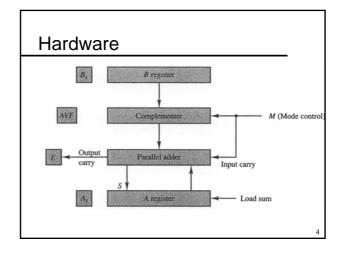
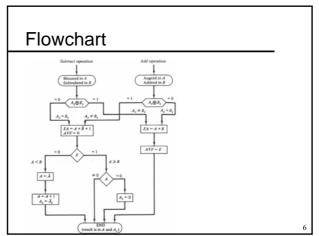
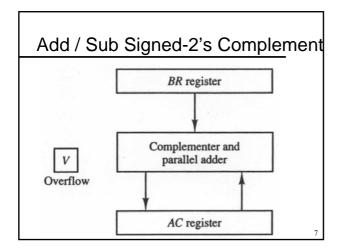
Section 10

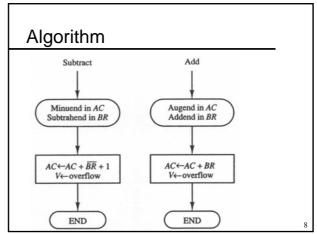

Computer Arithmetic

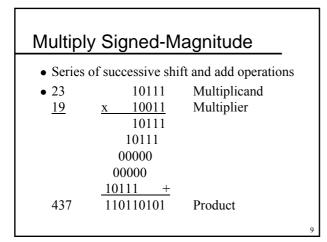
Slides with white background courtesy of Mano text for this class

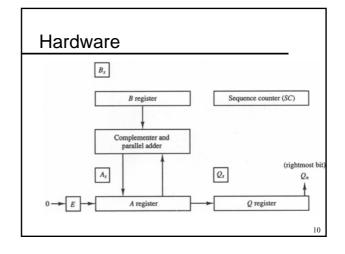

Digital Hardware Algorithms

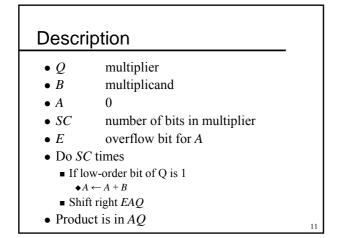
- Arithmetic operations
 - Addition, subtraction, multiplication, division
- Data types
 - Fixed-point binary
 Signed-magnitude representation
 Signed-2's complement representation
 - Floating-point binary
 - Binary-coded decimal (BCD)

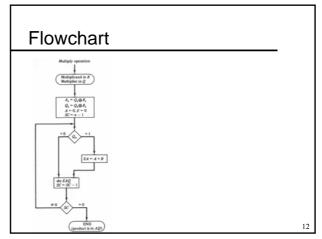

	Add	Subtract Magnitudes			
Operation	Magnitudes	When $A > B$	When $A < B$	When $A = 1$	
(+A) + (+B)	+(A + B)				
(+A) + (-B)		+(A - B)	-(B-A)	+(A - B)	
(-A) + (+B)		-(A - B)	+(B-A)	+(A - B)	
(-A) + (-B)	-(A + B)				
(+A) - (+B)		+(A - B)	-(B-A)	+(A - B)	
(+A) - (-B)	+(A + B)				
(-A) - (+B)	-(A + B)				
(-A) - (-B)		-(A - B)	+(B-A)	+(A - B)	



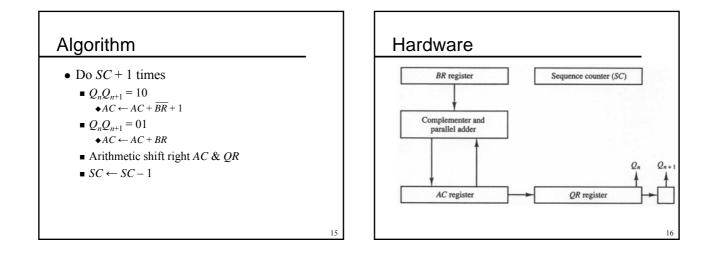

Description• A_s Sign of A• B_s Sign of B• $A_s \& A$ Accumulator• AVFOverflow bit for A + B• EOutput carry for parallel adder

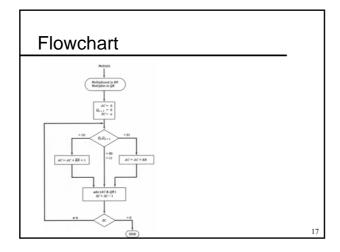



© 2004 by Ted Borys. All rights reserved.



