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OutlineOutline
Methods.

Structural – decomposition, refinement
Functional – input/output response specification.
Behavioral/ASM – sequencing and scheduling of operations in the data path.
Behavioral/Timing – input/output response over some time frame.

Clocking specification.
Use waveform specification as a means for defining characteristic system behavior, based 
on arrival of input signals and the resultant response of the system, and its internal, 
intermediate actions.

ASM/Flow diagram.
We can also start with a truth table to define the equations for the outputs based on value 
combinations of the inputs.
If we include all inputs—both data and control—then the truth tables can become quite 
large.
However, what we are looking to identify from the equations is the Sum of Products (SoP) 
form, that can be used to identify which operations are to be scheduled in which states of 
the state machine (should one be required).
Note: we use truth tables for combinational logic function specification, but sometimes 
these combinational logic functions are under the sequencing control of a state machine.
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Finite State Machine Design Finite State Machine Design -- IntroductionIntroduction

Components of FSM Model
State registers, input synchronization registers (optional) and output filter registers (optional).
Next state decoding logic, and output decoding logic - combinational logic blocks.
Input signals to the state machine, which are inputs to the next state and output decoding logic blocks (could 
be synchronized to clock with input registers).
Next state information, which is generated as a result of input/next state decoding logic.
Present state information, output from the state registers, which is fed back as an input to both next state and 
output decoding logic blocks.
Outputs from the state machine - either generated synchronously from the output of the state registers (also 
used as present state information), or asynchronously as output of the output decoding logic block (which 
takes input and present state information to produce outputs). Could be filtered using output registers to 
eliminate possible signal transients.
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Finite State Machine Design Finite State Machine Design ––Model TypesModel Types

Moore machines:
Control outputs generated by the 
state machine are dependent only 
on the present state information.
The control outputs are 
synchronized to the clock that 
controls state transitions.
Moore machines are used when it 
is important to synchronize all 
control actions with the change in 
state, and thus, by the clock.  
Moore machines effectively filter 
out transients, and can be used to 
eliminate race conditions when 
inputs are unfiltered.
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Finite State Machine Design Finite State Machine Design –– Model TypesModel Types

Mealy machines:
The control outputs of the state 
machine are dependent on the 
inputs and present state 
information.  
The control outputs can be 
asynchronous, in that outputs can 
change value as the inputs
change value, provided the 
appropriate present state 
information is maintained.  
The control outputs are gated by 
the present state.
Mealy machines are used to 
create control blocks that respond 
quickly to external signal changes.  
Care must be taken to isolate the 
design from transients and race 
conditions.
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Finite State Machine Design Finite State Machine Design –– StatesStates

States in real-world 
domain applications

States of devices are 
generally determined from 
its specification.
Certain device applications 
are easy to discover the 
states.  Other applications 
may require more work to 
uncover them.
Sometimes, the list of 
identified states must be 
modified to eliminate 
unused or unspecified 
states, redundant states, or 
missing and hidden state 
behaviors.
NOTE: this model was 
created using state chart 
notation in Rational Rose®.
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Finite State Machine Design Finite State Machine Design –– NotationNotation

FSM State Diagram
Allows designer to represent 
individual states, triggering 
events, state transitions, and 
outputs for a state machine.
Notation:

“bubble” is a state, with 
state name
“arc” is a transition from 
one state to another, or 
from a state to itself.  It has 
the inputs indicated as a 
logical expression.
Moore-style FSM has 
outputs associated with 
state itself.
Mealy-style FSM has 
outputs associated with 
transition arc.
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Finite State Machine Design Finite State Machine Design –– NotationNotation
Algorithmic State 
Machine (ASM) Chart

Uses notation of flow chart for 
modeling the sequencing and 
control in state machines.
Actions to be scheduled in 
each particular state are 
attached to the state, 
represented by the “state box”.
State transition decisions are 
modeled explicitly using VHDL 
control constructs, for If-Then 
and Case.
Actions attached to state box 
indicate Moore machine, but 
actions on “oval” after a state 
imply Mealy style of state 
machine.

s0

s1

s3
s5

input1 & input2

10

^RES
CLK1 (rising)

signal1
Areg <- '0'

Areg <- input1

Breg <- input2

Output <- NMUX (Areg, Breg, in1)
MDR <- ScratchPad [MAR]

!signal4s4

0110 default

s2

1001

Clocking definition

Enabling event definition

State

Moore Machine Actions:

Signal Assertion

Bus Assignment

Macro-function

Input Conditions:

Binary Decision Condition

Multiway Branch Condition
Mealy Machine Actions:
(synchronous or asynchronous)

 Boolean input expression

A<- '0'

(synchronous or asynchronous)

(CASE)

Assignment

!signal5

(If-Then)

Memory Read/Write
with Relative Addressing

IObus
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Finite State Machine Design Finite State Machine Design –– NotationNotation

Sequence Diagrams
Allow designer to model 
interactions between multiple 
design blocks containing 
state machines or data path 
units.
Represents the time 
sequenced actions and 
events between units.
Clearly shows the 
sequencing associated with 
handshaking or design 
protocol being implemented.
Should be verifiable using 
VHDL simulation.

Light-1 Light-2 CarLightMaster

1: Reset

2: State = GreenLight

3: Synchronize

4: State = RedLight
5: SetTimer

6: Car Detected

7: Set TrafficTimeout Tim er

Either one or the 
other timer on the 
lights will expire.  
W hichever one 
expires first will 
s ignal the other to 
make an appropriate 
state change. 8: TimerExpired

9: State = Yellow

10: SetTransitionTimer

11: TransitionExpired

12: St ate = Red

13: ChangeRequest

14: State = Green



Page 10© 2002 Dr. James P. Davis

Finite State Machine Design Finite State Machine Design –– EncodingEncoding

State Assignment
One technique for assigning states 
to flip flop encoding is to start with 
the State Table.

