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Optimal, Multiplierless Implementations of the Discrete Wavelet Transform for Image

Compression Applications

Kishore A. Kotteri

(ABSTRACT)

The use of the discrete wavelet transform (DWT) for the JPEG2000 image compression

standard has sparked interest in the design of fast, efficient hardware implementations of the

perfect reconstruction filter bank used for computing the DWT. The accuracy and efficiency

with which the filter coefficients are quantized in a multiplierless implementation impacts

the image compression and hardware performance of the filter bank. A high precision rep-

resentation ensures good compression performance, but at the cost of increased hardware

resources and processing time. Conversely, lower precision in the filter coefficients results

in smaller, faster hardware, but at the cost of poor compression performance. In addition

to filter coefficient quantization, the filter bank structure also determines critical hardware

properties such as throughput and power consumption.

This thesis first investigates filter coefficient quantization strategies and filter bank struc-

tures for the hardware implementation of the biorthogonal 9/7 wavelet filters in a tradi-

tional convolution-based filter bank. Two new filter bank properties—“no-distortion-mse”

and “deviation-at-dc”—are identified as critical to compression performance, and two new

“compensating” filter coefficient quantization methods are developed to minimize degrada-

tion of these properties. The results indicate that the best performance is obtained by using

a cascade form for the filters with coefficients quantized using the “compensating zeros”

technique. The hardware properties of this implementation are then improved by developing

a cascade polyphase structure that increases throughput and decreases power consumption.

Next, this thesis investigates implementations of the lifting structure—an orthogonal struc-

ture that is more robust to coefficient quantization than the traditional convolution-based

filter bank in computing the DWT. Novel, optimal filter coefficient quantization techniques

are developed for a rational and an irrational set of lifting coefficients. The results indicate



iii

that the best quantized lifting coefficient set is obtained by starting with the rational coef-

ficient set and using a “lumped scaling” and “gain compensation” technique for coefficient

quantization.

Finally, the image compression properties and hardware properties of the convolution and lift-

ing based DWT implementations are compared. Although the lifting structure requires fewer

computations, the cascaded arrangement of the lifting filters requires significant hardware

overhead. Consequently, the results depict that the convolution-based cascade polyphase

structure (with “z1-compensated” coefficients) gives the best performance in terms of image

compression performance and hardware metrics like throughput, latency and power con-

sumption.
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Chapter 1

Introduction

1.1 Motivation

The Discrete Wavelet Transform (DWT) is the transform of choice at the heart of recent

image compression algorithms. Adopted by the JPEG2000 image compression standard [1],

it significantly outperforms algorithms based on other transforms, such as the discrete cosine

transform, in terms of objective metrics as well as perceptual image quality [2]. The success

of the DWT stems from its ease of computation and its inherent decomposition of an image

into non-overlapping subbands that enables the design of efficient quantization algorithms

and allows for incorporation of the human visual system. A DWT based image codec is a

good choice for applications such as remote exploration, urban search and rescue operations

and satellite imaging. These applications require transmission of still images from remote

image acquisition devices to base stations. Images are compressed after acquisition to reduce

the number of data bits that need to be transmitted back to the base station over a wired

or wireless communication channel. A good hardware codec employed in these applications

will have: low latency and high throughput if real-time operation is desired, low power

consumption if working in an untethered, battery-driven environment, small hardware size,

and most importantly, high fidelity for the reconstructed image after compression.

1
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This thesis focuses on a field programmable gate array (FPGA) implementation of a DWT

codec for the biorthogonal 9/7 wavelet. This wavelet has been shown to possess properties

favorable for image compression; part I of the JPEG2000 standard specifies this wavelet for

lossy compression. The DWT is typically computed using a perfect reconstruction (PR)

filter bank. The performance of an FPGA implementation of the filter bank depends on the

following two implementation design issues:

1. the filter bank structure and filter coefficient quantization; and,

2. the hardware architecture used to implement the filter bank structure.

The filter bank structure determines hardware metrics such as throughput and latency while

filter coefficient quantization impacts the signal processing properties of the filter bank and

determines its image compression performance. The hardware architecture of the filter bank

determines properties such as latency and power consumption. This thesis investigates the

first issue of filter bank implementation, namely, filter bank structure and coefficient quan-

tization.