Г

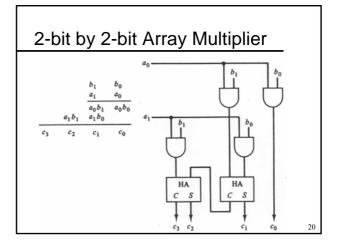

14

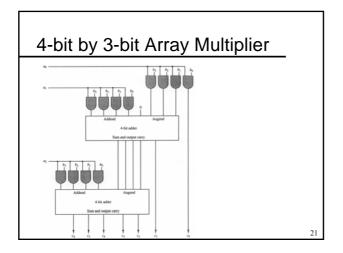

٦

Multiplicand $B = 10111$	Е	Α	Q	SC
Multiplier in Q	0	00000	10011	10
$Q_n = 1$; add B		10111		
First partial product	0	10111		
Shift right EAQ	0	01011	11001	10
$Q_n = 1$; add B		10111		
Second partial product	1	00010		
Shift right EAQ	0	10001	01100	01
$Q_n = 0$; shift right EAQ	0	01000	10110	01
$Q_n = 0$; shift right EAQ	0	00100	01011	00
$Q_n = 1$; add B		10111		
Fifth partial product	0	11011		
Shift right EAQ	0	01101	10101	00
Final product in $AQ = 0110110101$				

Multiply Signed-2's Complement

- Booth algorithm
- QR multiplier
- Q_n least significant bit of QR
- Q_{n+1} previous least significant bit of QR
- BR multiplicand
- *AC* 0
- *SC* number of bits in multiplier

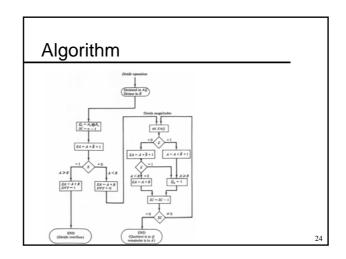

		BR = 10111				
Qn Q	2n+1	\overline{BR} + 1 = 01001	AC	QR	Q_{n+1}	SC
		Initial	00000	10011	0	101
1	0	Subtract BR	01001			
			01001			
		ashr	00100	11001	1	100
1	1	ashr	00010	01100	1	011
0	1	Add BR	10111			
		11001				
		ashr	11100	10110	0	010
0	0	ashr	11110	01011	0	001
1	0	Subtract BR	01001			
			00111			
		ashr	00011	10101	1	000


© 2004 by Ted Borys. All rights reserved.

19

Array Multiplier

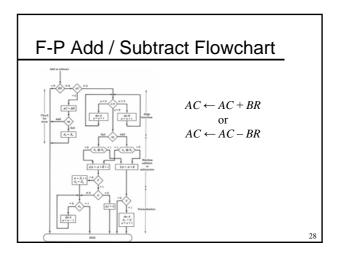
- Combination circuit
- Product generated in one microoperation
- Requires large number of gates
- Became feasible after integrated circuits developed
- Needed for *j* multiplier and *k* multiplicand bits *j* x *k* AND gates
 - j 1 *k*-bit adders to produce product of j + k bits



Divide Fixed-Point Signed-Mag Series of successive compare, shift, and subtract operations

