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Abstract

The purpose of this thesis work has been to compare two synthesizable processor cores, the LEON2 from
Gaisler Research and the NIOS II provided by Altera.

The work consists of three parts:

1. Initial Core Analysis
2. Implementation on a FPGA
3. Performance evaluation by Benchmarking

In the analysis part, the processor architecture of each core and characteristics like pipeline depth, cache
sub–system and configurability have been evaluated. Both processor cores have been implemented on the
same target FPGA board. In the benchmark part, Dhrystone, Stanford, a typical control application and
Paranoia. The first three programs have been executed on two different processor configurations; ”Mini-
mum Area” and ”Maximum Performance” respectively, and in two different frequencies. Paranoia was only
executed on the ”Minimum Area” configuration in one frequency. To make the benchmark part possible, a
cross–compiler tool chain for each processor system have been used.

The benchmark results are discussed and evaluated. Both processor cores perform equal on Dhrystone
and Stanford on the ”Minimum Area” configuration, but LEON2 is the fastest one on the ”Control Ap-
plication”. On the ”Maximum Performance” configuration, NIOS II is fastest on Dhytstone and Stanford.
LEON2 performs best on the ”Control Application” again.

Sammanfattning

Syftet med detta examensarbete har varit att jämföra tv̊a syntetiserbara processorer, LEON2 som Gaisler
Research har utevecklat och NIOS II som Altera tillhandahåller.

Arbetet best̊ar av tre delar:

1. J̈amförelse av processorerna
2. Implementering p̊a ett FPGA utevecklingskort
3. Prestantautv̈ardering med hj̈alp av benchmarkprogram

I den första delen av arbetet, har processorernas arkitektur, karaktäristiska delar s̊a som antalet pipeline–
steg, cachesystem och konfigurerbarhet jämförts och utv̈arderats. De b̊ada processorerna har implementer-
ats p̊a samma utvecklingskort baserat på en Altera Cyclone FPGA. Som prestandautvädering har fyra
program k̈orts p̊a de b̊ada processorerna; Dhrystone, Stanford, en typisk styrapplikation och Paranoia. De
tre första programmen har körts p̊a två olika processorkonfigurationer, ”Minimum Area” respektive ”Max-
imal Prestanda” vid tv̊a olika frekvenser. Paranoia kördes enbart p̊a ”Minimum Area” konfiguration vid en
frekvens. F̈or att g̈ora prestandautväderingen m̈ojlig måste ett korskompilatorsystem användas f̈or de b̊ada
processorerna.

Till sist har prestandautvärderingsresultaten har diskuterats och utvärderats. De b̊ada processorerna
har likvärdig prestanda p̊a ”Minimum Area” för Dhrystone och Stanford, medan LEON2är snabbare p̊a
”Styrapplikationen”. Vid ”Maximal Prestanda”̈ar NIOS II snabbare p̊a Dhrystone och Stanford̈an LEON2,
medan LEON2̈ar snabbare p̊a ”Styrapplikationen”.
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Objectives

Today, synthesizable processor cores are becoming common for embedded microprocessor based applica-
tions, where high performance is required. Because of the Field Programmable Gate Arrays (FPGA) are
becoming bigger and faster, they can contain a complete microprocessor based system. The first syntesiz-
able processor cores were 8 bit and showed up in the late 1990’s, now there are 32 bit processor cores
available. In this context, it is of interest to make a comparative analysis with synthesizable processor cores
from different providers.

In this thesis work, two syntesizable processor cores have been compared, the LEON2 [1] which is a
SPARC V8 compatible processor core developed by Gaisler Research [2] and the NIOS II which is[3]
developed by Altera [4].

The work consists of three major parts: processor architecture and system analysis, implementation on
a FPGA and benchmarking. Two different processor configurations have been compared and evaluated:
minimum area and maximum performance. Both configurations have been executed in two different fre-
quencies: 25 MHz and 50 MHz, respectively. The benchmarks used in this work are Dhrystone, Stanford,
Paranoia and a typical control application, the execution results have been discussed for each configuration.
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Licensing and Availability

This section contains a evaluation of their license forms, respectively. The LEON2 full VHDL source code
is available under the GNU LGPL [5] license, which allows free and unlimited use of the processor core
and peripherals. Since it is open source, it is not restricted to a certain technology. LEON2 based systems
could be implemented in both FPGA and ASIC. The full LEON2 source code is available through the
Gaisler Research homepage [6].

All NIOS II development kits includes a perpetual non–cost license [7] to develop and ship systems
using the processor core and peripherals in a Altera™ FPGA. A implementation as a ASIC is also possible.
The NIOS II is distributed as a encrypted VHDL file.

1 Initial Architecture Analysis

This section contains the first part of the work. In section2 the LEON2 is described and analyzed, in section
3 the same kind of description and analysis is done for the NIOS2.

2 LEON2

This section contains a description of the architecture of the processor core, cache hierarchy, the instruction
set, available peripherals and configuration options.

2.1 System Overview

The LEON2 [8] implements a 32 bit single issue SPARC V8 [9] compatible processor core.
It is designed for embedded applications, with the following features on–chip:

Separate Instruction– and Data Caches (Harvard Architecture)
Hardware Multiply and Divide
Flexible Memory Controller
Parallel 16/32 Bits I/O Port
Ethernet MAC
PCI Interface
Two UARTs
Interrupt Controller
Two 24–bit Timers
Debug Support Unit with Trace Buffer
Watchdog
Power-down Function
Is Fully Synthesizable VHDL–Code
Can be implemented on both FPGA and ASIC
Support for Different Floating–Point Units. (Not included in this work)

In figure1 on next page, a typical LEON2 system can be seen.

1
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Figure 1: LEON2 System Overview

2.2 Instruction Set Architecture

LEON2 is a SPARC V8 [9] (IEEE 1754) single issue compliant RISC, with a simple five stage pipeline
implementation. 32 Bit wide instruction set and few addressing modes:
”Register + Register” and ”Register + Immediate”. Multibyte numbers are stored as big endian.

2.3 Integer Unit

The LEON2 integer unit implements the full SPARC V8 standard, including all multiply and divide in-
structions. The implementation is focused on portability and low complexity.

The number of register windows is configurable within the limit of the SPARC standard (2–32), 8
is default. Total number of registers by default is 136. Separate instruction and data cache interfaces are
provided (Harvard Architecture). The LEON2 is provided with a branch delay slot, more info concerning
the delay slot feature can be seen in section5.1

2.3.1 Pipeline Architecture

The LEON2 integer unit uses a single instruction issue pipeline with 5 stages. The stages can be seen below.

Instruction Fetch
Instruction Decode
Execute
Memory
Write Back

The LEON2 pipeline is stalled until the operation is completed if one of these conditions occurs:

Multi Cycle Instruction
Load or Store from the memory (SRAM or SDRAM)

2
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2.3.2 Multiply and Divide Options

The LEON2 has a variety of multipliers available. In table1 below, the LEON2 multiplier options can be
seen.

Table 1: LEON2 Multiply Options

Configuration Result latency cycles

32 x 32 1
32 x 16 2
32 x 8 4
16 x 16 4
16 x 16 + PIPELINE REG 5
ITERATIVE 35
EMULATED IN SOFTWARE ≈ 40

The LEON2 supports optional signed and unsigned MAC instructions – 16 x 16 bit multiplier with 40 bit
accumulator, it executes in one cycle but have two latency cycles. A program that is going to use the MAC
instructions should be written in assembly language. A radix–2 hardware divider (non restoring) is also
available, with the following characteristics; Input data: 64/32 (Bits) , producing a 32 bit result and takes
35 cycles to compute.

2.4 Cache System

Separate multi–set, instruction– and data caches are provided, each of them are configurable with 1–4 Sets,
1–64 Kbyte/set, 16–32 Bytes/Line. Sub-blocking is implemented with one valid bit per 32–bit word. There
are a several replacement policies provided: LRU, LRR and Random. It is possible to mix the policies, e.g.
LRU on the instruction cache and random on the data cache. The instruction set provides instructions to
flush the caches if it is necessary.

2.4.1 Instruction Cache

The instruction cache uses streaming during line–refill to minimize refill latency.
Instruction cache tag layout: ( 1 Kb/set, 32 bytes/line )

ATAG [31:10] LRR[9] LOCK[8] VALID[7:0]

Only the necessary bits will be implemented in the cache tag, depending on the configuration. The LRR
field is used to store the replacement history, if the LRR replacement algorithm was chosen. LOCK indi-
cates if a line is locked or not.

2.4.2 Data Cache

The data cache uses write–through policy and implements a double–word write–buffer.
It can also perform bus–snooping on the AHB bus. A local scratch pad ram can also be added to the data
cache controller to allow 0–wait–states access without requiring data write back to external memory.
Data cache tag layout: ( 4 Kb/set, 32 bytes/line )

ATAG [31:12] Not Used [11:10] LRR[9] LOCK[8] VALID[7:0]

Only the necessary bits will be implemented in the cache tag, depending on the configuration. The LRR
field is used to store the replacement history, if the LRR replacement scheme has been chosen. LOCK
indicates if a line is locked or not.

Cacheable Memories:PROMandRAM
Non-cacheable :I/O andInternal (AHB)

3
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Write buffer

Consists of three 32–bit registers to temporarily store data until it is sent to the destination, acts like a FIFO.

Cache line locking

If the lock-bit in the cache is set to ’1’, it prevents the cache line to be replaced by the replacement algorithm
(LRR, LRU or Random).

