
Synthesis of Reversible Logic

Abstract— A function is reversible if each input vector
produces a unique output vector. Reversible functions find
many applications, especially in low power design, quantum
computing, optical computing, and nanotechnology. Logic
synthesis for reversible circuits differs substantially from
traditional logic synthesis and is an active field of research
at the moment. In this paper, we present the first practical
synthesis algorithm and tool for reversible functions with a
large number of inputs. It uses positive-polarity Reed-Muller
decomposition at each stage to synthesize the function as a
network of Toffoli gates. The heuristic uses a priority queue
based search tree. It explores candidate factors at each stage
in order of their attractiveness, leading to a fast synthesis
algorithm. The algorithm produces near-optimal results for
the examples discussed in the literature. The key contribution
of the work is that the heuristic finds very good solutions for
reversible functions with a large number of variables.

I. INTRODUCTION

Today, power reduction has become the main concern
for digital logic designers after performance. Landauer [1]
proved that power loss is an integral feature of irreversible
circuits that have information loss irrespective of the tech-
nology the circuit is implemented in. Also, Bennett [2]
showed that in order to keep a circuit from dissipating
any power, it had to be composed of reversible gates. A
reversible gate has a one-to-one mapping between the input
and output vectors. For example, the two-input OR gate is
not reversible because it maps both 01 and 11 to the same
output of 1. In contrast, the two-input two-output Toffoli
gate (p = a, q = a

�
b) is reversible because each output

vector corresponds to a unique input vector. Quantum gates
are reversible [3] by nature, which provides a powerful
motivation to study circuits composed of reversible gates.

Reversible gates have been designed in several different
technologies such as CMOS [4], nanotechnology [5], and
optical [6]. However, there are three major differences
between reversible logic synthesis and the logic synthesis
that we are accustomed to. First of all, reversible circuits
must have an equal number of inputs and outputs. Secondly,
reversible logic does not allow fanout. Lastly, reversible cir-
cuits are constrained to be acyclic. These differences prevent
us from applying traditional methods of logic design. An
optimal algorithm, which uses exhaustive search [7] exists,
but is too slow to be used in practice. Several different
heuristics have been presented in [8]–[11]. Unfortunately,
these heuristics do not scale well for large numbers of
inputs. They often get stuck in local minima and require
extensive use of template matching to improve the quality
of the solution.

In this paper, we present Reed-Muller Reversible Logic
Synthesizer (RMRLS), a tool for reversible logic synthesis
which uses an XOR sum of products decomposition of the
output function to synthesize the circuit. Use of the Reed-

c b a ��� ��� ���
0 0 0 0 0 1
0 0 1 0 0 0
0 1 0 1 1 1
0 1 1 0 1 0
1 0 0 0 1 1
1 0 1 1 0 0
1 1 0 1 0 1
1 1 1 1 1 0

Fig. 1. A reversible function

Muller expansion of the function was also suggested in
[12]. However, their algorithm simply uses as many gates as
there are terms in the Reed-Muller expansion of the function
with the result produced on an additional output line. Such
a method fails to take advantage of shared functionality
among multi-output functions. Our algorithm, however, is
unique because instead of using the original input variables
and their complements at each stage, it decomposes the
output function in terms of the inputs at the current stage.
The key characteristics of our algorithm are as follows.

� It minimizes the number of gates as the primary
objective and the size of the gates as the secondary
objective.

� It is near-optimal for all 40,320 reversible functions of
three variables.

� It is applicable to functions with large numbers of
inputs.

� It does not use the variables and their complements at
each stage of the circuit, thus reducing circuit size.

� It requires zero extra garbage lines (such lines are
required to equalize the number of inputs and outputs).

� It does not require output permutation.

The rest of the paper is organized as follows. Background
on Toffoli gates and Reed-Muller expansions is given in
Section II. The synthesis algorithm is described in Section
III. Section IV contains experimental results obtained when
our algorithm is applied to all 8! reversible functions of
three variables and other examples from the literature. It
also targets several reversible functions with a large number
of inputs. Finally, Section V concludes the paper.

