Section 10

Computer Arithmetic

Slides with white background courtesy of Mano text for this class

Digital Hardware Algorithms

- Arithmetic operations
- Addition, subtraction, multiplication, division
- Data types
- Fixed-point binary
- Signed-magnitude representation
- Signed-2's complement representation
- Floating-point binary
- Binary-coded decimal (BCD)

Add / Subtract Signed-Magnitude				
Operation	Magatides	Sutraat Megatiuds		
		Wen $A>B$	When $4<8$	When A
	$+(A+B)$	+(A-B)		
	$-(4+B)$	$+(A-B)$		
(
		rres zero	o be positive	ive

Description

- $A_{S} \quad$ Sign of A
- $B_{S} \quad$ Sign of B
- $A_{S} \& A$ Accumulator
- AVF Overflow bit for $A+B$
- $E \quad$ Output carry for parallel adder

Flowchart

Description

- Q multiplier
- B multiplicand
- A 0
- SC number of bits in multiplier
- $E \quad$ overflow bit for A
- Do SC times
- If low-order bit of Q is 1 $\bullet A \leftarrow A+B$
- Shift right $E A Q$
- Product is in $A Q$

Flowchart

Example: $23 \times 19=437$

Multiplicand $B=10111$	E	A	Q	$S C$
Multiplier in Q	0	00000	10011	101
$Q_{n}=1 ;$ add B		$\underline{10111}$		
First partial product	0	10111		
Shift right $E A Q$		01011	11001	100
$Q_{n}=1$; add B	1	$\underline{00111}$		
Second partial product	0	10001	01100	011
Shift right $E A Q$	0	01000	10110	010
$Q_{n}=0$; shift right $E A Q$	0	00100	01011	001
$Q_{n}=0$; shift right $E A Q$		$\underline{10111}$		
$Q_{n}=1$; add B	0	11011		
Fifth partial product	0	01101	10101	000
Shift right $E A Q$				
Final product in $A Q=0110110101$				
				13

Multiply Signed-2's Complement

- Booth algorithm
- QR multiplier
- $Q_{n} \quad$ least significant bit of $Q R$
- $Q_{n+1} \quad$ previous least significant bit of $Q R$
- $B R$ multiplicand
- AC 0
- SC number of bits in multiplier

Algorithm

- Do $S C+1$ times
- $Q_{n} Q_{n+1}=10$
$-A C \leftarrow A C+\overline{B R}+1$
- $Q_{n} Q_{n+1}=01$
- $A C \leftarrow A C+B R$
- Arithmetic shift right $A C \& Q R$
- $S C \leftarrow S C-1$

Flowchart

Example: $-9 x-13=117$

$Q_{n} Q_{n+1}$	$\begin{aligned} & B R=10111 \\ & \overline{B R}+1=01001 \end{aligned}$	$A C$	$Q R$	Q_{n+1}	SC
10	Initial	00000	10011	0	101
	Subtract BR	$\frac{01001}{01001}$			
	ashr	00100	11001	1	100
11	ashr	00010	01100	1	011
01	Add $B R$	$\frac{10111}{1001}$			
		$\overline{11001}$			
	ashr	11100	10110	0	010
	ashr	11110	01011	0	001
10	Subtract $B R$	01001			
		00111			
	ashr	00011	10101	1	000

Array Multiplier

- Combination circuit
- Product generated in one microoperation
- Requires large number of gates
- Became feasible after integrated circuits developed
- Needed for j multiplier and k multiplicand bits - $j \times k$ AND gates
- $j-1 k$-bit adders to produce product of $j+k$ bits

2-bit by 2-bit Array Multiplier

Divide Fixed-Point Signed-Mag

- Series of successive compare, shift, and subtract operations

Divisor:	11010	Quotient $=$ Q
$B=10001$	$\begin{aligned} & 0111000000 \\ & 01110 \\ & 011100 \\ & -10001 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Dividend }=A \\ & 5 \text { bits of } A<B \text {, quotient has } 5 \text { bits } \\ & 6 \text { bits of } A>B \\ & \text { Shift right } B \text { and subtract; enter } 1 \text { in } Q \end{aligned}$
	$\begin{aligned} & -010110 \\ & -\underline{10001} \\ & \hline \end{aligned}$	7 bits of remainder $\geqslant B$ Shift right B and subtract; enter 1 in Q
	$\begin{aligned} & --001010 \\ & ---010100 \\ & ---10001 \end{aligned}$	Remainder $\angle B$; enter 0 in Q; shift right B Remainder $>B$ Shift right B and subtract; enter 1 in Q
	$\begin{aligned} & ----000110 \\ & ---00110 \end{aligned}$	Remainder $<B$; enter 0 in Q Final remainder
		22

Example: 448/17=26 r 6

		Initially, AQ dividend B divisor At end of operation, Q quotient A remainder DVF divide overflow

Algorithm

Floating-Point Registers

Biased Exponent

- Example
- Real exponent range is -50 to +49
- Add bias of 50 for new range of 0 to 99
- Biased exponent is always a positive number - Easier to deal with

Floating-Point Add / Subtract

- Check for zeros
- Align the mantissas
- Add or subtract the mantissas
- Normalize the result

F-P Add / Subtract Flowchart

Floating-Point Multiply

- Check for zeros
- Add the exponents
- Multiply the mantissas
- Normalize the product

F-P Multiply Flowchart

Floating-Point Division

- Check for zeros
- Initialize registers and evaluate the sign
- Align the dividend
- Subtract the exponents
- Divide the mantissas

F-P Division Flowchart

Booth Multiplication Algorithm

- Zeros in multiplier require no addition
- But shifting still required
- String of 1 s in the multiplier from weight 2^{k} to 2^{m} can be rewritten as $2^{k+1}-2^{m}$
- Example: 001110 [+14]
- String of 1 s from 2^{3} to $2^{1}: 2^{4}-2^{1}=16-2=14$
- Multiplicand M : $M \times 14=M \times 2^{4}-M \times 2^{1}$
- Product obtained by M 4 times to the left and subtracting M shifted left once

BCD Adder

- Output can't exceed $9+9+1=19$
- If binary sum in BCD digit >1001, add 0110
- Given
- Output of binary adder is $Z_{8} Z_{4} Z_{2} Z_{1}$
- Output carry K
- BCD output carry $C=K+Z_{8} Z_{4}+Z_{8} Z_{2}$

Block Diagram BCD Adder

Examples					
- 9	1001	9	1001	6	0110
7	0111	9	1001	4	0100
16	10000	18	10010	10	1010
	0110		$\underline{0110}$		0110
	0110		1000		10000

BCD Subtraction

- Subtract by adding 9 s complement of subtrahend to minuend
- First 9s complement algorithm
- Complement bits
- Add 1010 (decimal 10) and discard carry
- Second 9s complement algorithm
- Add 0110 (decimal 6)
- Complement bits

Examples

- $\quad 0111$ decimal 7

0111
1000 complement +0110 add decimal 6
+1010 decimal $10 \quad 1101$
10010 decimal 20010 complement

Stage of Decimal Arithmetic Unit

Parallel Decimal Addition

© 2004 by Ted Borys. All rights reserved.