CCR – Cache Control Register

The operation of the instruction and data caches is controlled through a common CCR. Each cache can be
in three modes; disabled, enabled or frozen. The register is 32 bit wide.

Disabled: No caching, all Load/Store requests are passed to the memory controller directly.
Enabled: Both instruction and data is cached.

Frozen: As enabled, but no new lines are allocated on read misses.

2.5 Internal Busses

2.5.1 AMBA

The processor has a full implementation of AMBA 2.0 [10], AHB and APB on–chip buses.
The APB bus is used to access on–chip registers on the peripheral functions, while the AHB bus is used for
high–speed data transmission.

A flexible configuration scheme makes it simple to add new IP cores. A more detailed description of
the internal buses can be seen in section4.

2.5.2 AHB Bus

LEON2 uses the AMBA–2.0 AHB bus to connect the processor cache controllers to the memory controller
and other high-speed units. Default configuration: the processor is the only master on the bus, while there
are two slaves; the memory controller and the APB–bridge.

2.5.3 APB Bus

The APB bridge is connected to the AHB bus as a slave and acts as the (only) master on the APB bus. The
most on–chip peripherals are accessed through the APB bus, eg UART, I/O, Timer, IrqCtrl.

A detailed bus overview of how the peripherals are connected can be seen in figure1 on page 2.

4



Comparison of Synthesizable Processor Cores 2 LEON2

2.6 Memory Interfaces

The memory interface provides a direct interface to PROM, memory mapped I/O devices, static RAM
(SRAM) and synchronous dynamic RAM (SDRAM). The different controllers can be programmed to ei-
ther 8, 16, 32, 64 bits data width. Chip–select decoding is done for two PROM banks, one I/O bank, five
SRAM banks and two SDRAM banks. The external memory bus is controlled by a programmable memory
controller, which acts like a slave on the AHB bus. The function of the controller is programmed through
three memory configuration registers through the APB bus.

The controller decodes a 2 Gbyte address space according to the table2 below.

Table 2: LEON2 Supported Memories and Sizes

Type Size

PROM 512 MB

I/O 512 MB

S(D)RAM 1024 MB

Burst Cycles

To improve memory bus bandwidth, access to sequential addresses can be performed in burst mode. Burst
transfers will be generated when the memory controller is accessed using an AHB burst request. These
requests includes instruction cache–line fills, double loads and double stores.

2.6.1 SRAM

The memory controller can handle up to 1 GByte SRAM, divided on up to five RAM banks. The bank sizes
could be programmed in binary steps from 8 KByte to 256 MByte, while the fifth bank handles the upper
512 MBytes. A read access to the SRAM consists of two data cycles and zero to three wait–states. A write
access is similar to the read but takes at least three cycles.

2.6.2 PROM

The PROM banks can be configured to operate in 8– , 16– or 32–bit mode. Because of a read access to the
PROM is always done in 32–bit mode, a read access to the 8– or 16–bit mode is done by bursting, in four
and two cycles, respectively. A write access will only write the necessary bits.

2.6.3 I/O Devices

The I/O device section can be configured to operate in 8– or 16–bit mode. A I/O device can only be accessed
in a single access in 32–bit mode.

2.6.4 SDRAM

SDRAM access is supported to two banks of PC100/133 compatible devices. The controller supports 64–
512 MByte devices. The SDRAM controller contains a refresh function that periodically issues an AUTO–
REFRESH command to both SDRAM banks, the refresh period could be programmed in the memory
controller register. The SDRAM can also be write protected.
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2.7 System Interfaces

2.7.1 UART

Two identical UARTs are provided for serial communications. The UART support data frames with 8 data
bits, one start bit, one optional parity bit and one stop bit . Hardware flow–control is supported through
the RTSN/CTSN hand–shake signals. The two UARTs are possible to run in loop–back mode to ensure a
working connection.

2.7.2 Ethernet MAC

A 10/100 Mbps Ethernet MAC is available, it is based on the core from OpenCores [11] , with two AHB
interfaces, one master and one slave. The AHB master interface is used by the MAC DMA engine to
transfer Ethernet packets to and from memory. The slave handles all configuration . Interrupt generated by
the Ethernet MAC is routed to the interrupt controller.

2.7.3 PCI

Primary used for debugging purposes, it supports DSU communications over the PCI bus, if the develop-
ment board used has a PCI connector. The interface consists of one PCI memory BAR occupying 2 Mbyte
of the PCI address space, and an AHB address register.

2.8 Additional Units and Features

The following units and features are provided:

2.8.1 Debug Support Unit

The Debug Support Unit (DSU) allows non–intrusive debugging on target hardware. The DSU allows
to insert breakpoints and watchpoints and access to all on–chip registers from a remote debugger. The
DSU has no performance impact on the system. Communication to outside debuggers is done by using a
Dedicated Communication Link (DCL), e.g UART (RS232) or through any AHB master e.g. Ethernet. The
registers of a FPU or Co–processor can also be accessed through the DSU.

2.8.2 Trace Buffer

A trace buffer is provided to trace the executed instruction flow and/or AHB traffic. A 30 bit counter is also
provided and stored in the trace as time tag. Its operation is controlled through the DSU control register
and the trace buffer control register.

The default size is 128 lines – (2kbyte), could be configured to 8–4096 lines.

2.8.3 Timers

The timer unit implements two 24–bit timers, one 24 bit watchdog and one 10–bit shared prescaler. The
prescaler is clocked by the system clock and decremented on each clock cycle. When it underflows, the
prescaler is reloaded from the prescaler register and restarted.

2.8.4 Watchdog

A 24–bit watchdog is provided on–chip, it is clocked by the timer prescaler. When the watchdog reaches
zero, an output signal is asserted. The signal could be used to generate system reset.

6
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2.8.5 Interrupt Controller

The interrupt controller manages a total number of fifteen (15) interrupts, originating from internal and
external sources. Each interrupt can be programmed to one of two priority levels. A chained secondary
controller for up to thirty–two (32) additional interrupts is also available. There are a several unused inter-
rupts that can be utilized by other IP–cores and peripherals.

2.8.6 Parallel I/O Port

A partially bit-wise programmable 32–bit I/O port is provided on-chip. It is splited into two parts – the
upper 16 bits can only be used when all areas (ROM,RAM and I/O) of the memory controller is in 8- or
16–bit mode. If the SDRAM controller is enabled, the upper 16-bits cannot be used.

2.8.7 Power-down

The processor can be powered–down by writing an arbitrary value to the power-down register. Then the
processor will enter the power-down mode on the next load or store instruction. During power-down mode
the Integer Unit (IU) will effectively be halted. All instructions that are inside the pipeline will be there until
the mode will be terminated. If the mode will be terminated – the Integer Unit (IU) will be re-enabled when
an unmasked interrupt with higher level than the current processor interrupt level (PIL) become pending.
All other functions and peripherals operate as normal during the power–down mode.

2.9 Co–Processors

2.9.1 FPU

The LEON2 processor model provides an interface to the GRFPU available from Gaisler Research and
Meiko FPU-core from Sun Microsystems.

2.9.2 GRFPU

The GRFPU operates on single– and double–precision operands, and implements all SPARC V8 FPU
instructions. It is interfaced to the LEON2 pipeline using a LEON2 specific FPU controller (GRFPC). The
control unit allows FPU instructions to be executed simultaneously with integer instructions. Only in case
of a data or resource dependency the integer pipeline is stalled.

2.9.3 Generic Co–processor

LEON2 can be configured to provide a generic co–processor. The interface allows execution in parallel
with the integer unit (IU). One co–processor instruction can be started each clock cycle if there is no data
or resource dependency.

2.10 Memory Management Unit

With the optional Memory Management Unit (MMU) it implements a SPARC V8 reference MMU and
allows usage of robust operating systems such as Linux. The MMU can have a separate ( Instruction
and Data) or a common Translation Look-aside Buffer (TLB). The TLB is configurable for 2–32 fully
associative entries. When the MMU is disabled the caches operate as normal. When enabled, the cache
tags store the virtual address and also include an 8–bit context field.

2.10.1 Translation Look-aside Buffer

The MMU can be configured to use a shared TLB, the number of TLB entries can be set to 2–32. The orga-
nization of the TLB and number of entries is not visible to the software and operating system modification
are therefore not required.
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3 NIOS II

There are three versions of the NIOS II [12] processor core available, one with a single pipeline stage and
no cache (NIOS II/e), one with five pipeline stages and instruction cache (NIOS II/s) and the last one with
six pipeline stages and both instruction and data caches (NIOS II/f). In this thesis the focus is on the NIOS
II/f core, since it is the most extensive one of the available NIOS II cores.

The processor architecture, cache structure, Instruction Set Architecture, peripherals and configuration
options are described below.

3.1 System Overview

The NIOS II processor is a general–purpose single issue RISC processor core providing:

Full 32 bit instruction set, data path and address space
32 General Purpose Registers (Flat register file)
32 External Interrupt Sources
Barrel Shifter
Avalon System Bus
Instruction and Data Cache Memories (Harvard Architecture)
Access to On–chip Peripherals, and Interfaces to Off–chip Peripherals and Memories
The core is provided as a encrypted VHDL file

A typical NIOS II system can be seen in figure2 below.

Figure 2: NIOS II System Overview
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3.2 Instruction Set Architecture

The Instruction Set Architecture (ISA) is compatible across all NIOS II processor systems. The supported
addressing modes are ”register + register” or ”register + immediate”. There is also a possibility to add
custom instructions. Multibyte numbers are stored as little endian.