II. BACKGROUND

In this section, we present some of the preliminary
concepts.
Reversible functions: A function is reversible if it maps each
input vector to a unique output vector. It is obvious that the
number of inputs must be equal to the number of outputs for

c b a � � � � � �
0 0 0 0 0 0
0 0 1 0 1 1 *
0 1 0 0 1 1 *
0 1 1 1 0 0
1 0 0 0 1 0
1 0 1 1 0 1 *
1 1 0 1 0 1 *
1 1 1 1 1 0

Fig. 2. Augmented full-adder

d c b a � � � � � � � �
0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 1 0 0 1 1 0
0 0 1 1 1 0 0 1
0 1 0 0 0 1 0 0
0 1 0 1 1 0 1 1
0 1 1 0 1 0 1 0
0 1 1 1 1 1 0 1

Fig. 3. Reversible specification for augmented full-adder

such a mapping to exist. A reversible function of � variables
can be defined either as a truth table (see Fig. 1) or as a
mapping of integers � 0,1,..., ���
	��� onto itself. For example,
the function in Fig. 1 could also be represented as � 1, 0, 7,
2, 3, 4, 5, 6 .

An irreversible function can be converted into a
reversible function easily. Extra outputs, called garbage
outputs, must be added to make the input-output mapping
unique. If the maximum number of identical output vectors
is p, then the total number of garbage outputs needed is
equal to ������������� . Of course, constant inputs must then be
added as necessary to balance the number of inputs and
outputs. Consider the augmented full-adder which produces
carry (� �), sum (� �), and propagate (� �) signals. The truth
table for this function is shown in Fig. 2. The function is
not reversible because there are repeated output vectors
(marked with * in the figure). An extra garbage output (� �)
set equal to any of the input bits will make the mapping
unique. A constant input d must also be added to make the
number of input and output bits equal. Fig. 3 displays the
reversible specification for the function. This specification
is identical to the one in [13]. Optimal assignment of
garbage outputs in order to minimize the resultant circuit
is a hard problem which has not been solved yet.

Reversible gates: A reversible gate is a gate that produces a
reversible function. There are two main types of reversible
gates, the Toffoli gate [14] and the Fredkin gate [15], as
defined next.

Toffoli gate: An ����� Toffoli gate, denoted by����� �! #"%$'&(")��&+*,*-*-&(" �/. , passes the first �0	1� inputs

a
b ∆ a

a
b

a
b
c

ao

bo

co

(a) (b)

a
b ∆ a

a
b

a
b ∆ a

a
b

a
b
c

ao

bo

co

a
b
c

ao

bo

co

ao

bo

co

(a) (b)

Fig. 4. (a) 24352 Toffoli gate, and (b) circuit for the function in Fig. 1

(referred to as control bits) to the output unchanged and
inverts the �%6�7 input (referred to as the target bit) if the
first �8	9� inputs are all � . Using " for input and : for
output:

:�;=<>"); for ��?A@CBD�
: � <E" � � " $ " � *-*-*,*-* " �GF $

A �H�I� Toffoli gate simply inverts the input
unconditionally. Fig. 4 presents a graphical representation
of a �J�K� Toffoli gate and the implementation of the
function in Fig. 1 using Toffoli gates.

Fredkin gate: A three-input Fredkin gate passes the
first line to the output and swaps the next two lines if the
first input is L . We will not be using the Fredkin gate in
our synthesis.

Reed-Muller expansion: Any Boolean function can be
described as an XOR sum of products [16], [17].

The positive-polarity Reed-Muller (PPRM) expansion
uses only uncomplemented variables and can be derived
easily from the function’s sum of products expansion. The
PPRM of a function is unique and of the form:M #"N$O&(")�O&+*,*-*,&P" �Q. < �SR � �T$U"N$ � �G�V"/� � *-*-* � � � " � � ��$W�X"N$X"/� �
�T$(YX"%$V")Y � *-*,* � � �TF $VZ � " �GF $U" � � *-*-* � ��$W�\[][][� "N$V"/��*,*-* " � &
where �G;!^_�'L�&\�� and "/; are all uncomplemented (positive
polarity).

