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Abstract: Ternary quantum circuits have recently been introduced to help reduce the size of multi-valued logic for multi-level quantum computing systems. However, synthesizing these quantum circuits is not easy. In this paper we describe a new evolutionary algorithm based synthesizer for ternary quantum circuits. Our results show that some of the synthesized circuits use fewer gates than previously published methods.
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1. INTRODUCTION

Quantum computing (QC) is a very promising and flourishing research area [1-3]. QC theoretically allows designers to build much more efficient computers than the existing classical ones. For example, some problems that cannot be solved in polynomial time using classical computers can be solved in polynomial time using quantum computers [1] (proven already experimentally but for small data only). In part, this is because quantum circuits are inherently able to perform massive parallel computations [1-3]. While most of the results are for binary quantum computers, the multi-valued quantum logic synthesis is a very new research area. Unfortunately, previous synthesis methods produce circuits that were unnecessarily complex. One promising approach for reducing the circuit size is to use gates that are ternary counterparts of the classical binary Feynman gates and new 2-qudit ternary controlled gates (qudit is a multiple-valued counterpart of binary quantum bit or qubit).

The success in the ion trap quantum realization of some ternary gates [4] gives increasing hopes to physically build complete ternary quantum circuits in this or other quantum realization technologies. However, even when the ternary quantum technology will become available, synthesizing automatically a quantum circuit from its specification is not a trivial problem and most previous attempts have been disappointing or insufficient from one point of view or the other. Although there are several papers about using genetic algorithm (GA) for binary quantum computers [5-8] and quantum inspired evolutionary algorithms (EA) [9], to the best of our knowledge, no attempts have been made to use GAs or EAs for designing ternary quantum circuits. Another issue is the quantum realizability of gates and their costs. Some authors [10-14] assume complex gates that are not directly realizable in quantum. The costs of realizing these gates using realizable gates from [4] would be very high. Only two-qudit gates are directly realizable [4] and other gates are compositions of realizable gates. This paper and [15] are the first papers to introduce a practical synthesis approach to synthesize directly with quantum realizable 2-qudit generalized ternary gates (GTG gates) and not only with ternary multi-input Toffoli-like gates [16-18, 12-14].  Paper by Muthukrishnan and Stroud [4] introduced families of realizable 2-qubit controlled gates in which only one value, the highest one, can be controlling.  That means, for all but the highest value of the controlling variable the data variable (controlled variable) is unaffected. Otherwise a ternary 1-qudit operation is done on the controlled variable. Based on our understanding of paper [4], we proposed [16-18, 19] the generalized ternary gates where every value of the controlling variable can be used to select a ternary 1-qudit operator on the controlled variable. We believe that these gates are directly realizable from quantum primitives that are used in [4] and in general ion trap and NMR quantum computing [1-3, 10, 12, 19, 20].  The matrices of such gates are unitary. It can be shown [15] that every GTG can be build from Muthukrishnan/Stroud gates [4] thus the model introduced in [16-19] and used here is mathematically correct. Because however we do not know if these gates can be build directly, we are not discussing the costs of these gates and thus not comparing the costs of solutions with some other models, because in some cases we are uncertain how the complex gates of the authors would be realized using 2-qudit quantum realizable gates from [4]. The assumption of using GTG gates allows us to obtain significant reduction in terms of elementary gates that are realized in ion trap technology, with yet uncertain realization costs. Our EA method is however general and in particular it allows to use also any subset of GTG gates, including the realizable subsets described by Muthukrishanan and Stroud or 2-qudit simplifications of gates from [12], as special cases. All these designs cannot be done by paper and pencil. Therefore, developing CAD tools for synthesizing ternary function using these gates and any of their subsets (like those from [4, 15]) has become a demand of time. In this paper we present such a CAD system where we propose an Evolutionary Algorithm (EA) based method for synthesizing both completely and incompletely specified multi-output ternary functions using cascades of GTG gates or any subset of these gates. The gates assumed in [12, 14] or any other gates described by unitary permutative matrices can be also used, but they are treated as macros in realization. The costs of such gates may be thus high because of our way of realizing them using our elementary gates.

In this paper, by evolutionary algorithm (EA) we mean genetic algorithm (GA) with real-valued encoding of the chromosome using complex data structures [21]. GAs are very popular Soft Computing (SC) approaches for solving problems with no identified structure and high level of noise [21-23]. The reasons behind this popularity are (i) a big problem space can be searched, (ii) the size of this search space can be moderated by parameters, (iii) a variety of new solutions can be produced, and (iv) with long enough time a solution can be obtained that is close to the optimal one. These advantages make GAs useful for synthesizing ternary functions using cascade of GTG gates, because the problem structure of such cascade is still unidentified and the search space itself is exponentially large since there are 63 = 216 possible GTG gates (see Section 4).