When the processor issues a valid instruction that is not implemented in hardware, an unimplemented
instruction exception is generated. The exception handler determines which instruction generated the ex-
ception. If the instruction is not implemented in hardware, control is passed to an exception routine that
emulates the operation in software, concerning multiply and divide instructions.

3.3 Integer Unit

The integer unit (IU) architecture supports a flat register file, consisting of thirty–two 32-bit general pur-
pose registers. Three control registers are also provided. The architecture is prepared for the future addition
of floating–point registers.

All instructions take one or more cycles to execute. Some instructions have other penalties associated with
their execution. Late result instructions have a two cycle bubble placed between them and the instruction
that uses the result. Instructions that uses Avalon transfers are stalled until it is completed.

3.3.1 Pipeline Architecture

The NIOS II/f core employs a 6–stage pipeline, with following stages:

Instruction Fetch
Instruction Decode
Execute
Memory
Align
Write–Back

The pipeline is stalled when one of these conditions occurs:

Multi-cycle instructions
Avalon instruction master–port read access
Avalon data master–port read/write access
Data dependencies on long latency instructions

When a stall has occurred, no new instructions enter any stage. Only The Decode– and Align stages creates
stalls. Up to thirteen (depends on the multiplier latency) instructions can be executed while waiting for the
result from a multicycle instruction, if there is no data dependency between the result of the multicycle
instruction and the other instructions.

9
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3.3.2 Multiply and Divide Options

The processor supports a variety of multiplication and divide options, mostly depending on the FPGA,
according to the table3 below. No embedded multiplier or divider is provided on the development board
used in this thesis work.

Table 3: NIOS II Multiply and Divide Options

ALU option Details CPI Result Latency cycles

NO HW MUL /DIV EMULATED ≈ 40 N/A
EMBEDDED (STRATIX I & II) 32 x 32 1 2
EMBEDDED (CYCLONE II) 32 x 16 5 2
LE BASED 32 x 4 11 2
HARDWARE DIVIDE 32 / 32 4–66 2

The hardware divide has no exception when a division by zero occurs not on overflow either.

3.3.3 Branch Prediction

The core is provided with a branch predictor to achieve better performance while avoiding stalls during
execution. The effectiveness of a branch predictor scheme depends not only on the accuracy, but also on
the cost of a branch, if the prediction was wrong. In section5.1a comparison of their two different branch
handling methods can be seen.

Static prediction – In the NIOS II/s core
Static branch prediction is implemented using the branch offset direction:
A negative offset - predict taken.
A positive offset - predict not taken.

Dynamic prediction – In the NIOS II/f core
Dynamic branch prediction is implemented using a 2–bit branch history table.

Branch Cycles

In the table4 below, the NIOS II branch cycles are shown.

Table 4: NIOS II Branch Prediction Cycles
Prediction Cycles Penalty

CORRECTLY PREDICTED: TAKEN 2 NO PENALTY

CORRECTLY PREDICTED: NOT TAKEN 1 NO PENALTY

M ISPREDICTED 4 PIPELINE IS FLUSHED
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3.4 Cache System

The NIOS II/f processor core supports both instruction and data caches. Both caches are always enabled
at run–time. Data cache bypass methods are available via software. Cache management and coherency are
handled by software, the instruction set provides instructions for cache management. The core supports the
31–bit cache bypass method for accessing I/O on the data master port.

3.4.1 Instruction Cache

The instruction cache has the following features:

Direct–mapped implementation
Critical word first
32 Bytes (Eight words) per cache line
Configurable size: 512 bytes to 64 Kbytes

The instruction byte address has the following fields and sizes for a 8Kbyte cache:

TAG [30:15] LINE[14:5] OFFSET [4:2] 00 [1:0]

The offset field is 3 bits wide (an 8 word line), the tag and line sizes depends on the cache size. The
maximum instruction address size is 31 bits. The instruction cache is permanently enabled and can not be
bypassed.

3.4.2 Data Cache

The data cache has the following features:

Direct–mapped implementation
Write–back
Write–allocate
4 Bytes (One word) per cache line
Configurable size: 512 bytes to 64 Kbytes

The data byte address has the following fields and sizes for a 1 Kbyte cache:

TAG[22:10] LINE[9:2] OFFSET[1:0]

The offset field is 2 bits wide, the tag and line sizes depends on the cache size.

In all current NIOS II cores, there is no hardware cache coherency mechanism. Therefore, if there are
multiple masters accessing shared memory, software must explicitly maintain coherency across all
masters.
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3.5 Internal Busses

3.5.1 Avalon On–chip Bus

The Avalon [13] bus is a simple bus architecture designed to connect on–chip processor and peripherals
together into a working NIOS II based system. The Avalon is an interface that specifies the port con-
nections between master and slave components, it also specifies the timing by which these components
communicate.

The Avalon bus supports advanced features, e.g. latency aware peripherals, streaming peripherals and
multiple bus masters. The advanced features allow multiple units of data to be transferred between pe-
ripherals during a single bus transaction. Avalon masters and slaves interact with each other based on a
technique called slave–side arbitration. Slave–side arbitration determines which master gains access to a
slave, if at least two masters attempt to access the same slave at the same time. Both the instruction and
data buses are implemented as Avalon master ports. The data master port connects to both memory and
peripheral components, while the instruction master port only connects to memory components.

Every peripheral mentioned in the following sections uses the Avalon bus. In figure2 on page 10, a bus
overview can be seen.

3.6 Memory Interfaces

The processor core is capable to access up to 2 GBytes of external address space. Both data memory,
peripherals and memory–mapped I/O are mapped into the address space of the data master port on the
Avalon interface. Multibyte numbers are stored as little endian.

When sharing memory, the highest performance is achieved when the data master port has been as-
signed higher arbitration priority on any memory that is shared by both instruction and data master ports.

3.6.1 SDRAM

The SDRAM controller, provides an interface to off–chip SDRAM. The controller supports the standard
SDRAM PC100 specification. The controller handles all SDRAM protocol requirements. The core can
access SDRAM subsystem with the following data widths: 8, 16, 32, 64 bits, various memory sizes and
multiple chip–selects. Up to 4 banks of memory is supported. Because the Avalon interface is latency–
aware, pipelined read transfers are allowed.

3.6.2 DMA

The DMA controller performs bulk data transfers, reading data from a source address range and writing the
data to a different address range. An Avalon master peripheral (such as the NIOS II), can provide memory
transfer tasks to the DMA controller, independently of the processor. The controller is also capable of
performing streaming Avalon transactions.

3.6.3 CFI

The common flash interface core (CFI controller) provides connection to external flash memory. The
Avalon tristate bridge creates an off–chip memory bus that allows the flash chip to share address and
data pins with other memory chips. Avalon master ports can perform read transfers directly from the CFI
controller’s Avalon port.

3.6.4 EPCS

The EPCS device controller core allows NIOS II systems to access an Altera EPCS serial configuration
devices. The EPCS device is able to store non–volatile program data and FPGA configuration data. Boot
loading is also provided.

12
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3.7 System Interfaces

3.7.1 UART

The UART core provides a register mapped Avalon slave interface, which allows communication with
master peripherals such as NIOS II. It provides configurable baud–rate, parity, start, stop and data–bits and
optional RTS/CTS flow control signals.

3.7.2 JTAG UART

The JTAG UART core provides communication between a host PC and a Altera FPGA. Master peripherals
communicate with the core by reading and writing control and data registers. The core provides bidirec-
tional FIFOs to improve bandwidth over JTAG connection. The FIFO depth is configurable – could be
either in memory or build with registers.

3.7.3 SPI

SPI is a industry–standard serial protocol commonly used in embedded systems to connect the processor
to a variety of off–chip devices. The SPI core can implement either the master or the slave protocol. If
it is configured as a master, the SPI core can control up to sixteen independent SPI slaves. The core also
provides an interrupt output which can flag an interrupt whenever a transfer completes.

3.7.4 Parallel I/O Port

The parallel I/O provides a memory mapped interface between an Avalon slave port and general purpose
I/O port. The I/O ports connect either to on–chip user logic, or to external devices. Each core can provide up
to thirty–two I/O ports. A bidirectional mode is available with tristate control. The core can be configured
to generate a interrupt request on certain inputs.
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3.8 Additional Units

3.8.1 JTAG Debug Module

The NIOS II core supports a JTAG debug module to provide JTAG interface to software debugging tools.
The core also supports an optional enhanced interface that allows real–time trace data to be routed out of
the processor and stored in an external debug probe.

3.8.2 Exception Controller

The architecture provides a simple, non–vectored exception controller to handle all exception types. All
exceptions cause the processor to transfer execution to a single exception address. The handler at this
address determines the cause of the exception and finishes the appropriate exception routine.

3.8.3 Interrupt Controller

The architecture supports thirty–two (32) external hardware interrupts. The core has thirty–two (32) level–
sensitive interrupt request (IRQ) inputs, providing a unique input for each interrupt source. The priority is
determined by software. The software can enable and disable any interrupt source individually by masking
the IENABLE control register.
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4 Bus Comparison

This section contains a more detailed comparison of the internal buses used by each processor core, see
table5 below. The AMBA–AHB and AMBA–APB which LEON2 uses and the Avalon switch fabric which
the NIOS II uses.