The PPRM expansion of the function in Fig. 1 is:
� � < � � �
� � < � � � � � �
� � < � � ��� � � �

The fixed-polarity Reed-Muller (FPRM) expansion uses
either the uncomplemented variable or the complemented
variable, but not both. There are ��� different fixed-polarity
expansions of an � -input function. Determining which one
of the ��� FPRM representations of a function is minimal
remains a challenging problem. The FPRM of a function
is of the form:M #"N$O&(")�O&+*,*-*,&P" �Q. < �SR � �T$a`"N$ � �G�b`"/� � *-*-* � � � `" � � ��$W��`"N$a`"/� �
�T$(Y�`"%$a`")Y � *-*,* � � �GF $VZ � `" �GF $a`" � � *,*-* � ��$(�X[][][� `"%$a`")�O*-*,*+`" � ,
where �T;b^c�'L�&+�O and `"/; are all either uncomplemented or
complemented.

III. THE SYNTHESIS ALGORITHM

In this section, we describe our synthesis algorithm.

Reversible logic synthesis algorithm
Input: function

M
which is to be synthesized

bestfound ���
curnode � PPRM expansion of function
init count � number of terms in the PPRM expansion of f
Add curnode to priority queue (PQ)
while (curnode = PQ.pop() != NULL) �

if (curnode.depth() � bestfound 	 �)
continue

foreach (v in variable) �
foreach (factor in v.expansion()) �

if (factor contains v)
continue

newnode � curnode
Substitute v = v

�
factor in all expansions in newnode

if (synthesized(newnode)) �
bestfound � newnode.depth()
cache solution
break

else if (newnode.depth() � bestfound 	 �)
continue

else if (evaluate(newnode)) �
calculate newnode priority
PQ.push(newnode, newnode priority)

Fig. 5. Synthesis algorithm

A. Basic Algorithm

Consider a reversible function f with n inputs and n
outputs. Fig. 5 gives the pseudo-code for the main steps
in the algorithm whose primary objective is to minimize
the number of Toffoli gates in the circuit, and secondary
objective is to minimize the size of the gates. The first stage
consists of initialization and setup. The variable bestfound,
which will store the depth of the best circuit synthesized
for f, is set to infinity. Next, a Reed-Muller expansion of
all the output variables � ��� 6 Z ; is obtained in terms of all the
input variables ��� and stored in curnode. The Reed-Muller
expansion for a function can be obtained using a Kronecker
matrix [16]. The total number of terms in the Reed-Muller
expansion of f is stored in init count. Lastly, curnode is
pushed onto the priority queue.

In the second phase, the algorithm enters a loop, where
it pops a node from the priority queue and stores it in
curnode. If the depth of curnode is greater than or equal
to �
	 ��� M ��)��� 	9� , then we disregard curnode because it
cannot possibly lead to a better solution than the one that
has already been found. For each output variable � ��� 6 Z ; in f
that contains the input variable � ; , we search for factors in
the Reed-Muller expansion of � ��� 6 Z ; contained in curnode
that do not contain � ; . For example, if � ��� 6 < � � � � ��� � � � ,
then the appropriate factors of � ��� 6 are 1 and bc, as neither
contains literal � . For each factor fac and output variable
� ��� 6 Z ; identified in this manner, we make a copy of curnode

in newnode. We next substitute � ; <�� ; � fac in the
expansions of all the variables contained in newnode. We
then examine newnode and pursue one of the following:

� If the synthesis of the function has been completed (the
expansion for all � ��� 6 Z ; only contains ��;), we update the
value of bestfound and cache the solution found.

� Else if the depth of newnode is greater than or equal
to �
	 ��� M ��/����	 � , we disregard newnode (as before,
it cannot possibly lead to a better solution than the
current one) and move on to the next factor.

� Else we decide whether newnode presents an attractive
path to follow for synthesis. The function evaluate
uses several parameters such as the number of inputs
of f, the current depth, and whether a solution has
been found at that point to decide whether to continue
the search along the current path. For example, at the
top of the search tree, the algorithm explores several
paths even if they are not very attractive to make
sure different parts of the search space are explored.
Depending on the decision, we insert newnode into the
priority queue with a priority of:
��	�� �
����	 ���'@ ���'@ � : <���� ��	�� �
����	S* ��	 � ��� . � � � init count 	 newnode.term count .