State Encoding Schemes
Binary: the state assignment is 
made based on the order of the 
states, with the total number of flip 
flops used for state assignment 
being a power of two (so as to 
eliminate problems with unassigned 
states).  See rules on Pages 20, 23 
of Roth text.
One-Hot: For FPGA design, where 
the goal is to minimize interconnect 
across cells, this scheme is used to 
have one flip flop per state, instead 
of encoding as a power of 2.
Grey Code: Different ordering of the 
states according to adjacency and 
prioritization.
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Finite State Machine Design Finite State Machine Design –– ReductionReduction

State Equivalence
Two states in an FSM are 
“equivalent” if they have the 
same input and output 
sequence.
The output sequence (not just 
individual outputs) must be the 
same for all possible 
combinations of input 
sequences.
We can do this without having to 
look internally to the FSM if we 
can say that, for all input 
sequences, the outputs and next 
states are the same.

Implication Reduction 
Technique

Starting with State Table, we 
create an implication Table and 
follow algorithm in text.
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Finite State Machine Design Finite State Machine Design –– ReductionReduction

State Table Constructed Implication Chart
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Finite State Machine Design Finite State Machine Design –– ReductionReduction

Subsequent passes minimizing the Implication Chart
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Finite State Machine Design Finite State Machine Design –– ReductionReduction
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^RES
CLK (rising)

C1 <- '1'
AS1 <- '1'

AS1 <- '0'
C1 <- ^C1

Thread 1

AS1
C1 (rising)

C2 <- '1'
AS2 <- '0'

AS2 <- '1'
C2 <- ^C2

Thread 2

^AS2
C2 (falling)

ASSERT_1

Thread 3

!ASSERT_2

s0

s1

s6

s2

s3

s8

s4

s5

s7

Modeling Concurrency:
Multiple model FSM "threads" having shared buses.
Independent clocking schemes and enabling events (e.g., ^RES).
Types of concurrent interaction:

SynchronizationSynchronization
-- coordinated activities (e.g., handshaking, coordinated activities (e.g., handshaking, 

pipelining)pipelining)
-- implicit references to shared busesimplicit references to shared buses

Competition
- shared resources (for example, bus arbitration)
- explicit use of other concurrent processes, 

components, or entities to model the arbitration 
protocol.

Finite State Machine Design – Concurrency
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Finite State Machine Design Finite State Machine Design –– PatternsPatterns

Sequencing
This pattern has the 
sequencing of data path 
operations by one or more 
state machines
The example shown is the 
data path for a small CPU, 
where micro-operations 
based on program 
instructions are decoded 
and staged to execute 
multi-cycle instructions out 
of memory.
This example also used 
pipelining (discussed 
later).
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Finite State Machine Design Finite State Machine Design –– PatternsPatterns

Pipelining - 1
There are two kinds of 
pipelining: data path 
pipelining and control 
pipelining.
An example of control 
pipelining is the Instruction 
Fetch, Decode, Execute cycle 
used in all CPU architectures.  
Another example is Bus 
Reads and Writes, which are 
generally pipelined so as to 
interleave the control cycles, 
thus saving clock cycles 
(shown in the figure).
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Finite State Machine Design Finite State Machine Design –– PatternsPatterns

• Pipelining - 2
– The sequence of 

figures show how 
pipelining works in 
the control path.

– The control 
pipelining is the 
Instruction Fetch, 
Decode, Execute 
cycle used in all 
CPU architectures.

– Each stage of the 
control pipeline is 
buffered by 
registers that 
provide setup of 
data.

– The different 
stages of the 
pipeline also use 
handshaking.
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Finite State Machine Design Finite State Machine Design –– PatternsPatterns

Handshaking
Polled handshaking:

FSM A thread waits in a 
polling loop, testing for 
signal ZB to be asserted by 
FSM B.
FSM B thread waits in 
IDLE loop for signal ZA to 
be asserted by FSM A.

Asynchronous handshaking:
FSM threads use an 
asynchronous interrupt 
mechanism to alert it to 
when the event has 
occurred.
However, to minimize the 
effects of timing skew, it is 
most likely gated to a clock 
signal.
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Finite State Machine Design Finite State Machine Design –– PatternsPatterns

Arbitration-1
The pattern works in situations 
where multiple service 
“requesters” want access to a 
scarce resource (such as a 
Bus).
There are different arbitration 
schemes for requesting and 
granting control of the resource 
by one requester by the 
“arbiter” module.
Some use daisy chaining, or 
prioritization schemes to grant 
access.
Arbitration can be centralized, 
using an “arbiter” module, or it 
can be decentralized.
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Finite State Machine Design Finite State Machine Design –– PatternsPatterns

Arbitration-2
The one scheme involves use of a 
separate “arbiter” module, as is 
the case with most bus schemes.
Another scheme involves no 
centralized arbiter:

CSMA/CD: Carrier Sense Multiple 
Access/Collision Detect.  Sense 
for a distributed “carrier” signal, 
and detect for collisions as a 
means to gain access to the 
shared resource (wired network 
medium).
CSMA/CA: Carrier Sense Multiple 
Access/Collision Avoidance.  
Sense for “carrier” signal, but 
don’t rely on it solely as the 
means for gaining access.  Use 
an additional timing mechanism 
passed among the data frames 
(needed because of the “hidden 
node” problem).
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