The rest of the paper is organized as follows. In Section 2, we describe some previous works in multi-valued logic. Section 3 covers the fundamentals of multi-valued quantum logic along with some key definitions. Section 4 introduces some basic ternary permutation quantum gates. The general model of synthesizing multi-output ternary functions using cascade of GTG gates is given in Section 5. Section 6 provides details of our EA. In Section 7, we discuss some knowledge-based local transformation of the circuit. Section 8 discusses a new feature of our approach – synthesis of incompletely specified ternary functions. Sections 9 and 10 discuss synthesis of generalized ternary Toffoli gate and ternary swap gate built on the top of GTG gates, respectively.  We give our experimental results in Section 11. Section 12 concludes the paper and Section 13 presents future work.

2. PREVIOUS WORKS

In 2000, Muthukrishnan and Stroud [4] developed multi-valued quantum formalism for multi-level quantum computing systems and showed realizability of some universal multiple-valued logic operators in linear ion trap devices. Although no synthesis procedure was proposed in [4], our initial attempt of using this approach [19] produced circuits that were too large. In 2002, Brylinski and Brylinski [20] discussed universality of n-qudit gates without giving any design algorithm. Since 2001, Al-Rabadi and Perkowski [10, 11], and Khan et al [16, 17] proposed Galois Field approach to multi-valued quantum logic synthesis in several regular structures. They used gates that are ternary counterparts of classical binary Feynman and Toffoli gates, but no experimental data were given. In 2002, De Vos [24] proposed two ternary 1*1 gates and two ternary 2*2 gates, but again no synthesis method was proposed. In 2002, Perkowski, Al-Rabadi, and Kerntopf [18] proposed a 2*2 Generalized Ternary Gate (GTG gate) based on the ternary conditional gate [4] and ternary shift gates [16, 17] and showed the realization of ternary Toffoli gate using GTG gates. This work introduced for the first time the practical realizability of Galois Field circuits in existing multi-valued quantum technology.  In 2003, papers [16, 17] used multi-input Toffoli gates built from realizable gates, but the results were non-minimal. Paper [15] proposed a method that can be used to very large single-output functions, but relatively many input constants are necessary and their experimental results can be definitely improved.  Papers [12-14] use different gate models, so the comparison to them is difficult, although some comparisons will be included. While Toffoli-like gates with n-1 controlling values are assumed in [12, 13], paper [14] assumes the controlling gates with arbitrary controlling functions of n-1 inputs. Although such assumptions simplify creating the synthesis  algorithms, we are not certain what are the quantum costs of gates used in them (unfortunately, nothing has been published so far on quantum realizations of all these gate types and the comparison of costs of synthesis results for them). More importantly, there is nothing published on synthesizing incompletely specified multi-output circuits, which is the problem dealt with in this paper.

3. FUNDAMENTALS OF MULTI-VALUED QUANTUM LOGIC

In multi-valued (MV) Quantum Computing  (QC), the unit of memory (information) is qudit (quantum digit). MV quantum logic operations manipulate qudits, which are microscopic entities such as a photon’s polarization or atomic spin.  Ternary logic values of 0, 1, and 2 are represented by a set of distinguishable different states of a qutrit (quantum ternary digit)).  These states can be a photon’s polarizations or an elementary particle’s spins. After encoding these distinguishable quantities into multiple-valued constants, qutrit states are represented by 
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Qudits exist in a linear superposition of states, and are characterized by a wavefunction 
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Pairs of qutrits are capable of representing nine distinct states,
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, as well as all possible superpositions of the states. This property may be mathematically described using the Kronecker product (tensor product) operation ( [1]. The Kronecker product of matrices is defined as follows:
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As an example, consider two qutrits with 
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. When the two qutrits are considered to represent a state, that state 
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Superposition property allows qubit states to grow much faster in dimension than classical bits, and qudits faster than qubits [4].  In a classical system, n bits represent 
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 distinct states, whereas n qutrits correspond to a superposition of 
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 states. In the above formula some coefficient can be equal to zero, so there exist a constraint bounding the possible states in which the system can exist. As observed in [4] – “Allowing d to be arbitrary enables a tradeoff between the number of qudits making up the quantum computer and the number of levels in each qudit”. An output of a gate is obtained by multiplying the unitary matrix of this gate by the vector of Hilbert space corresponding to this gate’s input state. A resultant unitary matrix of arbitrary quantum circuit is created by matrix or Kronecker multiplications of composing subcircuits. These all contribute to difficulty in understanding the concepts of quantum computing and creating efficient analysis, simulation, verification and synthesis algorithms for QC. Generally, however, we believe that much can be learned from the history of Electronic Computer Aided Design as well as from MV logic theory and design, and the lessons learned there should be used to design efficient CAD tools for MV quantum computing.