The image compression performance of the filter bank implementation critically depends

on the two perfect reconstruction (PR) conditions: the no-distortion condition and the no-

aliasing condition. When the irrational coefficients of the biorthogonal 9/7 wavelet filters are

implemented in a floating point format, both PR conditions are satisfied and the filter bank

gives perfect reconstruction under lossless compression. For fast hardware implementation

on an FPGA, the filter coefficients are implemented in a multiplierless manner after repre-

senting them as sum-and-difference-of-powers-of-two (SPT). Multiplication is then achieved

by shifting and adding. Thus, the filter coefficients have to be quantized, i.e. approximated

by fixed point SPT representations. The number of non-zero terms in the SPT representation

of a coefficient, denoted by T , provides an estimate of the hardware cost associated with im-

plementing the coefficient. This quantization of the filter coefficients alters the no-distortion

PR condition and, consequently, image compression performance is affected.
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In general, the more non-zero terms (i.e. large T ) used to represent the filter coefficients,

the closer the quantized filter coefficients are to the unquantized coefficients, and the closer

the quantized compression performance is to the unquantized performance. However, more

non-zero terms means higher hardware cost. Conversely, fewer non-zero terms means lower

hardware cost, but worse compression performance. Thus there is a trade-off between hard-

ware cost and compression performance.

The filter bank structure also influences the performance of the filter bank. Cascade filter

structures are more immune to coefficient quantization than direct structures and, in general

result in better compression performance for the same T . Furthermore, polyphase structures

operate at higher clock speeds than non-polyphase structures and hence result in better

throughput. The lifting structure—an alternative to the traditional filter bank structure—

offers the advantage of an orthogonal implementation that is more robust to coefficient

quantization.

This thesis studies FPGA implementations of three filter bank structures: traditional non-

polyphase structures, traditional polyphase structures, and lifting structures. All three

structures are evaluated in terms of compression performance (using peak signal-to-noise

ratio—PSNR) and various hardware metrics. For each structure, optimal quantized val-

ues are found for the filter coefficients. These coefficients enable the implementation of a

fast, multiplierless DWT codec that generates the best possible PSNR performance for the

given structure. The resulting comprehensive performance evaluation allows optimal choices

for a biorthogonal 9/7 DWT implementation to be made based on the needs of the given

application.

1.2 Previous Work

The basic issue in the design of a single multiplierless filter is the quantization of the ideal,

real-valued coefficients as SPT. This must be accomplished while limiting the overall amount
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of hardware, measured in terms of T (the total number of SPT terms in all of the quantized

coefficients). Previous work in this area poses the problem as an optimization problem.

Traferro et. al. use tabu search, optimizing the absolute error in magnitude of frequency

response, weighted to favor particular frequency bands [3]. Lim et. al. use a measure

of the sensitivity of the frequency response of a filter to a particular coefficient to decide

how many of the T total terms to allocate to each individual coefficient, and then use an

integer-programming algorithm [4]. Other optimization techniques such as mixed-integer

linear programming [5, 6] are also used.

In the DWT, a filter bank is required rather than a single filter. Now the properties of the

filter bank—and not the properties of a single filter—must be preserved after quantization.

Mao et al. develop a method for the design of multiplierless perfect reconstruction FIR

filter banks, but their method, which focuses on achieving low system delay, places no con-

straint on the amount of resulting hardware [7]. Akansu develops a method for the design

of multiplierless perfect reconstruction quadrature mirror filters (QMFs), using quadratic

programming to maximize the energy compaction performance [8]. Chen et al. propose

an optimal T allocation scheme for finding multiplierless transform approximations; they

employ a quasi-coordinate descent algorithm to minimize the mean-squared-error between

the unquantized and quantized transform outputs. They illustrate their method using the

discrete cosine transform [9]. Usevitch and Betancourt [10] develop conditions on the signal

bit widths for fixed-point filter bank implementations so that the no-aliasing condition is

met. In addition to no-aliasing, this thesis also addresses the no-distortion condition that is

crucial to the quality of the compressed image. Kim and Li [11] address lossy and lossless

image compression using biorthogonal wavelets with dyadic, rational filter coefficients. Al-

though their methods are efficient from the hardware perspective, they cannot accommodate

wavelet filters whose coefficients are not expressed as dyadic rational numbers; for example,

their procedure could not implement the biorthogonal 9/7 wavelet filter.