!
newnode.depth() 	

" �5 ��#�$ �
	���� M �#@ � 	�� �G� � fac .P.
The first term gives preference to nodes of larger depth
as all things being equal they are more likely to be
close to the solution. The second term addresses the

primary objective of minimizing the number of gates.
The average number of terms eliminated per stage is
used to measure a node’s effectiveness. The third term
addresses the secondary objective of minimizing the
size of individual gates. The weights � ,

�
, and " add

up to 1. Typical values of � ,
�

, and " were 0.2, 0.7,
and 0.1 respectively.

Node 0
cout = b ∆ ab ∆ ac
bout = b ∆ c ∆ ac

aout = a ∆ 1

Node 0PQ head

Node 0
cout = b ∆ ab ∆ ac
bout = b ∆ c ∆ ac

aout = a ∆ 1

Node 0PQ head

Fig. 6. Applying algorithm to function in Fig. 1: Step 1

Node 0
cout = b ∆ ab ∆ ac
bout = b ∆ c ∆ ac

aout = a ∆ 1

Node 1.0
cout = c ∆ ab ∆ ac

bout = b ∆ ac
aout = a

Node 1.1
cout = c ∆ b ∆ ab

bout = b ∆ ac
aout = a ∆ 1

Node 1.2
cout = b ∆ ab ∆ ac

bout = b ∆ c
aout = a ∆ 1

a = a ∆ 1

b = b ∆ c

b = b ∆ ac

PQ head Node 1.0 Node 1.1 Node 1.2

Node 0
cout = b ∆ ab ∆ ac
bout = b ∆ c ∆ ac

aout = a ∆ 1

Node 1.0
cout = c ∆ ab ∆ ac

bout = b ∆ ac
aout = a

Node 1.1
cout = c ∆ b ∆ ab

bout = b ∆ ac
aout = a ∆ 1

Node 1.2
cout = b ∆ ab ∆ ac

bout = b ∆ c
aout = a ∆ 1

a = a ∆ 1

b = b ∆ c

b = b ∆ ac

PQ head Node 1.0 Node 1.1 Node 1.2

Fig. 7. Applying algorithm to function in Fig. 1: Step 2

Node 2.0
cout = c ∆ ab

bout = b
aout = a

Node 2.1
cout = c ∆ ab ∆ ac
bout = b ∆ ab ∆ ac

aout = a

Node 0
cout = b ∆ ab ∆ ac
bout = b ∆ c ∆ ac

aout = a ∆ 1

Node 1.0
cout = c ∆ ab ∆ ac

bout = b ∆ ac
aout = a

Node 1.1
cout = c ∆ b ∆ ab

bout = b ∆ ac
aout = a ∆ 1

Node 1.2
cout = b ∆ ab ∆ ac

bout = b ∆ c
aout = a ∆ 1

a = a ∆ 1

b = b ∆ c

b = b ∆ ac

b = b ∆ ac c = c ∆ ab

PQ head Node 2.0 Node 1.1 Node 1.2 Node 2.1

Node 2.0
cout = c ∆ ab

bout = b
aout = a

Node 2.1
cout = c ∆ ab ∆ ac
bout = b ∆ ab ∆ ac

aout = a

Node 0
cout = b ∆ ab ∆ ac
bout = b ∆ c ∆ ac

aout = a ∆ 1

Node 1.0
cout = c ∆ ab ∆ ac

bout = b ∆ ac
aout = a

Node 1.1
cout = c ∆ b ∆ ab

bout = b ∆ ac
aout = a ∆ 1

Node 1.2
cout = b ∆ ab ∆ ac

bout = b ∆ c
aout = a ∆ 1

a = a ∆ 1

b = b ∆ c

b = b ∆ ac

b = b ∆ ac c = c ∆ ab

PQ head Node 2.0 Node 1.1 Node 1.2 Node 2.1

Fig. 8. Applying algorithm to function in Fig. 1: Step 3

Figs. 6 - 8 illustrate the application of the algorithm to
the function in Fig. 1. In the figures, the dark shaded nodes
have already been explored, lightly shaded nodes have been
added in the current stage, and nodes with no shading are
yet to be considered. In the first step, the PPRM expansion
of the function is stored in Node0 which is inserted into the
priority queue. Fig. 6 shows the search tree and priority