Divisor:	11010	Quotient = Q
B = 10001)0111000000	Dividend = A
	01110	5 bits of $A < B$, quotient has 5 bits
	011100	6 bits of $A \ge B$
	-10001	Shift right B and subtract; enter 1 in Q
	-010110	7 bits of remainder $\geq B$
	10001	Shift right B and subtract; enter 1 in Q
	001010	Remainder $< B$; enter 0 in Q; shift right B
	010100	Remainder $\geq B$
	10001	Shift right B and subtract; enter 1 in Q
	000110	Remainder $< B$; enter 0 in Q
	00110	Final remainder

Examp	ole:	448	3/*	17	= 26 r 6
Divisor <i>B</i> = 10001,		<u>B</u> + 1 = 01111			
	E	4	0	SC	Initially,
Dividend: shl EAQ add $\overline{B} + 1$	0	01110 11100 01111	00000	5	AQ dividend
E = 1 Set $Q_n = 1$ shi EAQ Add $B + 1$	1 0	01011 01011 10110 01111	00001 00010	•	<i>B</i> divisor
E = 1 Set $Q_n = 1$ shi EAQ Add B + 1	1 1 0	00101 00101 01010 01111	00011 00110	3	A t = = 1 = C = = = = = t = = =
$E = 0$; leave $Q_{a} = 0$ Add B	0	11001	00110		At end of operation
Restore remainder shl EAQ Add B + 1	0	01010 10100 01111	01100	2	Q quotient
E = 1 Set $Q_n = 1$ sh1 EAQ Add $B + 1$	1 0	00011 00011 00110 01111	01101 11010	1	A remainder DVF divide overfl
$E = 0$; leave $Q_n = 0$ Add B	ō	10101	11010		DVF divide overn
Restore remainder Neglect E Remainder in A: Quotient in Q:	1	00110	11010	0	



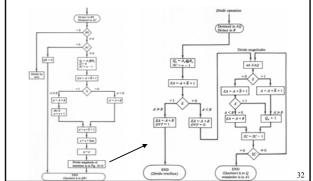
Biased Exponent

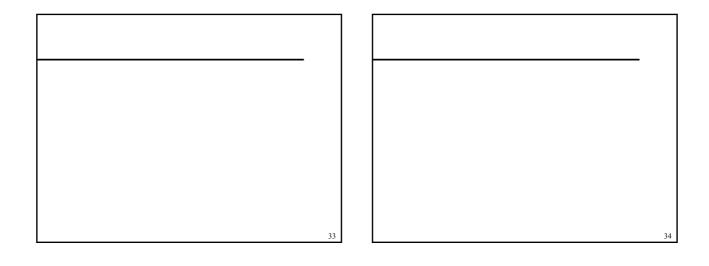

- Example
 - Real exponent range is -50 to +49
 - Add bias of 50 for new range of 0 to 99
 - Biased exponent is always a positive number
 Easier to deal with

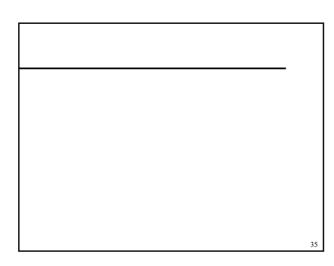
Floating-Point Add / Subtract

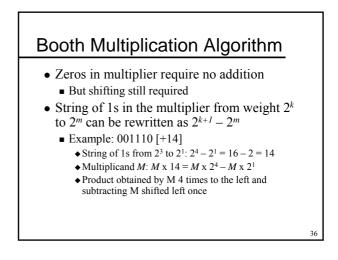
- Check for zeros
- Align the mantissas
- Add or subtract the mantissas
- Normalize the result

Floating-Point Multiply F-P Multiply • Check for zeros • Add the exponents • Multiply the mantissas • Normalize the product

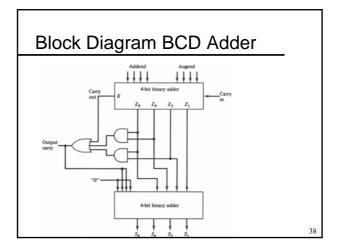



© 2004 by Ted Borys. All rights reserved.