In terms of logic operations, anything that changes a vector of qudit states to another qudit satisfying measurement probability properties can be considered as an operator (unitary matrix). These phenomena can be modeled using the analogy of a “quantum circuit”. In a quantum circuit, wires do not carry ternary constants but correspond to 3-tuples of complex values, (, (, and γ. Quantum logic gates of the circuit map the complex values on their inputs to complex values on their outputs. As mentioned, operation of quantum gates is described by matrix operations. Any quantum circuit is a composition of parallel and serial connections of blocks, from small to large. Small blocks correspond to directly realizable quantum gates such as Feynman or Muthukrishnan/ Stroud gates. Serial connection of blocks corresponds to multiplication of their (unitary) matrices. Parallel connection corresponds to Kronecker multiplication of their matrices. So, theoretically, the analysis, simulation and verification are easy and can be based on matrix methods. Practically they are tough because the dimensions of the matrices grow exponentially. All these become much easier when one deals only with permutative matrices, which are equivalent to multi-output truth tables of completely specified functions. We deal with such special class in this paper.

4. SOME TERNARY PERMUTATION GATES

Any unitary matrix represents a quantum gate. If a unitary matrix has only one 1 in every column and the remaining elements are 0, then such a matrix is called a permutation matrix. A quantum gate represented by a permutation matrix is called a permutation quantum gate. In this paper we concentrate only on permutation quantum gates.

Figure 1 shows a 2*2 ternary Feynman gate, which is the ternary counterpart of the binary Feynman gate with GF2 sum replaced by GF3 sum. Here A is the controlling input and B is the controlled input. The output P is equal to the input A and the output Q is GF3 sum of A and B. Observe that GF3 sum is the same as modulo 3 sum. If 
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 and the ternary Feynman gate acts as a copying gate. The ternary 2*2 Feynman gate is practically realizable, for instance see [4].

Six 1*1 ternary Shift gates are proposed in [16, 17]. Operations and symbols of these gates are shown in Figure 2. These gates are realizable using ternary quantum Feynman primitive [16, 17]. A Shift gate is said to be a mirror gate of another Shift gate if the mirror gate is connected with the output of the original Shift gate, then the input signal is restored. The mirror gates for all the Shift gates are shown in Figure 3. Two cascaded Shift gates can be replaced by a single Shift gate as shown in Figure 4.
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A very useful 2*2 gate called Generalized Ternary gate (GTG gate) is proposed in [9] as shown in Figure 5. Here, input A is the controlling input and input B is the controlled input. The output P is equal to the input A. The controlling input A controls a conceptual ternary multiplexer (a conditional gate) that can be realized using quantum technology such as ion traps [4]. If 
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, then the output Q is the z shift of the input B. Here shift means all ternary shift operations including the Buffer (simple quantum wire). Readers should note that depending on the six possible Shift gate for each of the three positions of x, y, and z, there are 63 = 216 possible GTG gates. As the Conditional gate and the Shift gates are realizable in quantum technology, the GTG gate is a truly realizable ternary quantum gate. For the purpose of this paper we assume that the GTG gate can be controlled from both top and bottom as shown in Figure 6. It should be noted that if 
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 and the GTG gate eventually becomes equivalent to two parallel wires as shown in Figure 7(a). Again, if 
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 as in Figure 7(d), then the GTG gate also becomes equivalent to two parallel wires. Two cascaded GTG gates can be replaced by a single equivalent GTG gate as Shown in Figure 8 using the cascading rule of Figure 4. If 
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A very useful gate for multiple input circuit synthesis is a 3*3 Toffoli gate as shown in Figure 9, which is the ternary counterpart of the 3*3 binary Toffoli gate with GE2 product and sum are replaced by GF3 product and sum, respectively. Design of GFSOP (Galois Field Sum of Products) arrays and factorized arrays is based on these gates. These arrays are the multiple-valued counterpart of well-known binary ESOP (Exclusive-OR Sum of Products) and factorized ESOP cascades. Here the inputs A and B are the controlling inputs and the input C is the controlled input. The output P is equal to the input A, the output Q is equal to the input B, and the output R is equal to 
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 and + are GF3 multiplication and addition, respectively.