Table 5: Bus Comparison

Option AMBA–AHB AMBA–APB AVALON

PROVIDER ARM ARM A LTERA

BUS VERSION REV 2.0 REV 2.0 1.2
DATA BUS WIDTH 8–1026 BITS1 8–32 BITS 8–32 BITS

ADDRESSBUS WIDTH 32 BITS 32 BITS 32 BITS

ARCHITECTURE MULTIPLE MASTER SINGLE MASTER MULTIPLE MASTER

MULTIPLE SLAVE MULTIPLE SLAVE MULTIPLE SLAVE

PROTOCOL PIPELINED UNPIPELINED PIPELINED

BURSTING NO BURSTING STREAMING (BURST)
NON TRI–STATE NON TRI–STATE TRI-STATE

SPLIT TRANSACTIONS LATENCY AWARE–
TRANSFERS

BRIDGING AHB →APB No AVALON →AHB
AVALON → TRISTATE

TRANSFERSIZES 8–128 BITS 8–32 BITS 8–32 BITS

TRANSFERCYCLES 1 OR MORE 2 1 OR MORE

TIMING SYNCHRONOUS SYNCHRONOUS SYNCHRONOUS

ASYNCHRONOUS2

WAIT–STATESSUPPORT YES NO YES, FIXED OR

PERIPHERAL–
CONTROLLED

OPERATING FREQUENCY USERDEFINED USERDEFINED USERDEFINED

1Recommended max = 256 Bits
2Asynchronous IP blocks could be connected to the bus
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5 Instruction Performance

In this section, the instruction cycle performance for each processor is evaluated. Since both processors
are RISC, almost every instruction take one cycle to execute. Some instructions have penalties associated
with their execution and takes several cycles to complete. In table6 below a summary of the instruction
performance can be seen.

Table 6: Instruction Cycle Performance

Instruction Type Cycles on LEON2 Cycles on NIOS II/f Penalties

MULTIPLY 1,2,4,5,35 1,5,11 NIOS II: LATE RESULT

DIVIDE 35 4-66 NIOS II: LATE RESULT

JUMP 2 3
DOUBLE LOAD 2 -
SINGLE STORE 2 -
DOUBLE STORE 3 -
ATOMIC LOAD/STORE 3 -
RET, CALLR 1 3
CALL 1 2
LOAD 2 ≥ 1 PIPELINE IS STALLED 3

STORE 3 ≥ 1
READ CONTROL REGISTER - 1 NIOS II: LATE RESULT

Regarding the NIOS II multiplier performance, it mostly depends on the hardware used, if the FPGA has dedicated
multipliers on–chip or not. If a instruction has a late result penalty, it means that the result is available two cycles
afterwards, if the result is needed in the next instruction. The penalty may depend on the lack of data forwarding in
the part of the pipeline which is associated with the instructions that have the specified penalty. If the pipeline has to
be flushed, it takes four cycles to complete.

Since the NIOS II does not have any dedicated double load or store instructions, dealing with data types
larger than a word will take at least twice as long time as the single load or store takes.

3The pipe line is stalled until the load is completed.
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5.1 Branch Delay Slot vs. Dynamic Branch Prediction

This section contains a short comparison of the different branch handling methods both processor cores
uses, respectively. The aim of a pipelined processor architecture is to keep the pipeline full of instructions
all the time. If not, the performance will decrease, by increasing the Cycle Per Instruction (CPI). When the
pipeline depth increases, the cost of a conditional branch will also increase, if the branch is taken.

Branch Delay Slot

The LEON2 uses the branch delay slot feature. A branch delay slot is a single cycle delay that comes
after a conditional branch instruction has begun execution.The compiler could insert a instruction in the
delay slot, that does not depend on the branch instruction, if it is impossible, a ”no operation” instruction
is inserted there. This feature improves performance by having the processor to execute other instructions
while waiting for the branch target and condition to be calculated.

Dynamic Branch Prediction

The NIOS II uses a dynamic branch prediction scheme, which is based on a 2 bit branch history table. By
using a dynamic predictor, it is possible to look at the outcome of earlier branches to determine whether or
not to take coming ones. The efficiency of a dynamic branch predictor depends not only on its precision,
but also on the cost of a branch, especially if the prediction was wrong and the pipeline has to be flushed,
the longer pipeline the bigger penalty. In section 3.3.3 the NIOS II branch prediction cycles can be seen.
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6 Quick Review

This section contains a quick summary of the configuration possibilities for both processors.

FEATURE LEON2 NIOS II/f

Integer Unit
ARCHITECTURE 32–BIT RISC 32–BIT RISC
ISA SPARC V8 NIOS II–ISA
CUSTOM INSTRUCTIONS Yes4 Yes
PIPELINE STAGES 5 6
ENDIANESS BIG L ITTLE

REGISTERFILE WINDOWED FLAT

NR OF GLOBAL REGISTERS 8 32
REGISTERS/ WINDOW 16 –
NR OF WINDOWS 2–32 –

TOTAL NR OF REGISTERS 40–520 32
BRACH HANDLING BRANCH DELAY SLOT BHT 5

FPU SUPPORT YES N/A
MMU Y ES N/A

Multiply Options
SIZE AND (LATENCY) 32 x 32 (1), 32 x 16 (2) 32 x 32 (1+2)

32 x 8 (4), 16 x 16 (4) 32 x 16 (5+2)
16 x 16 (5), ITERATIVE (35) 32 x 4 (11+2)

MAC Y ES6 N/A7

Divide Options
TYPE RADIX 2 RADIX 2
SIZE AND (LATENCY) 64/32 (35) 32/32 (4-66)8

Continues on next page.

4Could be added as a Co–Processor instruction
5Branch History Table; Dynamic prediction
616 x 16 multiplier and a 40 bit accumulator
7Could be implemented as a custom instruction
8The latency depends on the hardware used
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FEATURE LEON2 NIOS II/f

Cache Options
INSTRUCTIONCACHE

NUMBER OF SETS 1–4 1
SET SIZE 1–64 KBYTE 0.5-64 KBYTE

POSSIBLECACHE SIZES 1–256 KBYTE 0.5–64 KBYTE

L INE SIZE 16–32 BYTES 32 BYTES

WRITE POLICY STREAMING CRITICAL WORD FIRST

DURING LINE REFILL

REPLACEMENT POLICIES LRU,LRR,RANDOM N/A

DATA CACHE

NUMBER OF SETS 1–4 1
SET SIZE 1 – 64 KBYTE 0.5 – 64 KBYTE

POSSIBLECACHE SIZES 1 – 256 KBYTE 0.5 – 64 KBYTE

L INE SIZE 16 – 32 BYTES 4 BYTES

WRITE POLICIES WRITE–THROUGH, WRITE–BACK,
WRITE BUFFER WRITE–ALLOCATE

REPLACEMENT POLICIES LRU,LRR,RANDOM N/A

Supported Memory Interfaces
SRAM, SDRAM SRAM,SDRAM

PROM FLASH

MEMORY MAPPED I/O MEMORY MAPPED I/O

Supported System Interfaces
ETHERNET, JTAG ETHERNET, JTAG

RS232,PCI RS232,SPI,I2C,PCI

Software Tool Chain
COMPILER GCC 3.2.3 GCC 3.4.1
L IBRARY NEWL IB 1.12.0 NEWL IB 1.12.0

Supported OS’es
ECOS, µCLINUX µC/OS–II

SNAPGEAR L INUX µCLINUX , KROS
RTEMS RTOS NORTi,NUCLEUS PLUS

prKERNEL
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7 Development Tools

This section contains a presentation of the hardware and software tools which have been used to implement
each processor system on the same target FPGA.

7.1 Hardware

In this section the target hardware is presented.

Altera Cyclone Development Board

The development board which both processor systems have been executed on, is based on a Altera Cyclone
FPGA [14], since the NIOS II cannot be used on other FPGA’s than Alteras own. The board consists of the
following features:

FPGA:

Cyclone EP1C20F400C7
20060 LEs9

On-chip RAM: 29491210 Bits
Two PLL

Memories:

1 Mbyte SRAM
16 Mbytes SDRAM
8 Mbytes Flash
Compact Flash Interface

Interfaces:

10/100 Mbps Ethernet PHY/MAC
2 x Serial Ports (RS232)
Several Expansion Prototype Connectors
JTAG

Miscellaneous:

50 MHz Oscillator
Push–buttons
LEDs
7–Segment LEDs

9A LE is equal to a Xilinx LUT
1064 Blocks, Block Size: 128 x 36 Bits
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7.2 Software

In this section the different software tools are evaluated. The different program versions can be seen in
Appendix A.

7.2.1 LEON2

Very extensive configuration tool, all necessary details are available through it. E.g. multiplier sizes and
latencies, number of cache sets, set sizes, replacement policies and different memory controllers among
others. In order to run programs on the target hardware, the BCC [15], a GNU based cross–compiler system
has been used. It is based on the GNU GCC 3.2.3 compiler, and uses newLib [16] 1.12.0 as C library.

7.2.2 NIOS II

The configuration of a NIOS II based system is done through SOPC, which is a integrated part of Quartus
II™. SOPC – Good, but it would have been much better if the sizes and latencies of the arithmetic options
were available explicitly. Now it is like a ”black box” , you know that you get a hardware based multiplier
or divider, but you do not know its input and output sizes, features and latencies. Also the NIOS II uses
a GNU based tool chain with a Eclipse [17] based GUI. The compiler version is GNU GCC 3.4.1. The
newLib [16] 1.12.0 is used as the C library.

