Electronic Systems Design Group

BMAS 2005 VHDL-AMS based genetic optimization of a fuzzy logic controller for automotive active suspension systems

Leran Wang and Tom Kazmierski {lw04r,tjk}@ecs.soton.ac.uk

School of Electronics and Computer Science

Outline

Introduction and system model

- Shape optimization of fuzzy logic membership functions
- Integrated GA optimiser in VHDL-AMS testbench implemented as a state machine
- Experimental results
- Conclusion

School of Electronics and Computer Science

 X_{s}

Introduction and system model

- VHDL-AMS recommended by a European automotive consortium as a unified automotive modeling language
- Automotive active suspension system

Electronic Systems Design Group

Fuzzy logic controller (FLC)

- Based on the general principles of fuzzy set theory (L. Zadeh, 1965)
- Input and output variables are similar to a conventional controller
- Handling uncertain and complex systems, e.g. active suspension system

School of Electronics and Computer Science

Fuzzy logic controller (FLC)

- Regular membership functions
 - Triangular

and Computer Science

School of Electronics

Fuzzy logic controller (FLC)

- Regular membership functions
 - Trapezoidal

and Computer Science

School of Electronics

Genetic algorithm (GA)

- A GA usually has the following elements
 - Population of chromosomes
 - Selection according to fitness
 - Crossover to produce new offspring
 - Random mutation of new offspring

School of Electronics and Computer Science

FLC

Acceleration 7 Ρ Ν Ρ Ν Ν Ζ Velocity Ζ Ζ Ν Ρ Ν Ζ Ρ Ρ **University of** Southampton, UK

•Output: actuator force

- •Three linguistic variables: *Positive* (P), *Zero* (Z) and *Negative* (N)
- •Fuzzy rules set

Electronic Systems Design Group

- Max-product inference
- Center of gravity defuzzification

Inputs: sprung mass velocity and acceleration

Shape optimization of fuzzy logic membership functions

- •Fuzzy logic membership function
 - Graphical representation of input's degree of participation in a fuzzy set
 - Shapes may affect FLC performance (A. Barr and J. Ray, 1996)
 - Shape optimization using a GA

School of Electronics and Computer Science

Shape optimization of fuzzy logic membership functions

Integrated GA optimizer in VHDL-AMS testbench

Integrated hardware system performance optimizer wholly implemented in VHDL-AMS

- Active suspension system
- FLC
- GA optimization

School of Electronics and Computer Science

-J∳D

GA features:

- Evaluation using peak-to-peak value of $x_s(t)$ as fitness
- Tournament selection chromosomes with small x_{pp} are more likely to be selected to produce offspring
- Elitism artificially inserting the best solution into each new generation
- Arithmetic crossover generate new offspring for real number genes
- Gene mutation introduce new solutions into the next population
- •VHDL-AMS finite state machine controls the optimizer

School of Electronics and Computer Science

Peak-to-peak and RMS values of $x_s(t)$

	FLC type	S	Peak-to-peak (mm)	RMS (mm)
	GA optimiz	ed	28.0	4.6
	Triangula	ır	35.7	6.2
	Trapezoid	al	36.0	6.4
School of Electronics and Computer Science				University o Southampton, UI

∃∮Ð

Conclusion

- A novel way to improve FLC performance developed and successfully implemented in an HDL
- Novel approach to hardware performance optimisation proposed and implemented
 - Integrated VHDL-AMS optimiser using parallel GA
- New type of FLC with irregular membership functions proposed for automotive active suspension system
 - Superior performance to conventional FLCs with triangular or trapezoidal membership functions
 - More than 20% improvement in the peak-to-peak value of sprung mass displacement

School of Electronics	University of 🔫	
and Computer Science	Southampton, UK	N