Adam et. al. and Cheng et. al. seek to replace the original, real-valued 9/7 coefficients with

rational or dyadic coefficients that are easier to implement in hardware [12, 13]. However,
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these new wavelets do not have the superior image compression properties of the biorthogonal

9/7 wavelet, and result in lower PSNR values for compressed images. Unlike this previous

work in filter bank design, this thesis focuses on how best to implement any given biorthog-

onal, infinite-precision FIR filter bank in a limited amount of fixed-point, high-speed digital

hardware such that the filter bank properties are minimally impacted. The design process is

driven by the perfect reconstruction requirements, rather than any optimization technique.

The lifting scheme [14, 15, 16] was developed by Sweldens as a technique to construct new

wavelets and factor existing wavelets into smaller building blocks. Since then, this method

has found favor for hardware implementations thanks to fewer required computations and the

ability to perform in-place computations. Factorization of the biorthogonal 9/7 wavelets [17]

results in six irrational lifting coefficients, that have to be quantized as SPT for hardware

implementation. Tay and Guangjun et. al. show that rational coefficients can be used

in place of the irrational coefficients with only slight changes in filter properties [18, 19].

These rational coefficients are easier to implement in hardware and give image compression

performance almost identical to the irrational lifting coefficients. No published literature

exists, that attempts to arrive at quantized values of the irrational biorthogonal 9/7 lifting

coefficients or study the impact of lifting coefficient quantization on image compression

performance. This thesis uses the perfect reconstruction conditions for quantization of the

rational and irrational lifting coefficients and arrives at optimal quantized lifting values for

the best possible image compression performance.

1.3 Significance of this Work

The related literature does not address the problem of quantizing filter or lifting coefficients

for any given biorthogonal filter bank with the objective of keeping degradation of image

compression performance to a minimum. This thesis evaluates the impact of coefficient

quantization on the image compression performance of a filter bank from a signal processing
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perspective, and uses the knowledge gleaned to drive new quantization techniques. The

contributions of this thesis are as follows.

1. Identification of filter bank properties critical for image compression performance.

2. Derivation of two quantization methods, “gain compensation” and “zero compensa-

tion”, for quantization of biorthogonal filter bank coefficients. The “zero compensa-

tion” method can also be applied to the quantization of any FIR filter.

3. Development of a polyphase filter bank structure that employs cascade form quantized

coefficients, resulting in high throughput and good image compression properties.

4. Design of optimal quantization procedures for lifting coefficients.

5. Comparison of traditional convolution and lifting filter bank implementations on FPGA

using hardware metrics such as latency, throughput, power consumption and hardware

size.

The work done for this thesis has contributed to a number of publications. Development

of the “gain compensation” and “zero compensation” quantization techniques is presented

in [20]. Extension of zero compensation technique to quantization of FIR filters is treated

in [21] and [22]. Hardware performance of polyphase implementations of the filter bank are

evaluated in [23] and optimal quantization techniques for lifting coefficients are developed in

[24].

1.4 Organization of this Thesis

The remainder of the thesis is organized as follows. Chapter 2 presents an overview of the

DWT and its application to image compression. It also presents various ways to implement

the traditional DWT and then introduces the figures of merit used to evaluate hardware

implementations. Chapter 3 studies non-polyphase implementations of the biorthogonal 9/7
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filter bank and derives two quantization techniques to improve the performance of quan-

tized filter banks. Chapter 4 implements the filter bank in a polyphase form for increased

throughput over the non-polyphase structures. Chapter 5 begins with a brief background

on the lifting structure and continues to design and evaluate six different optimal quantized

lifting implementations. In Chapter 6, the best non-polyphase, polyphase and lifting im-

plementations from the previous chapters are compared in terms of hardware and image

compression performance. Chapter 7 concludes with recommendations on the best filter

bank structure and coefficient quantization scheme for an FPGA DWT implementation, and

makes suggestions for future work.



Chapter 2

Background

A block diagram of a wavelet based image compression system is shown in Figure 2.1.

At the heart of the analysis (or compression) stage of the system is the forward discrete

wavelet transform (DWT). Here, the input image is mapped from a spatial domain, to a

scale-shift domain. This transform separates the image information into octave frequency

subbands. The expectation is that certain frequency bands will have zero or negligible energy

content; thus, information in these bands can be thrown away or reduced so that the image

is compressed without much loss of information.