Compiler Comments

Due to the different compiler versions [18] each processor system uses, the NIOS II may take advantage of
the higher optimization level introduced, in the newer one.

7.3 Implementation

A few things have been done, based on the changes done by De Nayer Instituut [19] on the LEON2, to
make it run on the development board. Technology specific ram and the PLL were instantiated, and a new
port map was created. The compiling and mapping part of the LEON2 synthesis was done in Synplify Pro
8.0 and the place and route part was done in Quartus II™.

Concerning the NIOS II it was straight forward, all you had to do was to configure the system and then
do the synthesis and ”place and route” in Quartus II™. The resulting netlist was downloaded to the target
hardware through Quartus™. This was also done for the LEON2.

On LEON2, the benchmark programs were downloaded to the target hardware through GRMON [20],
which connects to the DSU and allows debugging of the system. On the NIOS II, the software downloading
was done through the provided IDE.
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8 Benchmarking

Benchmarking should be an objective, reproducible measure of performance, for example execution–speed
comparisons. It must be meaningful and test something relevant to the user. Benchmarks could also be used
to monitor performance changes during development. The benchmarks in this thesis work, only consists of
integer and emulated floating–point performance.

Two important questions should be asked of any benchmarking activity:
How accurately does the benchmark predict real–world performance?
How reliably can a comparison between competing processors be made?

8.1 Benchmarking considerations

When a set of benchmarks are to be executed on several microprocessor architectures, one must keep a few
things in mind, regarding;

1. Which Programming Language

2. Which Benchmark (Program) Version is Used

3. Which Tool Chain (Compiler, Library)

4. Which Optimization Level is Used

5. Which Hardware is Used and How the Processor Core is Configured

6. Which Processor Frequency

Regarding the benchmarks in this report, one must keep in mind that the NIOS II processor is optimized
with respect to both FPGA and development board used. There might be some features the LEON2 could
not utilize good enough on the FPGA or on the development board used.

In the following tests, all programs have been compiled with the GCC –O2 flag and the –msoft–float
flag. All maximum performance executables were compiled with their hardware multiplication and divide
specific flags, respectively. If some of these benchmarks are going to be executed on the same target hard-
ware, it is plausible that the results may differ by±1 %, since the processor behavior is not deterministic.
All benchmark sets have been executed on both processor cores at two frequencies; 25 MHZ and 50 MHz.
Two different frequencies was chosen to see how the execution times are affected when the frequency is
doubled. If the frequency is doubled the execution times are not always halved, depending on the new
timing criteria.
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When a comparison of two or more devices are to be done, one must be sure that the comparison is
relevant, you must be very careful of what you are going to compare. It is important to understand how
different features affect each other and how the performance is affected, both in a positive and a negative
manner.

In this case, regarding the minimum area configurations, each processor core have been configured
to be as small as possible, with respect to the number of LE’s and the total number of cache bits used.
Multiplication and division is emulated in software.

Concerning the maximum performance configurations, the idea was to use as much as possible of all
available resources. The multiplier and divider was chosen to give as good timing as possible and the num-
ber of cache bits which can be used is set to the maximum available on the FPGA.

It is important to keep in mind that benchmark performance will vary depending on the processor con-
figuration, implementation tools, targeted FPGA architecture , device speed grade, the software compiler
and library used.

8.1.1 Floating–point Emulation

Since both processor cores are intended to be used in embedded applications no floating–point unit (FPU)
is included by default. To be able to execute programs that contain floating–point arithmetic in the high–
level source code, the floating–point part has to be emulated. The compiler has to be informed about it
during compilation, by using the ”–msoft–float11” flag. The compiler then inserts a specified sequence of
integer instructions, which behaves like it was done by a FPU. In table7 below, a list of approximately
corresponding number of integer instructions can be seen. The numbers have been taken from the NIOS
II instruction set simulator, when a hardware based multiplier and divider were available. The numbers of
integer instructions on LEON2 may differ due to the difference in their instruction set.

Table 7: Floating–point operations and their corresponding number of integer instructions when emulated
in software.

FLOATING POINT OPERATION NR OF INTEGER INSTRUCTIONS NR OF CYCLES

ADDITION 350 600
SUBTRACTION 350 600
MULTIPLICATION 550 1300
DIVIDE 1550 2000

The numbers in table7 above shows that floating–point emulation takes roughly 50–200 times longer
compared to regular integer arithmetics. If no hardware multiplier or divider is available the number of
integer instructions will increase, since the multiplication and division instructions themselves have to be
emulated.

11A GNU GCC specific compilation flag
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8.2 The Different Benchmarks Used

In this section, the four different benchmarks used is presented.

8.2.1 Dhrystone

Dhrystone is a benchmark invented in 1984 by Reinhold P. Weicker. The benchmark was first published
in ADA, today the C version of the benchmark is mainly used. The current version of Dhrystone, version
2.1 was created in 1988 has been used to measure the integer performance on both processors. The origi-
nal purpose was to create a short benchmark program, representative of integer programming. Its code is
dominated by simple integer arithmetic, string operations, logic decisions and memory accesses, intended
to behave like a typical computing application. Most of the execution time is spent in library functions.

The Dhrystone result is determined by measuring the average time a processor takes to perform many
iterations of a single loop, containing a fixed sequence of instructions.
The output from the benchmark is the number of Dhrystones per second and the number of iterations of
the main loop per second.

8.2.2 Stanford

The Stanford suite is gathered by John Hennessy and modified by Peter Nye. The version of the suite used
is 4.2

The suite consists of three major program categories:

Recursion
Loop–intensive
Sorting algorithms

All four loop–intensive programs include multiplication, two of these includes floating–point arithmetics.

All programs perform a check to make sure each program will get the right output, the time spent do-
ing the check is included in the execution time.

The following ten programs are included:

Perm – Calculates permutations recursively
Towers – Solve the Towers of Hanoi problem
Queens – Solve the Eight Queens Problem fifty times
IntMm – Multiply two random integer matrices
Mm – Multiply two random real matrices
Puzzle – A Compute–bound program
Quick – Sort a random array using the Quicksort algorithm
Bubble – Sort a random array using the Bubblesort algorithm
Tree – Sort a random array using the Treesort algorithm
FFT – Calculate a Fast Fourier Transform

After the execution has finished, a kind of mean value is computed, one where all (eight) integer program
execution times are included (Non–floating composite) and a second where all ten execution times are
included (Floating composite)
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8.2.3 Paranoia

Paranoia is the name of a program written by William Kahan in the early 80’s. The program used in this
benchmark is version 1.4 and converted to C by David M. Gay and Thos Sumner.

Paranoia is designed to characterize floating–point behavior of computer systems.

Here is a part of the tests that Paranoia does:

– Small integer operations
– Search for radix and precision
– Check normalization and guard bits in +,− ,× and /
– Check if rounding is done correctly
– Check for sticky bit
– Tests if

√
X2 = X for a number of integers

If it will pass monotonicity
If it is correctly rounded or chopped

– Testing powersZi, for small Integers Z and i
– Search for underflow threshold and smallest positive number
– Testing powersZQ at four nearly extreme values
– Searching for overflow threshold and saturation
– It also tries to compute 1/0 and 0/0

When all tests have been done, Paranoia prints out a detailed result summary, which tells if the processor
fulfil the IEEE754 standard or if there were any failures in the implementation.

8.2.4 Control Application

Since Paranoia does not contain any time measuring, a floating–point program that measures the execution
time has been executed on both processors. the program is a kind of control application that does a lot of
floating–point calculations. This program reveals the performance of the soft–float part on each processor
core, both hardware and the software.
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9 Minimum Area

This section and section10 contains the third part of the thesis work. This section contains the ”Mini-
mum Area” configurations and the results of the benchmarks mentioned in section8.2. Each processor
configuration can be seen in section9.1below.

9.1 Processor Configurations

Each processor configuration can be seen in the table8 below. Additional info concerning the processors,
take a look in section6.

Table 8: Minimum Area Processor Configurations

PROCESSOR CORE LEON2 NIOS II
OPTION UNIT

CACHE

INSTRUCTIONCACHE

SIZE 1024 512 BYTES

ASSOCIATIVITY 1 1 NR OF SETS

CACHE L INES 32 16 LINES

BYTES / L INE 32 32 BYTES

SUB-BLOCK SIZE 1 - BIT / 4 BYTE WORD

TOTAL L INE SIZE 291 287 BITS

DATA CACHE

SIZE 1024 512 BYTES

ASSOCIATIVITY 1 1 NR OF SETS

CACHE L INES 32 128 LINES

BYTES / L INE 32 4 BYTES

SUB-BLOCK SIZE 1 - BIT / 4 BYTE WORD

TOTAL L INE SIZE 291 55 BITS

Memory Controller
SRAM 1 1 MBYTE

ALU
MULTIPLIER SOFTWARE12 SOFTWARE12 -
DIVIDER SOFTWARE12 SOFTWARE12 -

12Emulated in software
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Configuration Comments

All configurable options were chosen to consume as few gates and cache bits as possible. The multiplication
and division are emulated in software, it decreases the number of gates used, but the performance is affected
in a negative manner. The caches on both processors are direct mapped, since it has a simple implementation
and therefor less gates are being used. The memory system consists of 1 MB SRAM, which is enough to
the benchmarks that is going to be executed on them later on. These configurations have been at both
frequencies, 25 MHz and 50 MHz respectively.