A generalized Ternary Toffoli gate is proposed in [17] as shown in Figure 10, where 
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 is an arbitrary ternary function of the input variables 
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Any m*m (m > 2) gate is very difficult to realize in quantum technology, since interaction of more than two  particles is nearly impossible to control. Therefore, these gates should be realized from 1*1 and 2*2 gates. As ternary Feynman gate and GTG gate are relatively easy to realize, they are treated as primitive gates for realizing other gates. A generalized Toffoli gate is realizable from 1*1 Shift gates, 2*2 Feynman gate, and 2*2 GTG gate as discussed in Section 9.

Some quantum technologies do not allow wire crossing. In those technologies, Swap gate plays an important role. The schematic of a ternary Swap gate is shown in Figure 11. Realization of ternary Swap gate using GTG gates is discussed in Section 10.
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5. GENERAL MODEL OF SYNTHESIZING MULTI-OUTPUT TERNARY FUNCTIONS USING CASCADES OF GTG GATES

Realization of ternary half-adder function 
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 (which is a multi-output irreversible function) using cascade of GTG gates (which is a reversible gate) is shown in Figure 12. Signal values at all intermediate wires are shown as maps to verify the correctness of the circuit. In the proposed realization method an irreversible function is automatically converted into a reversible one and is implemented using reversible GTG gates. In this realization we assumed the following:

(1) A GTG gate can be controlled either from top or from bottom.

(2) A limited vertical wire crossing for the controlling signals of GTG gates is allowed.

(3) Constant input signals 0, 1, or 2 are added as needed to help convert the irreversible function into reversible one.

(4) Output may be realized along any primary input line or any constant input line.

(5) Each of the GTG gate form a column where the remaining lines represent quantum wires. The columns are cascaded to realize the circuit.
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Figure 12. Realization of ternary half-adder function 
[image: image53.wmf]T

B

A

C

]

1

,

1

,

0

,

1

,

0

,

0

,

0

,

0

,

0

[

)

,

(

=

 and 
[image: image54.wmf]T

B

A

S

]

1

,

0

,

2

,

0

,

2

,

1

,

2

,

1

,

0

[

)

,

(

=

using cascades of GTG gates.
6. PROPOSED EVOLUTIONARY ALGORITHM
6.1. Problem encoding

In the proposed evolutionary algorithm (EA) we use the model of synthesizing multi-output ternary function using cascades of GTG gate as discussed in Section 5. In this circuit model, for initial input to the EA, we add three constant input signals 0, 1, and 2 for up to 
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 outputs, where n is the number of inputs. For every increment of 3 or less outputs, we add additional 3 constant input signals 0, 1, and 2. For example, if the function has 2 inputs and 6 outputs, then we add 6 constant input signals 0, 1, 2, 0, 1, and 2. Then after convergence of the EA we eliminate the unused constant input signals from the final circuit. Initially we take 
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 columns (chromosome length) as the input to the EA. After convergence of the EA we eliminate a column having all wires (i. e. a column having a GTG gate representing two parallel wires) and other redundant columns as described in Subsection 7.1. We also replace two cascaded GTG gates by their equivalent GTG gate as discussed in Subsection 7.2.

The primary input lines and the constant input lines are numbered starting from 0 as shown in Figure 12. Each of the columns of the circuit is represented by an ordered tuple of controlled wire no, controlling wire no, x-shift, y-shift, and z-shift of the associated GTG gate as shown in Figure 12. Using this notation the chromosome representing the circuit of Figure 12 is as shown in Figure 13. Here each of the columns of the circuit is a gene of the chromosome. In this problem encoding the genotype (chromosome) ties very closely with the phenotype (actual circuit).

	21452
	20040
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Figure 13. Chromosome representing the circuit of Figure 12.
6.2 Fitness Function

In the proposed EA, we tried to reduce the cost of the resulting circuit by (i) reducing the number of wires in the circuit (the width of the scratchpad register), i. e. increasing the number of unused constant input lines, (ii) reducing the number of non-wire columns, i. e. increasing the number of wire columns, (iii) reducing the number of non-buffer Shift gates, i. e. increasing the buffer gates in the non-wire columns. For this reason we used four components of the fitness function – (i) output truth vector fitness, (ii) width fitness, (iii) column fitness, and (iv) Shift-gate fitness.