queue at this point. In the next step, Node0 is popped
from the priority queue (it is the only item present) and
examined for possible substitutions. The algorithm identifies
three possible substitutions: � < � � ��& �J< � � �O& and
� < � � � � . For each substitution we create a new node,
substitute the factor identified in all the expansions, and
add the nodes to the priority queue. Due to fewer terms in
the expansion, Node1.0 has a higher priority than Node1.1
and Node1.2 (Fig. 7). In the next step, Node1.0 is popped
from the priority queue. � < � � � � and � < � � ��� are
the two possible substitutions from this node. Node2.0 and
Node2.1 corresponding to these substitutes are inserted into
the priority queue with Node2.0 at the head of the queue
with the highest priority (see Fig. 8). In the next iteration
through the loop, Node2.0 is popped from the priority queue.
The only possible transformation is � < � � � � which leads
to a solution. The solution and its depth are cached. After
this point, no new nodes are inserted into the priority queue.
Node1.1 and Node1.2 are popped in that order respectively,
but fail to give solutions from any of their substitutions.
Their children are not added to the queue because we have
already found a solution of depth three which they will not
be able to beat. Lastly, Node2.1 is popped but discarded
because its depth is too large to be useful. The cached
solution (shown in Fig. 4(b)) is the best solution that the
algorithm finds.

B. Advanced Features

In theory, the PPRM expansion can be very large in the
worst case. In order to prevent that scenario, we allow two
additional types of substitutions.

� We no longer require that the output variable � ��� 6 Z ;
contain the variable � ; for the algorithm to consider
substitutions from that list. For example, in the synthe-
sis for the reversible function in Fig. 1 just presented,
the advanced algorithm would also select ��< � � � and
� < � � ��� as possible substitutions in the first stage.

� For any variable ��; , we also allow the substitution ��;a<
�O; � � even if the expansion of � ��� 6 Z ; does not contain
� . Thus, in the synthesis for the reversible function in
Fig. 1, the substitutions � < � � � and � < � � � would
be added as possible substitutions in the first stage.

IV. EXPERIMENTAL RESULTS

In this section, we present various experimental results.
Table I depicts the results of applying various algorithms
to all reversible functions of three variables, which number���

or �SL�&����OL . Column #gates represents the number of
Toffoli gates required for the implementation. Column
Ours presents results obtained by our algorithm. Synthesis
only takes a few minutes on a ��*]� GHz Athlon processor
with �T�'� MB RAM. Column Miller shows the results
obtained by the heuristic in [13], while column Optimal
contains optimal results from [7]. The last row displays
the average gate count for each algorithm. As can be
seen, our algorithm produces a lower average gate count

TABLE I
ALL REVERSIBLE FUNCTIONS OF THREE VARIABLES

#gates Ours Miller [13] Optimal [7]

11 5
10 110
9 30 729
8 3297 4726 577
7 12488 11199 10253
6 13620 12076 17049
5 7503 7518 8921
4 2642 2981 2780
3 625 767 625
2 102 130 102
1 12 15 12
0 1 1 1

Ave. size 6.10 6.18 5.87

than Miller’s heuristic [13] and does not produce any
circuits containing �+L or ��� Toffoli gates. This is inspite
of the fact that a larger library of gates is used in [13].
Specifically, they use the SWAP gate which unconditionally
exchanges its two inputs when passing them to the outputs.
Furthermore, our results compare very favorably to the
optimal implementations found using depth-first search
with iterative deepening (this is an exhaustive approach).

We now provide results for several examples from
the literature. Unless otherwise stated, our results are equal
in the number of gates to the best published solution and
were synthesized in less than 0.1 seconds.

a
b
c

aout

bout

cout

a
b
c

aout

bout

cout

Fig. 9. Example 1 realization

The next two examples are from [13].
Example 1:
Specification: � 1, 0, 3, 2, 5, 7, 4, 6 .
Toffoli network produced: TOF3(c,a,b) TOF3(c,b,a)
TOF3(c,a,b) TOF1(a).
This means that there are four Toffoli gates cascaded
together, as shown in Fig. 9.

Example 2:
Specification: � 7, 0, 1, 2, 3, 4, 5, 6 .
Toffoli network produced: TOF1(a) TOF2(a,b) TOF3(b,a,c).
The heuristic in [13] initially synthesized a circuit with
seven gates for this specification. This circuit was then
improved to a circuit with three gates through bi-directional
synthesis (i.e., simultaneous synthesis from inputs towards
outputs and outputs towards inputs). Our algorithm
produces the same circuit with three gates.