9.2 Synthesis Results

In the table9 below, the synthesis results can be seen. The ”Total Mem bits”–section contains both cache
bits and the register file bits that each processor core utilizes. The number of LE’s used is without the
debug unit each processor core uses, respectively. The number inside the parenthesis is the percentage of
the maximum available option.

Table 9: Minimum Area Synthesis Results

PROCESSOR CORE LEON2 NIOS II LEON2 NIOS II
FREQUENCY 25 MHz 25 MHz 50 MHz 50 MHz

LE’ S 5189 (25 %) 2167 (10 %) 5259 (25 %) 2181 (10 %)
M4K BLOCKS13 10 (15 %) 10 (15 %) 10 (15 %) 10 (15 %)
TOTAL MEM BITS 34 688 (11 %) 13 872 (4 %) 34 688 (11 %) 13 888 (4 %)

Synthesis Result Comments

Concerning the LEON2 ”Total Mem Bits”, Synplify Pro™ and Quartus II™ reports different number of memory
bits used. In the table9 above the number used is that the Quartus II™ reports. The ”Mem bit” section contains the
memory bits used by the caches and the register file. As shown in table9, the LEON2 is almost two and a half times
bigger than the NIOS II core. The NIOS II core is vendor optimized with respect to the FPGA which have been used.
The difference in number of LE’s used, for each processor at the two different frequencies mostly depends on the the
timing criteria, which could be harder to fulfil with the same number of LE’s used.

13On–Chip RAM, Total 64 Blocks, Block size: 128 x 36 Bits
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9.3 Benchmarking

This section contains the benchmarking results and conclusions. As mentioned in section 8.1 all benchmark
sets have been executed in two frequencies, 25 MHz and 50 MHZ, respectively. It is important to notice
that the NIOS II caches are only 0.5Kbytes each in this ”Minimum Area” part of the complete benchmark
set, therefore the numbers in this section should not be taken at face value.

9.3.1 Dhrystone

In table10below, the Dhrystone results are shown.

Table 10: Dhrystone Results – Minimum Area

PROCESSOR CORE LEON2 NIOS II LEON2 NIOS II
FREQUENCY 25 MHz 25 MHz 50 MHz 50 MHz

1 ITERATION (MS) 68.2 69.8 33.4 34.9
DHRYSTONES/SEC 14 652 14 301 29 925 28 653
DHRYSTONES/SEC/MHZ 586 572 599 573

Dhrystone Result Comments

The bigger caches on the LEON2 shows that the performance impact on the execution time is roughly 4%
for such a big cache system compared to the NIOS II. Since the caches are small and despite the fixed
sequence of instructions, there will be a lot of accesses to the main memory which will affect the execution
time in a negative manner. The frequency doubling increased the performance on LEON2, but the NIOS II
has almost the same performance at both frequencies.
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9.3.2 Stanford

The Stanford benchmark set was executed on both processor cores at two frequencies. The results can be
seen in table11below. In this benchmark set, the execution times should be as short as possible.

Table 11: Stanford Results – Minimum Area

PROCESSOR CORE LEON2 NIOS II LEON2 NIOS II
FREQUENCY 25 MHz 25 MHz 50 MHz 50 MHz

PROGRAM UNIT

PERM 66 80 33 40 ms
TOWERS 116 150 66 82 ms
QUEENS 50 52 33 26 ms
INTMM 316 707 150 345 ms
MM 3633 5281 1816 2727 ms
PUZZLE 483 498 266 249 ms
QUICK 66 120 33 60 ms
BUBBLE 84 120 50 60 ms
TREE 500 198 250 98 ms
FFT 3417 5003 1734 2687 ms

COMPOSITES

NONFLOATING 270 279 137 140
FLOATING 2848 4043 1397 2129
COMPOSITESUM 3118 4322 1534 2269

Since the Stanford benchmark set contains various types of applications, a graphical overview was made
to make it easy to compare their execution times, it can be seen in figure3 on the next page.
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Figure 3: Minimum Area Stanford Execution Times

In figure3 the integer program times are to the left and the emulated floating–point programs (Mm and
FFT) times to the right. Notice the different time scales.

Stanford Result Comments

As mentioned before, the NIOS II caches are only 0.5 Kbytes each. Regarding the first three programs:
Perm, Tower and Queens,the LEON2 is the fastest due to its windowed register file, which speeds up
execution of programs containing a few function calls, compared with the flat register file that the NIOS II
uses.

Concerning the Intmm and Puzzle results, when two matrices are to be multiplied or dealing with
matrices and loop–intensive algorithms in general, will cause a lot of both instruction and data transactions.
This will stress both caches, the memory system and the system bus quite a lot. If the processor is equipped
with a branch predictor, its accuracy will also affect the execution times, especially when it predicts wrong.

There is a noticeable execution difference concerning the Tree-program, which includes recursion,
iteration and selection. The recursive part causes register window overflow on LEON2, by spending much
time in the trap routine, which has a negative impact on the performance. Every time the same function is
called after the first overflow has occurred, the trap function will be executed. The bigger the tree is, the
more time is spent in the trap routine. Deeply recursive algorithms is a disadvantage for a processor with a
windowed register file compared with a processor that uses a flat register file.
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The equal execution times of the sorting algorithms; Quicksort and Bubblesort on the NIOS II, probably
depends on the small caches. Since the array contains 5000 random numbers, combined with a data cache
of only 512 bytes. This combination will cause a high load on the memory system and the system bus as
well, which will increase the execution times.

Concerning the floating–point programs Mm and FFT, where the floating–point arithmetics have to be
emulated in software, the LEON2 execution times are roughly 30 % shorter. One obvious reason is of course
the cache size difference. But to try to find out other possible reasons, the assembly code from the two
compilers were compared and evaluated. The assembly code contained a lot of load, branch and multiply
instructions and a emulated floating–point multiplication or divide will need some extra instructions since
they both have to be emulated due to no hard multiplier nor divider is available in these configurations.
All load instructions will stall the NIOS II pipeline, due to its load delay of two cycles. The small cache
system causes a lot of replacement conflicts, then there will be a higher load on the system memory and
on the system bus as well. In this program, the branch handling capabilities has a impact on the execution
performance, especially on the NIOS II, if its predictor predicts wrong, the pipeline has to be flushed.
Pipeline flushing could be time consuming, if it happens too often, since the execution has to restart from
the instruction that comes after the branch instruction.

Finally, their non–floating composite values are quite equal, despite the cache size differences, but the
difference concerning the floating–point composite is approximately 30 %, in this case, the cache sizes and
the write buffers that LEON2 uses speeds up the execution and the load delay as mentioned above affects
the execution times on the NIOS II.
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9.3.3 Control Application

To find out how good each processor is when dealing with soft–float operations and as a complement to the
floating–point programs in the Stanford benchmark set, the control application has been executed on both
processors. This application reveals more about their floating–point performance. The results can be seen
in table12below.

Table 12: Control Application Results – Minimum Area

PROCESSOR CORE LEON2 NIOS II LEON2 NIOS II
FREQUENCY 25 MHz 25 MHz 50 MHz 50 MHz

PROGRAM UNIT

CONTROL APPLICATION 487 1250 251 620 SEC

Control Application Result Comments

Floating–point emulation in software , as mentioned in section8.1.1 causes a lot of instructions to be
executed by the integer part of the processor. In table12 above, the LEON2 is almost 2.5 times faster than
the NIOS II. This program includes more instructions than the floating–point programs included in the
Stanford benchmark set do. The combination of many instructions and a relatively small cache system will
cause a high load on each processor and on the cache and memory system as well. In this situation, the data
handling capabilities of the processor cores are revealed. In this case the LEON2 is the better one.

9.4 Minimum Area Conclusions

Concerning the results in this ”Minimum Area” section, their performance are quite equal while comparing
their integer performance. In the floating–point part of the benchmarks the performance on the LEON2 is
the better one. The difference may depend on the bigger cache system and the write buffers that LEON2
uses.

A relatively small cache combined with multiplication and divide emulated in software while executing
a program like the Control Application, will reveal the total system performance, then the processor has to
work with a high load during a longer time.
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10 Maximum Performance

This section contains the last part of the thesis work. This part contains the ”Maximum Performance”
configurations and the results of the benchmarks mentioned in section8.2.

10.1 Processor Configurations

Each processor configuration can be seen in the table13below. Additional info concerning the processors,
take a look in section6

Table 13: Maximum Performance Processor Configurations

PROCESSOR CORE LEON2 NIOS II
OPTION UNIT

Cache
INSTRUCTIONCACHE

ASSOCIATIVITY / SET SIZE 2 / 4096 1 / 8192 NR OF SETS / KBYTES

CACHE SIZE 8192 8192 BYTES

REPLACEMENT POLICY LRU N/A
CACHE L INES 256 256 Lines
BYTES / L INE 32 32 Bytes
SUB-BLOCK SIZE 1 - Bit/ 4 Byte Word
TOTAL L INE SIZE 294 278 BITS

DATA CACHE

ASSOCIATIVITY / SET SIZE 2 / 4096 1 / 8192 NR OF SETS/ KBYTES

CACHE SIZE 8192 8192 BYTES

REPLACEMENT POLICY LRU N/A
CACHE L INES 256 2048 LINES

BYTES / L INE 16 4 BYTES

SUB-BLOCK SIZE 1 - BIT / 4 BYTE WORD

TOTAL L INE SIZE 155 55 BITS

Memory Controller
SRAM 1 1 MBYTE

ALU
MULTIPLIER SIZE (LATENCY) 16 x 16 (5) 32 x 4 (11+2) -
DIVIDER SIZE (LATENCY) 64/32 (35) 32 / 32 (N/A) -

Configuration Comments

Both processor cores have be configured to achieve as high performance as possible. The cache sizes has
increased, multiplication and divide is performed in hardware. The size of the LEON2 multiplier was set
to 16 x 16, with a latency of 5 cycles, which gained the best timing. Regarding the data cache ”bytes / line”
option, on the LEON2, it was chosen to 16, since it will improve the associativity, but it consumes more
gates which is not a problem on this FPGA. Concerning the replacement policy, the LRU and the random
algorithms were tested, they performed quite equal, but the LRU had the best performance in the Control
Application part.