For determining the output truth vector fitness we group the truth values as stated in Definition 1.

Definition 1: Given an n-variable ternary function f represented as a truth vector, where the locations are designated from 0 to 
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. The truth vector is partitioned into n types of sub-vectors, each type having a sub-vector length  
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In this partitioning of the truth vector, i determines the length of a sub-vector and j determines the starting location of the sub-vector. For example, if 
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. So, the starting locations of the sub-vectors are 0, 9, and 18. Similarly, this partitioning technique partitions the truth vector into sub-vectors of length 1 starting from locations 0, 1, 2, …, 
[image: image66.wmf]1

3

-

n

; sub-vectors of length 3 starting from locations 0, 3, 9, …, 
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; sub-vectors of length 9 starting from locations 0, 9, 18, …, 
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Sub-vector fitness: The sub-vector fitness, for a given output m, for sub-vector type i (having sub-vector length 
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) is defined as follows:

Sm,j = highest number of sub-vectors of type i for the output m realized along any wire/
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When, for a given output m, a sub-vector of type i is completely realized, then 
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Individual output truth vector fitness: Individual output truth vector fitness for output m is defined as follows:

Om = (if output m is completely realized along any wire, then 1, otherwise 0) + 
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When an output m is completely realized along a wire, then 
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Output truth vector fitness: The output truth vector fitness is defined as follows:

O = 
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When all m outputs are realized, then 
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For finding the output truth vector fitness, we compute the resulting truth vector for all wires and then the best-fit wire is selected for a given output m.

Width fitness: The scratchpad width fitness is defined as follows:

W = number of unused constant input lines/Number of constant input lines.

Column fitness: The column fitness (or cascade length fitness) is defined as follows:

C =  number of wire columns/length of the chromosome, L.

Shift-gate fitness: The Shift-gate fitness is defined as follows:

S = number of buffer gates in the non-wire columns/(3 ( number of non-wire columns).

In the current quantum technologies the scratchpad width is a major limitation. Therefore, if we can reduce the width of the circuit, it will be more favorable. So, we give more selection pressure on width fitness.  Reducing the number of columns will reduce the cost of the circuit. So, we give moderate selection pressure on column fitness. Finally, reducing the number of non-buffer Shift gates also reduce the cost of the circuit to some extent. So, we give less selection pressure on Shift-gate fitness. Considering all these factors, we define the fitness function as follows:

F = O + 0.5W + 0.4C + 0.1S
From the fitness function, we can see that the value of (0.5W + 0.4C + 0.1S) will always be less than 1. On the other hand, when all the m outputs are realized, then the value of O will be 
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, that is, if the fitness of a chromosome is greater than 
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, then that chromosome is a solution for the given function.

6.3 Description of the evolutionary algorithm

As the model of our circuit synthesis (see Section 5) is not well structured, we want to make sure that the best solutions found are not lost in the successive generations. Therefore, we use the simple steady-state GA with T-ary tournament selection with replacement for selecting parents, classical crossover (one-point, two-point, and uniform) operator, mutation operator (where the column or gene is replaced by a randomly generated column), and a new problem specific gene repair operator (see Subsection 6.4). The proposed EA is shown in Figure 14. For a given set of population size P, crossover probability PC, mutation probability PM, and tournament size T, we repeat the EA R times with random seed. If for a given run of the EA, the fitness value does not improve within S consecutive generations, then we stop that run and go to the next repetition with random seed. After all the R repetitions are complete, we select the minimum solution of all the runs as the final solution. Then we apply the knowledge-based post-EA local transformation as discussed in Section 7 to reduce the gate count of the solution.

6.4 Repair operation

From the circuit model of Figure 12, we see that, in the gene representation of a column, the wire numbers representing the controlled signal and the controlling signal should be different. But if, during random generation of the individuals of the initial population or after mutation of offspring, both the wire numbers of a gene become same, then we make that column representing wires by setting 
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. The motivation behind this repair operation is to reduce the number of non-wire columns in the final solution. As our circuit model initially starts with 
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length, where n is the number of variables, reducing the number of non-wire columns will improve the quality of the solution. For example, if a gene is 11012, then we make it 11000.