The DWT coefficients are then quantized to achieve compression. Information lost during the

quantization process cannot be recovered and this impacts the quality of the reconstructed

image. Due to the nature of the transform, DWT coefficients exhibit spatial correlation,

that are exploited by quantization algorithms like the embedded zero-tree wavelet (EZW)

and set partitioning in hierarchical trees (SPIHT) for efficient quantization. The quantized

coefficients may then be entropy coded; this is a reversible process that eliminates any

redundancy at the output of the quantizer.

In the synthesis (or decompression) stage, the inverse discrete wavelet transform recovers

the original image from the DWT coefficients. In the absence of any quantization the re-

8
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Figure 2.1: A wavelet based image compression system.

constructed image will be identical to the input image. However, if any information was

discarded during the quantization process, the reconstructed image will only be an approxi-

mation of the original image. Hence this is called lossy compression. The more an image is

compressed, the more information is discarded by the quantizer; the result is a reconstructed

image that exhibits increasingly more artifacts. Certain integer wavelet transforms exist that

result in DWT coefficients that can be quantized without any loss of information. These

result in lossless compression, where the reconstructed image is an exact replica of the input

image. However, compression ratios achieved by these transforms are small compared to

lossy transforms (e.g. 4:1 compared to 40:1).

The remainder of this chapter explores the discrete wavelet transform, and the hardware

implementation of the transform stage for computation of the 2D DWT for an image.

2.1 The Discrete Wavelet Transform

2.1.1 Multiresolution

The discrete wavelet transform decomposes the L2(R) space into a set of subspaces Vj, where,

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 · · ·

and

∞
⋃

−∞
Vj = L2(R);

∞
⋂

−∞
Vj = {∅}.

Figure 2.2 illustrates these nested subspaces. Subspace Vj is spanned by the set of basis

functions given by {2j/2φ(2jt− k)|j,k∈Z}, which are derived from dyadic shifts and scales of
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V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vj

V−1 W−1 W0 W1 · · ·Wj−1

6
6

6
6

Figure 2.2: Nested subspaces spanned by scaling and wavelet functions.

a unit norm function φ(t). Every function x(t) ∈ L2(R) when mapped onto these subspaces,

can be written as a linear combination of these basis functions as:

x(t) =
∞
∑

j=−∞

∞
∑

k=−∞
aj,k.2

j/2φ(2jt− k)

where,

aj,k =
∫ ∞

−∞
x(t).2j/2φ(2jt− k)dt. (2.1)

φ(t) is called the scaling function, and aj,k are the scaling coefficients. This however, is

not an orthogonal expansion of x(t) since subspaces Vj are nested. Also, the functions

{2j/2φ(2jt− k)|j,k∈Z} are not orthogonal across scales, i.e.

< 2j/2φ(2jt− k) , 2j′/2φ(2j′t− k′) > |k,k′∈Z 6= 0, when j 6= j′,

and hence they do not form an orthogonal basis for L2(R). The nested subspaces implies

that the subspace V1 includes V0. Thus φ(t) which resides in V0, can be expressed in terms

of the basis functions for V1 as:

φ(t) =
√

2
∑

k

c(k)φ(2t− k) (Dilation equation) (2.2)

where c(k) is the projection of φ(t) on the basis functions of V1, and is given by

c(k) =
√

2
∫ ∞

−∞
φ(t)φ(2t− k)dt.
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Equation (2.2) is called the Dilation Equation.

To obtain an orthogonal decomposition of L2(R), we define “difference” spaces Wj as the

complement of Vj in Vj+1. Figure 2.2 shows these difference spaces. Thus,

Vj+1 = Vj ⊕Wj and Vj ∩Wj = ∅.

The W subspaces provide a decomposition of L2(R) into mutually orthogonal subspaces,

and so,

Wj ⊥Wj′ if j 6= j′, and
∞
⊕

j=−∞
Wj = L2(R).