The NIOS II configuration options are limited to the FPGA used, since it does not have any dedicated
multiplier on–chip and there was only one LE based multiplier available. The cache sizes are the only part
which is configurable.
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10.2 Synthesis Results

The synthesis results can be seen in table14 below. The LE part of the table contains the processor core,
timer, UART and the memory controller. The debug unit which each processor uses is not included in the
numbers. The number inside the parenthesis is the percentage of the maximum available option.

Table 14: Maximum Performance Synthesis Results

PROCESSOR CORE LEON2 NIOS II LEON2 NIOS II
FREQUENCY 25 MHz 25 MHz 50 MHz 50 MHz

LE’ S 7389 (36 %) 3057 (15 %) 7554 (37 %) 3058 (15 %)
M4K BLOCKS14 42 (65 %) 43 (67 %) 42 (65 %) 43 (67 %)
TOTAL MEM BITS 167 168 (56 %) 158 976 (53 %) 167 168 (56 %) 158 976 (53 %)

Result comments

Concerning the LEON2 ”Total Mem Bits”, Synplify™ and Quartus II™ reports different numbers of memory bits
used. In the table above the number used is that the Quartus II™ reports. The ”Total Mem Bits” includes both
instruction and data cache bits and the register file. As shown in the table14 above, the LEON2 uses more than two
times more LE’s than the NIOS II, where the LEON2’s multiplier, divider, two cache controllers and the windowed
register file consumes a lot of LE’s compared to the vendor optimized NIOS II. The difference between the number of
LE’s used by each processor at the two different frequencies is because of the new timing criteria to fulfil, which may
affect the place and route part of the synthesis chain.

14On–Chip RAM, Total 64 Blocks, Block size: 128 x 36 Bits
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10.3 Benchmarking

This section contains the benchmark results and conclusions for the maximum performance part of the
work. Both processor configurations have been executed in two frequencies, 25 MHz and 50 MHz, respec-
tively.

10.3.1 Dhrystone

In table15 below, the execution result of Dhrystone on both processor cores at both frequencies can be
seen.

Table 15: Dhrystone Results – Maximum Performance

PROCESSOR CORE LEON2 NIOS II LEON2 NIOS II
FREQUENCY 25 MHz 25 MHz 50 MHz 50 MHz

1 ITERATION (MS) 26.8 23.6 13.1 11.8
DHRYSTONES/SEC 37 383 42 299 76 433 85 030
DHRYSTONES/SEC/MHZ 1495 1692 1529 1701

Dhrystone Result Comments

The results are shown in table15above. A processor system with a big cache and a program where the main
part is a loop with a fixed sequence of instructions the cache hit rate will go towards 100 %. Increasing the
cache size will not give a better result in this benchmark. Requiring no main memory access thus becoming
more representative of the processor, rather than system performance. If the results are compared with
the execution times in the minimum area section, one can see that the cache impact on integer programs
are enormous, almost three times faster, see table10. One interesting question is: ”How much does the
compiler affect the execution times?” No assembly code study has been done in this section, since it is a
very complex and time consuming task to evaluate the compiler efficiency.
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10.3.2 Stanford

The Stanford benchmark set has been executed on both processors, at both frequencies. The results can be
seen in table16below. The shorter execution times the better performance is achieved.

Table 16: Stanford Results – Maximum Performance

PROCESSOR CORE LEON2 NIOS II LEON2 NIOS II
FREQUENCY 25 MHz 25 MHz 50 MHz 50 MHz

PROGRAM UNIT

PERM 66 79 33 39 ms
TOWERS 100 95 50 47 ms
QUEENS 50 49 33 25 ms
INTMM 50 67 17 33 ms
MM 1183 1338 583 667 ms
PUZZLE 400 384 184 192 ms
QUICK 50 61 34 30 ms
BUBBLE 67 78 33 39 ms
TREE 367 105 183 54 ms
FFT 1483 1543 733 772 ms

COMPOSITES

NONFLOATING 184 125 93 62
FLOATING 1188 1201 589 600
COMPOSITESUM 1372 1326 676 662

In order to make the comparison of the Stanford benchmark set easier, a graphical overview has been
made, it can be seen in figure4 on the next page.
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Figure 4: Maximum Performance Stanford Execution Times

In figure4 the integer program times can be seen to the left and the emulated floating–point times to the
right. Notice the different time scales.

Stanford Result Comments

When comparing the results of the first three programs, Perm, Towers and Queens, with the result of same
three programs in the minimum area section9.3.2, the difference is not as big as one may assume. It is
because of the caches have not been filled up yet and they do not take advantage of the multiplier nor
divider which is included in hardware in this configuration.

Regarding the next seven programs: Intmm, Mm, Puzzle, Quick, Bubble Tree and FFT, the difference is
obvious, since they all contain a lot of data to be processed, where the bigger cache system is a advantage.
Concerning the matrix multiplication programs (Intmm and Mm) and Puzzle, which are loop intensive,
the speed up is caused by the hardware multiplier and the bigger caches, where the temporal and spatial
locality are improved, then it is a bigger possibility that the desired data or instruction already is in the
caches, respectively, and no fetching from the main memory is needed.

Their multiplier performance decreases the execution times almost three times. Especially the NIOS
II multiplier performs really good, even if it has such a big latency compared to the LEON2 multiplier.
(Thirteen cycles compared with five on the LEON2).

37



Comparison of Synthesizable Processor Cores 10 MAXIMUM PERFORMANCE

Regarding the sorting algorithms: Quick, Bubble and Tree, which also takes advantage of the big cache
system the performance has increased. The equal execution times on the Quick – and Bubble sort algo-
rithms on LEON2 at 50 MHz, probably depends on the data which the random function generates, other-
wise the Quicksort algorithm would be the fastest one, as it is on the NIOS II and on the LEON2 in the
”Minimum Area” section.

The Tree sort algorithm is deeply recursive, which causes register window overflow on the LEON2,
most of the execution time is spent in the trap routines, but the NIOS II handles the recursive part very
good, indeed. The difference in the FFT program is only about 4 %, one reason could be the difference in
the multiplier latency, since it is not as multiplication intensive as the Mm program, where the difference
is about 10 %.

Overall, when comparing the composite sum, the NIOS II is roughly 30 % better. The cache system
is big enough to contain all necessary instructions and data, since a majority of the programs are loop–
intensive integer programs. The LEON2 on the other hand has the best floating–point performance, but not
as big as in the minimum area section.
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10.3.3 Control Application

As a complement to the floating–point programs in the Stanford benchmark set, the Control Application
was executed to reveal emulated floating–point performance differences. In table17below the result of the
execution of the Control Application can be seen.

Table 17: Control Application Results – Maximum Performance

PROCESSOR CORE LEON2 NIOS II LEON2 NIOS II
FREQUENCY 25 MHz 25 MHz 50 MHz 50 MHz

PROGRAM UNIT

CONTROL APPLICATION 200 293 107 141 SEC

Control Application Result Comments

This time, the floating–point emulation performance has increased, by beneficiation of the bigger cache
system and the hardware based multiplier and divider used. When a more computing intensive program is
executed, it will reveal a more realistic work load, on the processor as well as on the memory system. As
the numbers in table17 shows, the LEON2 performs about 30% better than the NIOS II. The difference
could depend on the multiplier latency,which is six more cycles on the NIOS II and the load delay, which
is one cycle on LEON2 and two cycles on the NIOS II.

10.4 Maximum Performance Conclusions

As one could see in the result sections above, the execution times has decreased, compared with the ”Mini-
mum Area” results. When a hard multiplier is available on–chip it improves the execution speed, compared
to software emulation.

When ”small programs” like the Stanford benchmark set is executed, a bigger cache system in not
always a advantage. If it is too big, it will introduce some overhead by checking empty places, while
accessing the caches. If the cache is to small there will be replacement conflicts, which will decrease the
execution performance, since the data and the instructions have to be fetched from the main memory.

In loop intensive applications, the performance will be improved, as seen in the results above, since
the temporal and spatial locality in the bigger caches will be improved, then data and instructions does not
have to be fetched from the main memory that often.
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11 Paranoia

In this section the results from floating–point test program Paranoia can be seen.

11.1 Results – NIOS II

When Paranoia was executed on the NIOS II, the program reported one failure in the multiplication part of
the test.

A part of the output from Paranoia on NIOS II:

Multiplication is neither chopped nor correctly rounded.
Sticky bit used incorrectly or not at all.

The number of FLAW 15s discovered = 1.
The arithmetic diagnosed seems Satisfactory though flawed.

Possible Failure Sources

The failure is probably caused by the code generation in the soft–float part of the compiler. There where no
error when the program was executed when it was compiled without optimizations. But the performance
will drop by a certain amount, without optimizations which is not satisfactory. Especially when it will be
used to do a lot of emulated floating–point calculations.