7. POST-EA ELIMINATION AND LOCAL TRANSFORMATION

7.1 Elimination of redundant columns

In the solution produced by the EA, some of the columns will be wire-columns. We eliminate all such wire-columns from the solution to get the final solution. After elimination of the wire-columns, some of the columns may be redundant. For example, the EA may produce (after the wire-columns have been eliminated) the circuit of Figure 15 for ternary half-adder function. The third and the fifth columns from the left are redundant, because they modify the garbage outputs [5]. Therefore, we also eliminate such redundant columns from the solution to get the final solution.

7.2 Knowledge-based local transformations

In the solution produced by the EA (after elimination of the redundant columns), GTG gates of two columns may have the same controlling and controlled wires with no signal modification in between, with or without using them for controlling the GTG gates of the intermediate columns. For example, the GTG gates of the 2nd and the 4th columns from the left of Figure 16(a) have the same controlling and controlled wires and the signal values of these two wires are not changed in between these two columns. However, the top wire is used for  controlling the GTG gate of the 3rd column. These two GTG gates are effectively cascaded and they can be replaced by an equivalent GTG gate using the cascading rules of Figure 4. The second gate of the cascade is replaced by the equivalent GTG gate and the first one is made a wire gate as shown in Figure 16(b). After this replacement, the wire gate is eliminated from the solution using the techniques of elimination of redundant columns.
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8. SYNTHESIS OF INCOMPLETELY SPECIFIED MULTI-OUTPUT TERNARY FUNCTIONS

For synthesizing an incompletely specified multi-output ternary function, we used the same EA as discussed in Section 6, except the output truth vector fitness is calculated differently because don’t cares are ignored. Now, the truth vector of a wire and the output function are compared only for cares and the don’t care positions are considered as matches. Interestingly, this allows to simplify functions with more wires faster, when the percent of don’t cares is high. We experimented with a randomly generated 2-input 3-output incompletely specified function 
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, where a 3 represents a don’t care output. The resulting circuit is shown in Figure 17. In the figure, intermediate signal values are shown as maps to verify the correctness of the circuit, where the don’t care values are shown bold.

9. SYNTHESIS OF GENERALIZED TERNARY TOFFOLI GATE

For synthesis of generalized ternary Toffoli gate, we assumed that the controlling function of Figure 10 is 
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. This type of generalized ternary Toffoli gates are very useful for realization of ternary GFSOP (Galois Field sum of products) cascades, which are ternary counterpart of classical binary ESOP (exclusive-OR sum of products) circuits. For synthesizing a generalized ternary Toffoli gate of this type, we first realize the controlling function 
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  as a cascade of GTG gates using our EA of Section 6 and then the controlled outputs are realized using ternary Feynman gates. To restore the primary inputs and the constant inputs, mirror GTG gates are used. We experimented with a generalized ternary Toffoli gate with 2 controlling inputs and 2 controlled inputs. The resulting circuit is shown in Figure 18. In this figure, the left four columns generate the controlling function 
[image: image89.wmf]AB

 and the right four columns are the mirror columns that restores the controlling inputs A and B and the constant input 2. Intermediate signal values are shown as maps to verify the correctness of the circuit. The ternary Toffoli gate realization of [18] requires 10 GTG gates, whereas our EA produces the circuit with 8 GTG gates, which is an improvement over the previous result.

Figure 17. Circuit realizing an incompletely specified function 
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Figure 18. Realization of a generalized ternary Toffoli gate with 
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10. SYNTHESIS OF TERNARY SWAP GATE

We synthesize ternary Swap gate using cascade of GTG gates using our EA of Section 6, except that no constant input is used and the outputs are restricted to their corresponding wires. The resultant circuit is shown in Figure 19. Our EA discovered a new and better solution for the ternary Swap gate, which had very inefficient realizations [16-18].


Figure 19. Realization of ternary swap gate.
11. EXPERIMENTAL RESULTS

We have written C program to implement the proposed EA. We experimented with ternary half-adder function for different EA parameters. In our experiment we used population size P = 50, 100, 150, 200, 250, 300; crossover probability PC = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0; and mutation probability PM = 0.02, 0.04, 0.06, 0.08, 0.10. We selected two parents using tournament selection with replacement using tournament size T = 2, 4, 6, 8, 10. We also experimented with three types of classical crossover techniques - one-point, two-point, and uniform crossover. For a given set of P, PC, PM, and T, we repeated the EA for R = 50 times. If, for a given run, the fitness value does not improve within S = 500 consecutive generations, we stopped the run and went to the next repetition. After all R = 50 repetitive runs are complete, we take the minimum solution over all runs as the final solution. Then we applied the post-EA elimination and local transformation techniques to produce the final solution. The influence of the EA parameters on the gate count of the final solution is shown in Figure 20. For this purpose, for a given EA parameter, we averaged the gate count over the other EA parameters. For example, for finding out the average gate count for P = 50, we averaged the gate count over 150 cases for P = 50; PC = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0; PM = 0.02, 0.04, 0.06, 0.08, 0.10, and T = 2, 4, 6, 8, 10. From Figure 20, we see that uniform crossover performs better than the other two crossover types. We also see from Figure 20 that P = 200, 250, 300; PC = 0.5, 0.6, 0.7; PM = 0.06, 0.08, 0.10; and T = 6, 8, 10 produce better results.