Subspace Wj is spanned by the family of basis functions {2j/2ψ(2jt − k)|j,k∈Z}, which are

dyadic shifts and scales of the function ψ(t). Every function x(t) ∈ L2(R) can be written as

a linear combination of these basis functions:

x(t) =
∞
∑

j=−∞

∞
∑

k=−∞
bj,k.2

j/2ψ(2jt− k) (Synthesis) (2.3)

where,

bj,k =
∫ ∞

−∞
x(t).2j/2ψ(2jt− k)dt. (Analysis) (2.4)

This is an orthogonal expansion of x(t), since the subspaces Wj are orthogonal. ψ(t) is called

the wavelet function, and bj,k are the wavelet coefficients. Equations (2.3) and (2.4) together

form the synthesis and analysis equations of the Discrete Wavelet Transform (DWT).

ψ(t) resides inW0, which in turn is a part of the V1 subspace, and hence ψ(t) can be expressed

in terms of the basis functions of V1 as:

ψ(t) =
√

2
∑

k

d(k)φ(2t− k) (Wavelet equation) (2.5)

where d(k) is the projection of ψ(t) on the basis functions of V1, and is given by

d(k) =
√

2
∫ ∞

−∞
ψ(t)φ(2t− k)dt.
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Equation (2.5) is called the Wavelet Equation.

The nested subspaces in Figure 2.2 have basis functions derived from different scales of φ(t).

Thus, mapping any function x(t) on to these subspaces enables us to view this function at

different scales or resolutions. At high scales (high values of j), wavelet coefficients (bj,k)

represent fine details of x(t), while at low scales (low values of j) the wavelet coefficients

measure coarser features of x(t). This is the idea behind multiresolution.

From the way the subspaces Wj are defined, we have

VM = VM−1 ⊕WM−1

= VM−2 ⊕WM−2 ⊕WM−1

= VM−3 ⊕WM−3 ⊕WM−2 ⊕WM−1

= VM−n ⊕WM−1 ⊕WM−2 ⊕WM−3 ⊕ · · · ⊕WM−n.

In general, every space VM is the direct sum of VN |N<M and Wj|N≤j<M :

VM = VN ⊕WN ⊕WN+1 ⊕WN+2 ⊕ · · · ⊕WM−1. (2.6)

The DWT of any function x(t) ∈ L2(R), can have an infinite number of wavelet coefficients

bj,k, since the analysis equation (2.4) can be evaluated at an infinite number of scales j, and

infinite number of shifts k. By virtue of equation (2.6) however, a function x(t) ∈ VM can

be expressed in terms of the wavelet coefficients in the scales of interest (N ≤ j < M), and

the scaling coefficients at one coarse scale N(< M) as follows:

x(t) = 2N/2
∞
∑

k=−∞
aN,kφ(2N t− k) +

M−1
∑

j=N

2j/2
∞
∑

k=−∞
bj,kψ(2jt− k). (2.7)

If x(t) is a finite duration signal, the limits on the shift variable k in the above expression are

finite. Thus finite duration signals have a finite number of scaling and wavelet coefficients

that define it.
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2.1.2 Fast Wavelet Transform

Computation of the DWT involves computation of the integrals in equation (2.4). This is

not a convenient method for computing the DWT. Mallat’s fast wavelet transform (FWT)

gives a discrete algorithm for computing the DWT coefficients using a two channel perfect

reconstruction filter bank. The two channel filter bank shown in Figure 2.3 is used to compute

the FWT. Filters f [k] and j[k] are related to the coefficients c(k) and d(k) in the dilation

and wavelet equation by the relation:

c(k) =
√

2f [k] and d(k) =
√

2j[k].

Thus, the FIR low pass filter f [k] corresponds to a finite duration scaling function φ(t), and

the FIR high pass filter j[k] corresponds to a finite duration wavelet function ψ(t).

Analysis Synthesis

Low Pass Branch

High Pass Branch

+

H(z)

G(z) ↓ 2

↓ 2

↑ 2

↑ 2 F (z)

J(z)- -

- -

- -

- -

-

-

6

?
-aj+1,k aj+1,k

bj,k

aj,k

Figure 2.3: Fast wavelet transform using perfect reconstruction (PR) filter bank.

Given a function x(t) ∈ Vj+1, the scaling coefficients at scale j + 1 are given by equation

(2.1)

aj+1,k =
∫ ∞

−∞
x(t).2(j+1)/2φ(2j+1t− k)dt.

