

Outline

- Genetic Programming (GP)
- Evolvable Hardware (EH)
- Hardware Evolution of GP Trees
- Context Switching
- Implementation and Experiments
- Conclusion and Future Work

Genetic Programming (GP)

This is a program for a mobile robot

- + Automatic evolution of computer programs
- + Tree-structured chromosomes
- + Expressive power
- + Generality
- + Easy to incorporate prior knowledge
 - Time complexity (fitness evaluation)
- Space complexity

Evolvable Hardware (EH)

- Run-time reconfigurability
- Higher performance than general-purpose processors
- More flexible than ASICs
- On-line learnability
- Customization

Hardware Evolution of GP Trees

5

Difficulty in Hardware Evolution of GP Trees

- On-chip representation of tree structures
- Routing problem
- Hardware resource utilization

First Approach: Linear Representation

Comparison of resource utilization

	Tree Represenatation	Linear Representation
Total Resource	80.9%	86.7%
Placement Resource	37.8%	49.2%

Second Approach: Context Switching

- Separate implementation of subtrees of a GP tree
- Reduction of redundancy
- Better utilization of chip resources

Context Switching: Process Decomposition

A GP Tree is decomposed into a number of subtrees.

- Based on the resource necessity of sub-trees.
- Number of nodes in the sub-tree

Result6

Context Switching: Hardware Library

Illustration of hardware library

Library: storage of hardware configuration information for subtrees

- Nodes of a GP tree are interchangeable
- Drawback
 - Possibility of resource waste

Training of GP Trees with Context Switching

- A sub-tree is chosen depending on the input values.
- Then, this sub-tree is trained by varying and selecting fitter subtrees.

Test Bed: Evolving Controllers for Autonomous Robots

- Transportation of an object to the goal (light)
- Cooperation of two robots
- Khepera
- Xilinx XC6216

Setup of GP for Robot Control

- Function nodes
 - IF_OBJ, IF_GOAL, IF_FORWARD, IF_OBS1~4
- Terminal nodes
 - MOVE_FORWARD, MOVE_FORWARD & TURN_LEFT, MOVE_FORWARD & TURN_RIGHT, MOVE_BACKWARD,TURN_LEFT, TURN_RIGHT, RANDOM
- Fitness function

(1) $F_{new} = F_{old} + w_1 \times (\# collisions) + w_2 \times (\# steps)$

(2) $F_{new} = F_{old} + w_1 \times (\# miss) + w_2 \times (\# steps) + vision \times w_3$

Experimental Results: Best Fitness

Experimental Results: Average Fitness

Experimental Results: Hits

Conclusion and Future Work

- Presented a method for evolving GP trees on EH
- Speed-up by reducing fitness evaluation time
- The larger the training set, the higher the speed-up factor
- Possibility of special-purpose GP hardware
- Appropriate for on-line hardware learning
- Further possibility of resource utilization in evolving GP trees on EH

H.-S. Seok, K.-J. Lee, B.-T. Zhang D.-W. Lee and K.-B. Sim Seoul National University Chung-Ang University Seoul, Korea