In our experiments we found that some of the combinations of P, PC, PM, and T did not converge to a correct solution within R = 50 replicated runs. The reason behind this non-convergence is the large search space of the problem. From Section 4 we know that there are 216 GTG gates. Any of these gates can be placed in any columns and this gate can be placed across any two wires in both top-control or bottom-control modes. For example, for ternary half-adder function the number of inputs is n = 2 and the number of outputs is m = 2  ( n + 3. So, we need n + 3 = 5 wires in the solution model. Therefore, we have 
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 possible connections across two wires from five wires. Therefore, we have 
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possibilities of GTG gates placement in a column. Our solution model has 
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 columns. So, for n = 2, we have 18 columns. The size of possible solution space is 
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 and for n = 2, this value is 
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. Some of these huge solution spaces include the correct solutions. Therefore, the EA needs to go through a large search space and for R = 50 and S = 500 the EA fails to converge to a correct solution. The convergence rate (%) for ternary half-adder function is shown in Figure 21. Again for this figure, for a given parameter we calculated the convergence rate over all values of the other parameters. From this figure we see that 2-point crossover performs better than the other two types of crossover.




Figure 20. Influence of EA parameters and crossover type on average gate count for half-adder circuit.




Figure 21. Influence of EA parameters and crossover type on convergence rate for half-adder circuit.

We also experimented with some other ternary benchmark functions [25]. For these experiments we used two types of crossover - 2-point and uniform crossover; P = 200, 250, 300; PC = 0.5, 0.6, 0.7; PM = 0.06, 0.08, 0.1; T = 6, 8, 10; R = 50; and S = 500 to 5,000. Many of these parameter settings did not converge to correct solution. The minimum solution from the successful runs is reported in Table 1. The table also shows the results from [15] for comparison. Columns 1, 2, and 3 show the function name, number of inputs, and number of outputs, respectively.  Column 4 and 5 show the number of GTG gates and circuit width, respectively, produced by our EA. Columns 6 and 7 show the number of GTG gate and circuit width, respectively, from [15]. From Table 1it is clear that the solution produced by our EA is much better than the results from [15].
Table 1. Experimental results.

	
	
	
	Our Result
	Result from [15]

	Function
	Input
	Output
	Gate
	Width
	Gate
	Width

	prod2
	2
	1
	4
	3
	9
	6

	prod3
	3
	1
	13
	6
	25
	14

	prod4
	4
	1
	?
	?
	63
	32

	sum2
	2
	1
	1
	2
	18
	9

	sum3
	3
	1
	2
	3
	90
	40

	sum4
	4
	1
	3
	4
	-
	-

	3cy2
	3
	1
	14
	5
	51
	24

	4cy2
	4
	1
	13
	7
	-
	-

	4cy3
	4
	1
	?
	?
	171
	78

	sqsum2
	2
	1
	2
	3
	8
	6

	sqsum3
	3
	1
	3
	4
	36
	18

	sqsum4
	4
	1
	4
	5
	69
	34

	avg2
	2
	1
	3
	3
	9
	6

	avg3
	3
	1
	8
	5
	36
	18

	avg4
	4
	1
	?
	?
	119
	55

	a2bcc
	3
	1
	6
	4
	33
	17

	thadd
	2
	2
	4
	3
	-
	-

	tfadd
	3
	2
	11
	5
	-
	-

	mul2
	2
	2
	5
	4
	-
	-

	mul3
	3
	2
	?
	?
	-
	-

	mami4
	4
	2
	14
	7
	-
	-

	mm3
	5
	1
	?
	?
	-
	-

	pal3
	6
	1
	?
	?
	-
	-

	swap
	2
	2
	3
	2
	-
	-


10. CONCLUSIONS

GTG gate was proposed in [18] without giving any synthesis algorithm to synthesize from all these gates directly. In this paper we propose an EA for synthesizing both completely and incompletely specified irreversible ternary functions using a cascade of GTG gates. The synthesis method automatically converts the irreversible function into reversible one and realizes that by cascade of GTG gates.