When scaling coefficients aj+1,k are passed through the two channel filter bank shown in Fig-

ure 2.3, the filtering and downsampling operations yield the scaling and wavelet coefficients

at scale j at the output of the lowpass and highpass branches. Thus,

aj,k =
∑

l

h(l − 2k)aj+1,l and bj,k =
∑

l

g(l − 2k)aj+1,l. (2.8)
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On the synthesis side, scaling and wavelet coefficients at scale j are upsampled and filtered

to give the scaling coefficients at scale j + 1:

aj+1,k =
∑

l

[f(k − 2l)aj,l + j(k − 2l)bj,l]. (2.9)

Equations (2.8) and (2.9) together constitute the forward and inverse fast wavelet transform.

Thus Mallat’s algorithm establishes the relation between scaling coefficients (aj+1,k) at a fine

scale (j + 1), and the scaling (aj,k) and wavelet (bj,k) coefficients at the next coarse scale

(j). Passing aj,k through the analysis section of a filter bank again will yield the scaling and

wavelet coefficients at the next coarse scale (j − 1).

Thus starting with the scaling coefficients aM,k of a signal x(t) ∈ VM , application of equation

(2.8) (M −N) times gives rise to a tree shaped filter bank structure that is (M −N) levels

deep, which yields wavelet coefficients at scales N ≤ j < M , and the scaling coefficients at

scale N , enabling a complete representation of the signal as shown in equation (2.7).

There are two methods of finding the scaling coefficients at the finest scale aj+1,k needed to

start the FWT. First, aj+1,k can be computed using equation (2.4) by evaluating integrals.

Second, aj+1,k can be set equal to x[n] which is a sampled version of x(t). This second

method is commonly used to start the FWT.

2.1.3 Orthogonal and Biorthogonal DWT

In an orthogonal DWT filter bank, synthesis lowpass and highpass filters are related by

alternating flip as follows:

j(n) = (−1)nf(N − n) ↔ J(z) = −z−NF (−z−1).

The analysis filters are simply time reversals of the synthesis filters:

h(n) = f(−n) ↔ H(z) = F (z−1)

g(n) = j(−n) ↔ G(z) = J(z−1).
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Thus all filters in an orthogonal filter bank, can be defined by just one filter—the lowpass

analysis filter H(z).

An FIR filter bank cannot have both orthogonal and symmetric filters with length greater

than 2. In image compression applications it is essential to have symmetric filters for efficient

handling of image boundaries. Hence instead of using the orthogonal DWT, the biorthogonal

DWT is used where the input function is mapped onto biorthogonal subspaces. Here, the

wavelet function used in the analysis stage is different from the one used in the synthesis

stage. The FIR filters are no longer orthogonal but they are symmetric, which is handy for

image compression. The analysis and synthesis equations for the biorthogonal DWT of any

x(t) ∈ L2(R) are

ãj,k =
∫

x(t)2j/2φ̃(2jt− k)dt, b̃j,k =
∫

x(t)2j/2ψ̃(2jt− k)dt (Analysis)

x(t) = 2N/2
∑

k

ãN,kφ(2N t− k) +
M−1
∑

j=N

2j/2
∑

k

b̃j,kψ(2jt− k). (Synthesis)

{φi,j(t), ψi,j(t)} and {φ̃i,j(t), ψ̃i,j(t)} are the biorthogonal basis functions. ãj,k and b̃j,k are

the scaling and wavelet coefficients respectively; together they form the biorthogonal DWT

coefficients of x(t). The DWT starts at some finest scale j = M and stops at some coarsest

scale j = N . M − N is the number of levels of decomposition in the biorthogonal DWT of

x(t).

Mallat’s fast wavelet transform (FWT) can be used for computing the biorthogonal DWT

coefficients. The lowpass analysis filter h[n] ↔ H(z) corresponds to the analysis scaling

function φ̃(t), the highpass analysis filter g[n] ↔ G(z) corresponds to the analysis wavelet

function ψ̃(t), the lowpass synthesis filter f [n] ↔ F (z) corresponds to the synthesis scaling

function φ(t), the highpass analysis filter j[n] ↔ J(z) corresponds to the synthesis wavelet

function ψ(t).