Result without optimizations

No failures, defects nor flaws have been discovered.
Rounding appears to conform to the proposed IEEE standard P754,
except for possibly Double Rounding during Gradual Underflow.
The arithmetic diagnosed appears to be Excellent!

11.2 Results – LEON2

When Paranoia was executed on the LEON2 neither failures nor flaw’s were detected.

A part of the output from Paranoia on LEON2:

No failures, defects nor flaws have been discovered.
Rounding appears to conform to the proposed IEEE standard P754,
except for possibly Double Rounding during Gradual Underflow.
The arithmetic diagnosed appears to be Excellent!

15FLAW: lack(s) of guard digits or failure(s) to correctly round or chop
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12 Summary

Analyzing synthesizable processor cores performance is not an obvious task, since there are several things
depending on each other. The hole synthesis chain which is complex, begins with the processor VHDL
source code and ends up with the netlist after the place and route part has finished. All steps included in the
synthesis affects the overall system performance, but the major impact of the final performance is probably
depending on the software compiler and the application that is going to be executed on the target.

Syntesizable processor cores are in general configurable in some way. Mainly, both the instruction and
the data caches sizes and the multiplier size and latency could be customized, since they affect the overall
performance most. Another feature they have is that hardware migration is possible, which make them
reusable and flexible. A disadvantage is that some of the processor cores are software tool dependent and
hardware dependent, as well. Which will force one to use certain software tools and FPGA’s.

In the ”Minimum Area” section, each processor core has been configured to utilize as few gates and cache
bits as possible. To save gates, multiplication and divide was emulated in software. Regarding the results
of the benchmarking, their integer performance are quite equal, despite the cache size differences. When
dealing with emulated floating–point applications, LEON2 is faster, by taking advantage of its write buffers
and the bigger cache system. In the NIOS II case where the load delay, which is two cycles affects the per-
formance negatively, by stalling the pipeline. If a stall occurs many times, especially when dealing with
floating–point emulation combined with a relatively small cache system, its performance will drop by a
certain amount.

In the ”Maximum Performance” section, where the aim was to configure both processor cores to achieve
as high performance as possible. Multiplication and divide is performed in a hardware based multiplier and
divider, respectively. Their sizes and latencies have been configured to gain as high overall performance as
possible. The NIOS II has the best integer performance, especially on Dhrystone, which contains a fixed
sequence of instructions, where the hole sequence more or less fits in the instruction and data caches, re-
spectively.

The bigger cache system improves the performance, by improving the cache hit rate, which on such small
applications, like Dhrystone and Stanford is almost 100 %, on both processors. Then the benchmark results
will be representative of integer performance rather than the overall system performance. In the emulated
floating–point application part, LEON2 once again is the fastest one. Its data handling capabilities is better
than on the NIOS II

41



Comparison of Synthesizable Processor Cores 12 SUMMARY

By respect to their sizes, it is noticeable that the NIOS II core is vendor optimized and the so- urce is
encrypted, which is a limit to portability when it only could be used in Altera FPGA’s. The LEON2, which
has no vendor restriction, fits well in a low–end FPGA like the one used in this work, even if it is not
optimized with respect to a certain technology.

To achieve best performance when dealing with embedded systems, the hardware and software have to
be designed together. When having a FPGA based platform, the whole system can be re–configured, by
respect to the FPGA capability, to change characteristics if its performance is not good enough.

With respect to their configurablity the LEON2 is the best, by providing multi set cache system with con-
figurable sizes and ”bytes/line” and a variety of cache replacement policies and multipliers. On the NIOS
II, only the cache sizes are configurable, the multiplier option depends on the target FPGA used. One NIOS
II advantage is that it supports custom instructions, which could speed up applications, where a certain task
is dominating.

42



Comparison of Synthesizable Processor Cores 13 APPENDIX

13 Appendix

Appendix A

Program Versions

This section contains the different development tool versions used in this work.

Provider Program Version

SYNPLICITY INC. SYNPLIFY PRO VERSION8.0, BUILD 189R,BUILD JAN 17, 2005
ALTERA QUARTUS II 4.2 BUILD 157 12/07/2004 SJ FULL VERSION

GAISLER RESEARCH GRMON 1.0.6 PROFESSIONALEDITION

Appendix B

Stanford Weight Values

The Non–Floating point composite is calculated as the sum of the execution time for each program multi-
plied by each program’s weight value, and divided by the number of integer programs (eight of ten). The
floating point composite is calculated in the same way but the values of all ten programs are included.

Program Weight

PERM 1.75
TOWERS 2.39
QUEENS 1.83
INTMM 1.46
MM 2.92
PUZZLE 0.50
QUICK 1.92
BUBBLE 1.61
TREE 2.50
FFT 4.44

43



Comparison of Synthesizable Processor Cores

14 References

[1] LEON2 Processor Overview
Url: http://www.gaisler.com/products/leon2/leon.html

[2] Gaisler Research, Första L̊anggatan 19 Gothenburg, Sweden
Url: http://www.gaisler.com

[3] NIOS II Processor Overview
Url: http://altera.com/products/ip/processors/nios2/cores/ni2-processorcores.html

[4] Altera Corporation, 101 Innovation Drive,
San Jose, California 95134, USA
Url: http://www.altera.com

[5] The GNU LGPL License form
Url: http://www.gnu.org/copyleft/lesser.html

[6] The LEON2 Full Source Code
Url: http://www.gaisler.com/products/leon2/leondown.html

[7] NIOS II Licensing Info
Url: http://www.altera.com/products/ip/processors/nios2/features/ni2-qand a.html

[8] The LEON2 Processor User’s Manual XST Edition Version 1.0.27 January 2005

[9] The SPARC Architecture Manual Version 8, Revision SAV080SI9308
SPARC International Inc. 535 Middlefield Road, Suite 210
Menlo Park, CA 94025, 415–321–8692
Url: http://www.sparc.org

44



Comparison of Synthesizable Processor Cores

[10] AMBA AHB and APB Specification Rev 2.0, ARM IHI0011A, 1999
Url: http://www.arm.com

[11] The OpenCores Ethernet MAC
Url: http://www.opencores.com/projects.cgi/web/ethmac/overview

[12] The NIOS II Processor Reference Handbook NII5V1-1.2 September, 2004

[13] The Avalon Bus Specification, Reference Manual version 2.3, July 2003

[14] Additional Development Board Info
Url: http://altera.com/products/devkits/altera/kit-nios1c20.html

[15] BCC, A GNU based Cross–Compiler System, Used by LEON2
Url: http://www.gaisler.com/doc/libio/bcc.html

[16] Newlib, a C Library Supported by Redhat
Url: http://sources.redhat.com/newlib/

[17] The Eclipse IDE GUI
Url: http://www.eclipse.org

[18] The GNU GCC Release History and Change Logs
Url: http://gcc.gnu.org/releases.html

[19] LEON2 Changes Done by De Nayer Instituut, Belgium
Url: http://emsys.denayer.wenk.be/?project=empro&page=cases&id=14#ls

[20] GRMON, A Combined Debug Monitor and Simulator for LEON Processors
Url: http://www.gaisler.com/products/grmon/grmon.html

45


	thesis10_nomain.pdf
	thesis10_nomain.pdf
	Initial Architecture Analysis
	LEON2
	System Overview
	Instruction Set Architecture
	Integer Unit
	Pipeline Architecture
	Multiply and Divide Options

	Cache System
	Instruction Cache
	Data Cache

	Internal Busses
	AMBA
	AHB Bus
	APB Bus

	Memory Interfaces
	SRAM
	PROM
	I/O Devices
	SDRAM

	System Interfaces
	UART
	Ethernet MAC
	PCI

	Additional Units and Features
	Debug Support Unit
	Trace Buffer
	Timers
	Watchdog
	Interrupt Controller
	Parallel I/O Port
	Power-down

	Co--Processors
	FPU
	GRFPU
	Generic Co--processor

	Memory Management Unit
	Translation Look-aside Buffer


	NIOS II
	System Overview
	Instruction Set Architecture
	Integer Unit
	Pipeline Architecture
	Multiply and Divide Options
	Branch Prediction

	Cache System
	Instruction Cache
	Data Cache

	Internal Busses
	Avalon On--chip Bus

	Memory Interfaces
	SDRAM
	DMA
	CFI
	EPCS

	System Interfaces
	UART
	JTAG UART
	SPI
	Parallel I/O Port

	Additional Units
	JTAG Debug Module
	Exception Controller
	Interrupt Controller


	Bus Comparison
	Instruction Performance
	Branch Delay Slot vs. Dynamic Branch Prediction

	Quick Review
	Development Tools
	Hardware
	Software
	LEON2
	NIOS II

	Implementation

	Benchmarking
	Benchmarking considerations
	Floating--point Emulation

	The Different Benchmarks Used
	Dhrystone
	Stanford
	Paranoia
	Control Application


	Minimum Area
	Processor Configurations
	Synthesis Results
	Benchmarking
	Dhrystone
	Stanford
	Control Application

	Minimum Area Conclusions

	Maximum Performance
	Processor Configurations
	Synthesis Results
	Benchmarking
	Dhrystone
	Stanford
	Control Application

	Maximum Performance Conclusions

	Paranoia
	Results -- NIOS II
	Results -- LEON2

	Summary
	Appendix
	References