Generalized ternary Toffoli gate and ternary Swap gate were synthesized as well as many benchmark functions from recent literature. The generalized ternary Toffoli gate realization proposed in [18] requires 10 GTG gates, whereas the realization of this paper requires 8 GTG gates. Similarly, previous best design of ternary Swap gate [16-18] had 4 Feynman gates and one 1-qubit permutative gate. The new design has only 3 GTG gates and is very elegant, it has the same symmetry as the well-known design of Swap from Feynman gates in binary, so we can say that the EA has done certain “discovery”.

The synthesis method of [15] uses a subset of the GTG gate family and synthesizes only single-output ternary functions. Table 1 shows that our EA produces much better solutions than that from [15]. Moreover, our EA can synthesize multi-output ternary functions in comparison to the single-output function from [15]. However, the method of [15] is a fast method and as usual our EA method requires long time to produce good result. But as many logic synthesis applications are not real time applications and solution quality is more important than the time required to produce the solution.

The methods of [12-14] used a different set of gates and can not be compared with our results. The papers [12, 13] discussed implementation of all 2*2 reversible functions and reported solution of only one irreversible function - the ternary full adder. This solution requires four 4*4 gates, eight 3*3 gates, and four 2*2 gates totaling 16 gates. On the other hand, our EA produces ternary full adder circuit using only 11 2*2 gates. In general, any m*m (m > 2) gate is very difficult to realize in quantum technology, since interaction of more than two particles is nearly impossible to control. Therefore, these gates should be realized from 1*1 and 2*2 gates. Considering this fact, our solution is better than the solution from [12, 13].

Other circuits are realized using cascade of GTG gates for the first time and, therefore, cannot be compared with other results.

11. FUTURE WORK

Our first goal is to extend this work to fully quantum circuits, the ternary counterparts of binary circuits synthesized in [5-8]. This will require to change the internal representation of cascades from truth tables to unitary matrices with complex numbers in the fitness function.  Our preliminary current work includes 1-qudit Chrestenson gate as a ternary equivalent of Hadamard gate, phase gates with angles corresponding to ternary logic, and ternary generalizations of Pauli rotations, and the corresponding controlled 2-qudit gates. The goal would be to synthesize automatically some known ternary circuits such as: the gates from [12], ternary EPR circuits, and ternary spectral transforms that generalize quantum Fourier Transform [1, 2, 3].

Another area of future research is further improvement of the EA to a broader class of evolutionary algorithms like the memetic algorithms and the algorithms that use various local search subroutines [5]. We plan to develop EAs for synthesizing both completely and incompletely specified multi-output ternary function using a similar cascade of 2*2 ternary Feynman gate (Feynman gate is linear and it is a special case of GTG gate). Similarly as in [5, 12-14, 19], future research will also add powerful local transformations of circuits based on ternary quantum identities, to decrease the cost of the synthesized cascades. In binary quantum the improvements of costs are sometimes as dramatic as 300% [5], which demonstrated that it is a good idea to combine evolutionary and algorithmic rule-based approaches into one working program for quantum circuit synthesis. Finally we will compare all existing algorithms for ternary quantum synthesis [12-17, 19] using the same types of gates, possibly the low-level quantum primitives such as controlled-Chrestenson-like gates [19].
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Figure 4. Equivalent Shift gates for two cascaded Shift gates.
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Figure 1. 2*2 ternary Feynman gate.
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Figure 14. Flowchart of the proposed evolutionary algorithm.





Figure 3. Mirror gates.








� EMBED Visio.Drawing.6  ���





� EMBED Visio.Drawing.6  ���





� EMBED Visio.Drawing.6  ���





Figure 5. 2*2 Generalized Ternary gates.





Figure 2. Ternary Shift gates.
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Figure 6. Two different forms of controlling a GTG gate.
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Figure 7. Some configurations of GTG gate that act as two parallel wires.
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Figure 10. A generalized ternary Toffoli gate.








Figure 9. Toffoli gate.
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Figure 11. Ternary Swap gate





Figure 15. Ternary half-adder circuit with redundant columns.
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Figure 8. Equivalent of two cascaded GTG gates. [& is the cascading operator]





Figure 16. Replacing cascaded gates with equivalent gate.
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¶ Preliminary version of this work will be presented in the Congress of Evolutionary Computing 2004 (CEC 2004), Portland, Oregon, USA, 19-23 June 2004.
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