The forward and inverse biorthogonal FWT is given by:

ãj,k =
∑

l

h(l − 2k)ãj+1,l, b̃j,k =
∑

l

g(l − 2k)ãj+1,l (FWT)
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ãj+1,k =
∑

l

[f(k − 2l)ãj,l + j(k − 2l)b̃j,l]. (IFWT)

In a PR filter bank, the reconstructed scaling coefficients ãj+1,k will be equal to the scaling

coefficients input to the filter bank (to within a shift d), if the biorthogonal filters satisfy the

following perfect reconstruction (PR) conditions:

F (z)H(z) + J(z)G(z) = 2z−d (no-distortion) (2.10)

F (z)H(−z) + J(z)G(−z) = 0 (no-aliasing) (2.11)

In a biorthogonal filter bank, the no-aliasing PR condition is satisfied by design, by choosing

the analysis and synthesis filters such that

g(n) = (−1)nf(n) ↔ G(z) = F (−z)

j(n) = −(−1)nh(n) ↔ J(z) = −H(−z). (2.12)

Since the highpass filters are related to the lowpass filters by equation (2.12), the no-

distortion PR condition is determined by the frequency response of only the lowpass filters

H(z) and F (z). Thus the biorthogonal filter bank is represented by two filters H(z) and

F (z) (compared to just H(z) in the orthogonal filter bank).

2.2 2-D Discrete Wavelet Transform

A 2-D separable discrete wavelet transform is equivalent to two consecutive 1-D transforms.

For an image, a 2-D DWT is implemented as a 1-D row transform followed by a 1-D column

transform. Transform coefficients are obtained by projecting the 2-D input image x(u, v)

onto a set of 2-D basis functions that are expressed as the product of two 1-D basis shown

in equation (2.13).

φ(u, v) = φ(u)φ(v)

ψ1(u, v) = ψ(u)φ(v)
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ψ2(u, v) = φ(u)ψ(v)

ψ3(u, v) = ψ(u)ψ(v) (2.13)

The 2-D DWT (analysis) can be expressed as the set of equations (2.14). The scaling func-

tion φ(u, v) and wavelets ψ1(u, v), ψ2(u, v) and ψ3(u, v) (and the corresponding transform

coefficients X(N, j,m), X(1)(N, j,m), X(2)(N, j,m) and X(3)(N, j,m)) correspond to differ-

ent subbands in the decomposition. X(N, j,m) are the coarse coefficients that constitute the

LL subband. The X(1)(N, j,m) coefficients contain the vertical details and correspond to the

LH subband. The X(2)(N, j,m) coefficients contain the horizontal details and correspond to

the HL subband. The X(3)(N, j,m) coefficients represent the diagonal details in the image

and constitute the HH subband. Thus a single-level decomposition at scale (N +1) has four

subbands of coefficients as shown in Figure 2.4.

X(N, j,m) =
∫ ∫

x(u, v)2Nφ(2Nu− j)φ(2Nv −m)dudv ⇒ LL

X(1)(N, j,m) =
∫ ∫

x(u, v)2Nψ(2Nu− j)φ(2Nv −m)dudv ⇒ LH

X(2)(N, j,m) =
∫ ∫

x(u, v)2Nφ(2Nu− j)ψ(2Nv −m)dudv ⇒ HL

X(3)(N, j,m) =
∫ ∫

x(u, v)2Nψ(2Nu− j)ψ(2Nv −m)dudv ⇒ HH (2.14)

Image

HL

LL

HH

LH

-

Figure 2.4: Single-level 2-D wavelet decomposition (analysis).

The synthesis bank performs the 2-D IDWT to reconstruct x(u, v) ∈ VM . 2-D IDWT is

given in equation (2.15).

x(u, v) =
∑

j

∑

m

X(N, j,m)2Nφ(2Nu− j)φ(2Nv −m)
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+
M−1
∑

i=N

∑

j

∑

m

[X(1)(i, j,m)2iψ(2iu− j)φ(2iv −m)

+X(2)(i, j,m)2iφ(2iu− j)ψ(2iv −m)

+X(3)(i, j,m)2iψ(2iu− j)ψ(2iv −m)] (2.15)

A single stage of a 2-D filter bank is shown in Figure 2.5. First, the rows of the input

image are filtered by the highpass and lowpass filters. The outputs from these filters are

downsampled by two, and then the columns of the outputs are filtered and downsampled

to decompose the image into four subbands. The synthesis stage performs upsampling and

filtering to reconstruct the original image.