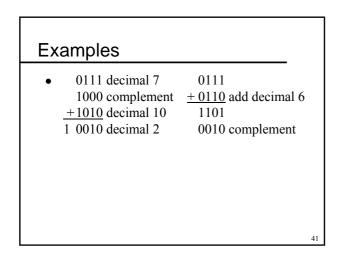

Floating-Point Division

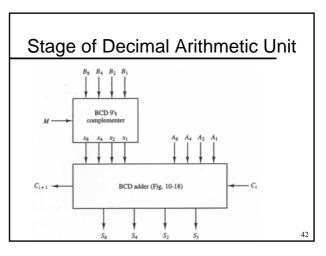

- Check for zeros
- Initialize registers and evaluate the sign
- Align the dividend
- Subtract the exponents
- Divide the mantissas

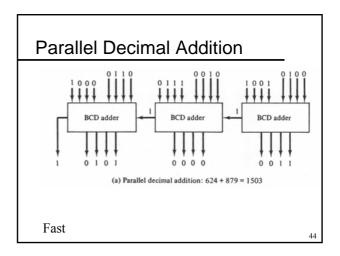
F-P Division Flowchart

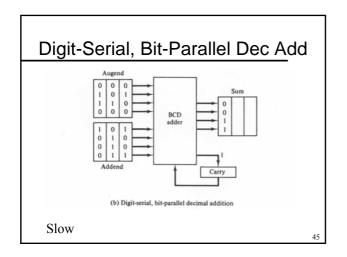


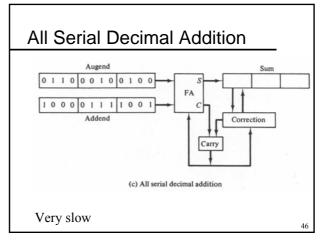
37

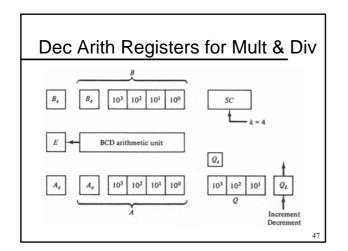

BCD Adder

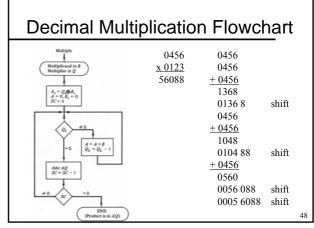

- Output can't exceed 9 + 9 + 1 = 19
- If binary sum in BCD digit > 1001, add 0110
- Given
 - Output of binary adder is $Z_8 Z_4 Z_2 Z_1$
 - Output carry K
 - BCD output carry $C = K + Z_8 Z_4 + Z_8 Z_2$


Exam	ples		
• 9 <u>7</u> 16	$ \begin{array}{r} 1001 \\ \underline{0111} \\ 1 0000 \\ \underline{0110} \\ 0110 \end{array} $	$\begin{array}{rrrr} 9 & 1001 \\ \underline{9} & \underline{1001} \\ 18 & 1 & 0010 \\ & & \underline{0110} \\ & & 1000 \end{array}$	$\begin{array}{c} 6 & 0110 \\ \underline{4} & \underline{0100} \\ 10 & 1010 \\ & \underline{0110} \\ 1 & 0000 \end{array}$
			39


BCD Subtraction Subtract by adding 9s complement of subtrahend to minuend First 9s complement algorithm Complement bits Add 1010 (decimal 10) and discard carry Second 9s complement algorithm Add 0110 (decimal 6) Complement bits






Symbolic Designation	Description
$A \leftarrow A + B$	Add decimal numbers and transfer sum into A
B	9's complement of B
$A \leftarrow A + B + 1$	Content of A plus 10's complement of B into A
$Q_L \leftarrow Q_L + 1$	Increment BCD number in Q_L
dshr A	Decimal shift-right register A
dshl A	Decimal shift-left register A

Decimal Division Flowchart	
Divide (There as 8 Division is 4.0 (Creak to contribute)	
$\begin{array}{c} \bullet \\ \bullet $	
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	49