The next series of examples are from [9].
Example 3: This example deals with the realization of a
Fredkin gate using Toffoli gates.
Specification: � 0, 1, 2, 3, 4, 6, 5, 7 .
Toffoli network produced: TOF3(c,a,b) TOF3(c,b,a)
TOF3(c,a,b).

Example 4: This transformation involves a simple
swap between two positions in the truth table.
Specification: � 0, 1, 2, 4, 3, 5, 6, 7 .
Toffoli network produced: TOF2(c,b) TOF3(c,b,a)
TOF3(b,a,c) TOF3(c,b,a) TOF2(c,b).

Example 5: An extension of the last example to four
variables.
Specification: � 0, 1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 11, 12, 13,
14, 15 .
Toffoli network produced: TOF2(d,b) TOF3(d,b,a)
TOF4(d,b,a,c) TOF4(c,b,a,d) TOF4(d,b,a,c) TOF3(d,b,a)
TOF2(d,b).

Example 6: This represents a wraparound shift of
one position for a three-variable function.
Specification: � 1, 2, 3, 4, 5, 6, 7, 0 .
Toffoli network produced: TOF3(b,a,c) TOF2(a,b) TOF1(a).

Example 7: This represents a wraparound shift of
one position for four variables.
Specification: � 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 0 .
Toffoli network produced: TOF4(c,b,a,d) TOF3(b,a,c)
TOF2(a,b) TOF1(a).

The above examples show that our algorithm matches
the best results presented in the literature for specifications
with a small number of variables. Due to the inability of
previous algorithms to deal with specifications with a large
number of variables, such examples do not exist in the
literature. However, the main advantage of our algorithm
is that it can easily tackle larger functions. The key to
successful synthesis of larger functions is the ability to
backtrack quickly once a path through the search tree
has become inefficient. Our priority-based traversal of the
search tree is well-suited to such backtracking. We next
consider larger benchmarks.

a
b
c

d =(0)

aout

bout

cout

dout

a
b
c

d =(0)

aout

bout

cout

dout

Fig. 10. Full-adder realization

Adder: Consider the reversible full-adder which generates

sum, carry, and propagate signals (discussed in Section I).
There is a garbage output set to one of the input bits to
make the function reversible, and the constant � input is
added to make the number of input and output bits equal.
Specification:

� ��� 6 < � � ��� � � � � � � (carry bit)

� ��� 6 < � � � � � (sum bit)

� ��� 6 < � � � (propagate bit)

� ��� 6 < � (garbage bit)

Toffoli network produced: TOF3(b,a,d) TOF2(a,b)
TOF3(c,b,d) TOF2(b,c) (See Fig. 10).

a
b
c
d
e

f =(0)
g =(0)

go

g1

g2

g3

out0

out1

out2

a
b
c
d
e

f =(0)
g =(0)

go

g1

g2

g3

out0

out1

out2

Fig. 11. rd53 realization

rd53: Benchmark rd53 is from the MCNC [18] benchmark
suite and has five inputs and three outputs. The output
vector is equal to the number of 1s in the input vector.
Thus, � 00000 yields � 000 , � 00101 yields � 010 , and
� 11111 yields � 101 .
Specification: Output vectors � 010 and � 011 both occur
ten times and hence we need to add �#� ���S� �+LO� < � garbage
outputs for a total of seven outputs. This requires the
addition of two more constant inputs to the five existing
ones. We used the same reversible specification as in [13].
Toffoli network produced: TOF2(c,b) TOF5(e,d,b,a,g)
TOF3(b,a,f) TOF3(c,a,f) TOF2(b,a) TOF3(d,a,f) TOF2(a,d)
TOF4(e,d,c,g) TOF3(e,d,f) TOF2(d,e) TOF5(d,c,b,a,g)
TOF3(b,a,g) (See Fig. 11).

a
b
c
d
e
f
g
h
i
j

s0
s1

aout

bout

cout

dout

eout

fout

gout

hout

iout

jout

s0out

s1out

a
b
c
d
e
f
g
h
i
j

s0
s1

aout

bout

cout

dout

eout

fout

gout

hout

iout

jout

s0out

s1out

Fig. 12. Shifter realization

Shifter: This function has two control bits and ten input bits.
Depending on the value of the two control bits, the function
does a wraparound shift of zero, one, two, or three positions
on the input. The control bits are passed unchanged to the
output. E.g., if control bits are 10, then � 0,1,2,3,..., � $�R 	 �O
will become � 2,3,..., � $�R 	 � ,0,1 . See Fig. 12 for the 26-gate

Toffoli network for this function, which was synthesized in
1.2 seconds.

