP Minimization in Machine Learning and Knowledge Discovery," Proc. of the Second Workshop on Applications of Reed-Muller Expansion in Circuit Design, Chiba City, J apan, 27-29 August 1995, pp. 102-109.
M. Perkowski, M. Marek-Sadowska, L. J ozwiak, T. Luba, S. Grygiel, M. Nowicka, R. Malvi, Z. Wang, and J. S. Zhang, ' ' Decomposition of Multiple-Valued Relations," Proc. ISMVL'97, Halifax, Nova Scotia, Canada, May 1997, pp. 13 18.

M. Perkowskj, P. Lech, Y. Khateeb, R. Yazdi, and K. Regupathy,

 Sofitware-Hardware Codesign Approach to Generalized Zakrevskij Staircase Method for Exact Solutions of Arbitrary Canonical and Non-Canonical Expressions in Galois Logic," Booklet of бth Intern. Workshop on Post-Binary ULSI Systems, Nova Scotia, Canacla, May 27, 1997, pp. 41 - 44.- M. A. Perkowski, L. Jozwiak, and D. Foote, "Architecture of a Programmable FPGA Coprocessor for Constructive Induction Approach to Machine Learning and other Discrete Optimization Problems ${ }^{\text {HI, }}$ in Reiner W. Hartenstein and Victor K. Prasanna (ed) ' 'Reconfigurable Architectures. High Performance by Configware," IT Press Verlag, Bruchsal, Germany, 1997, pp. 33 - 40.
- M. Perkowski, L. Jozwiak, and S. Mohamed, ' ` New Approach to Learning Noisy Boolean Functions," Proc. ICCIMA'98 Conference, February 1998, Australia, published by World Scientific, pp. 693-706. Australia, published by World Scientific.

M. Perkowski, ' Do It Yourself Reconfigurable Supercomputer

 thait Learns," book preprint , Portland, Oregon, 1999.- PSU POLO Directory with DM/ML Benchmarks, software and papers: hitip://wwwy,ee pdx edu/polo/
- E. Pierzchala and M. Perkowski, ' ' A High-Frequency FieldProgramnable Analog Array (FPAA), Part 1: Design, Part 2:
Applications," Fjeld-Programmable Analog Arrays, (E.
Pjerzchala, ed.), KJuwer Academic Publishers, 1998.
ـL.O. Chuas and T. Roska, ' "The CNN paradigm," IEEE Trans. on Circuits and Systems-I, Vol. 40, No. 3, pp. 148-156, March 1993.
T. D. Ross, M.J. Noviskey, T.N. Taylor, and D.A. Gadd, ' ' Pattern Theory: An Engineering Paradigm for Algorithm Design," Final Technical Report WL-TR-91-1060 Wright Laboratories, USAF, WL/AART/WPAFB, OH 45433-6543, August 1991.
P. Sapiecha, M. A. Perkowski, and T. Luba, ' ' Decomposition of Information Systems Based on Graph Coloring Heuristics," Symposium on Modelling, Analysis and Simulation, CESA'96 IMACS Multiconference, Lille, France, July 9-12, 1995.
T. Sasao (eclitor), " Representation of Boolean Functions," Kluwer Academic Pu'blishers, 1996
K B. Stanton, P.R. Sherman, M. L. Rohwedder, Ch.P. Fleskes, D. Gray,
D.T. Minin, C. Espinosa, D. Mayi, M. Ishaque, M.A. Perkowski, ' ` PSUBOT A Voice-Controlled Wheelchair for the Handicapped," Proc. of the 33rd Midwest Symp. on Circuits and Systems, pp. 669 - 672, Alberta, Canada, August 1990.
Y.H. Su and P.T. Cheung, ' ' Computer minimization of multiple-valued switching functions," I EEE Transactions on Computers, Vol. C-21, pp. 9951003, 1972.
N, Song, M, Perkows'li, ' 'Minimization of Exclusive Sum of Products Expressions for Multi-Output Multiple-Valued I nput, I ncompletely Specified Functions," IEEE Transactions on Computer Aided Desion, Vol. 15, No. 4, April 1996, pp. 385-395.
U.C. I rvine, " Repository of Machine Learning Daitabases and Domain Theories," \$ftp://ftp. ics. uci. edu/pu'o/machine-learning-databases/
\square J. Vuillemsif, P. Bertin, D. Roncin, M. Shand, H. Touati, and Ph. Boucard, " Programmable Active Memories: Reconiigurable Systems Come of Age," I EEE Trans. on VLSJ Systerns, Vol. 4, No. 1., pp. 56-69, March 1996 W. Wan, and M. Perkowski, ' ' A New Approach to the Decomposition of I ncompletely Specified Multi-Output Function Based on Graph Coloring and Local Transformations and Its Application to FPGA Mapping," Proc. Euro-DAC, pp. 230-235, 1992.