V. CONCLUSIONS

We have presented an algorithm which uses a positive-
polarity Reed-Muller decomposition of a reversible function
to select successive Toffoli gates. The algorithm searches
the tree of possible factors in priority order to try to find
the best possible solution. The use of extensive pruning
leads to very fast synthesis. We applied our algorithm to
all 40,320 functions of three variables and obtained near-
optimal results. Several examples of functions with a large
number of variables were also presented to demonstrate
the suitability of the algorithm for synthesizing complex
functions.

As part of future work, we would like to incorporate Fred-
kin gates into our algorithm. A Fredkin gate is equivalent
to three Toffoli gates. Thus, the use of Fredkin gates could
yield a significant improvement in circuit quality. We are
also working on ways to efficiently synthesize functions
with don’t cares. We currently pre-assign values to don’t
care outputs. It would be better if we could find a way to
dynamically assign these values during the search phase.

REFERENCES

[1] R. Landauer, “Irreversibility and heat generation in the computing
process,” IBM J. Res., vol. 5, pp. 183–191, 1961.

[2] C. Bennett, “Logical reversibility of computation,” IBM J. Res. Dev.,
vol. 17, pp. 525–532, 1973.

[3] M. Nielsen and I. Chuang, Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[4] G. Schrom, “Ultra-low-power CMOS Technology,” PhD thesis, Tech-
nischen University at Wien, June 1998.

[5] R. C. Merkle, “Two types of mechanical reversible logic,” Nanotech-
nology, vol. 4, pp. 114–131, 1993.

[6] E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient
quantum computation with linear optics,” Nature, pp. 46–52, Jan.
2001.

[7] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes, “Reversible
logic circuit synthesis,” in Proc. Int. Conf. Computer-Aided Design,
Nov. 2003, pp. 125–132.

[8] D. Maslov and G. W. Dueck, “Garbage in reversible design of
multiple output functions,” in Proc. 6th Int. Symp. Representations
& Methodology of Future Computing Technologies, Mar. 2003, pp.
162–170.

[9] D. M. Miller and G. W. Dueck, “Spectral techniques for reversible
logic synthesis,” in Proc. 6th Int. Symp. Representations & Method-
ology of Future Computing Technologies, Mar. 2003.

[10] K. Iwama, Y. Kambayashi, and S. Yamashita, “Transformation rules
for designing CNOT-based quantum circuits,” in Proc. Design Au-
tomation Conf., June 2002.

[11] A. Khlopotine, M. Perkowski, and P. Kerntopf, “Reversible logic
synthesis by iterative compositions,” in Proc. Int. Wkshp. Logic
Synthesis, June 2002.

[12] A. Mishchenko and M. Perkowski, “Logic synthesis of reversible
wave cascades,” in Proc. Int. Wkshp. Logic Synthesis, June 2002.

[13] D. M. Miller, D. Maslov, and G. W. Dueck, “A transformation based
algorithm for reversible logic synthesis,” in Proc. Design Automation
Conf., June 2003.

[14] T. Toffoli, “Reversible computing,” Tech. memo MIT/LCS/TM-151,
MIT Lab for Comp. Sci, 1980.

[15] E. Fredkin and T. Toffoli, “Conservative logic,” Int. J. of Theoretical
Physics, vol. 21, pp. 219–253, 1982.

[16] T. Sasao, Logic Synthesis and Optimization. Netherlands: Kluwer
Academic Publishers, 1993.

[17] M. Thorton, “Fixed polarity Reed-Muller forms.” [Online]. Available:
http://engr.smu.edu/˜mitch/class/8391/week12/esop.pdf.

[18] N.C.S.U. Collaborative Benchmarking Laboratory, Dept. of Com-
puter Science, North Carolina State University, “Benchmark archives
at CBL.” [Online]. Available: http://www.cbl.ncsu.edu/benchmarks/