Analysis Synthesis

rows cols cols rows
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-

?
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+
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Figure 2.5: One level filter bank for computation of 2-D DWT and IDWT.

Multiple levels of decomposition are achieved by iterating the analysis stage on only the LL

band. For l levels of decomposition, the image is decomposed into 3l + 1 subbands. Figure

2.6 shows the filter bank structure for three levels of decomposition of an input image, and

Figure 2.7 shows the subbands in the transformed image.

Figure 2.8 shows the three-level decomposition of the image “Lighthouse” using the biorthog-

onal 9/7 wavelet. Subband decomposition separates high frequency details in the image

(edges of fence, grass, telescope) from the low frequency information (sky, wall of the light-

house). Vertical details appear in the LH∗ subbands, horizontal details appear in HL∗

subbands and diagonal details can be found in the HH∗ subbands.



Chapter 2. Background 19

G(z)

H(z)

↓ 2

↓ 2

G(z)

G(z)

H(z)

H(z)

↓ 2

↓ 2

↓ 2

↓ 2

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

G(z)

H(z)

↓ 2

↓ 2

G(z)

G(z)

H(z)

H(z)

↓ 2

↓ 2

↓ 2

↓ 2

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

G(z)

H(z)

↓ 2

↓ 2

G(z)

G(z)

H(z)

H(z)

↓ 2

↓ 2

↓ 2

↓ 2

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Image

-

LL

HL

LH

HH

LLLL

HLLL

LHLL

HHLL

LLLLLL

HLLLLL

LHLLLL

HHLLLL

Figure 2.6: Analysis section of a three level 2-D filter bank.

Image

HL HH

LH

HLLL HHLL

LHLL
HLLLLL

LLLLLL

HHLLLL

LHLLLL

-

Figure 2.7: Three level wavelet decomposition of an image.

The histograms for coefficients in all subbands shown in Figure 2.8, illustrate the advantage

of transform coding. The original 512 × 512 lighthouse image had few zero pixel values.

The three level DWT of the image separated the energy content in the image into ten non-

overlapping frequency subbands. There are still 512×512 DWT coefficients, but most of these

coefficients (especially in the HL∗, LH∗ and HH∗ subbands) are zero, or have values very

close to zero. These coefficients can be efficiently coded in the quantizer and entropy coder,

resulting in significant compression. The coefficient distribution for the LLLLLL subband

resembles that of the original image. This is indicative of the fact that the LLLLLL band

is just an approximation of the original image at a coarser resolution. Coefficients in the

LLLLLL band have the highest variance (energy) suggesting that in this image most of the

energy is contained at low frequencies. This indeed is the case for most natural images.
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(a) (b)

Original Image

-128 0 127

LLLLLL

-128 0 127

Horizontal details Vertical details Diagonal details

Level 1

-128 0 127 -128 0 127 -128 0 127

Level 2

-128 0 127 -128 0 127 -128 0 127

Level 3

-128 0 127 -128 0 127 -128 0 127

(c)

Figure 2.8: Three level decomposition of ‘lighthouse’ using biorthogonal 9/7.
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2.3 Non-expansive DWT and Symmetric Extension

Consider one level of a filter bank as shown in Figure 2.3. If the input signal has length L,

and the filters H(z) and G(z) have lengths Lh and Lg respectively, then after downsampling,

the length of the highpass and lowpass coefficients are (L + Lh − 1)/2 and (L + Lg − 1)/2

respectively. The total length of the output sequence is L − 1 + (Lh + Lg)/2; the number

of output samples is more than the number of input samples. This is the expansive DWT.

For multiple levels of decomposition, the number of output samples keeps increasing. For

example, a 5-level expansive DWT of a 512× 512 image using the biorthogonal 9/7 wavelet

with Lh = 9 and Lg = 7 results in about 5.5% more DWT samples compared to image

samples. This is not desirable for compression, since we are looking to reduce the number of

samples to be encoded.

One way to avoid this is to use circular convolution in place of linear convolution for com-

puting the output of the filters. With circular convolution, an input of length L convolved

with a filter of length Lh (< L), will give an output of length L. After downsampling, the

total length of the output samples (highpass and lowpass) will be equal to L resulting in a

non-expansive transform. However, circular convolution, which is equivalent to periodic ex-

tension of the input signal, results in aliasing at the boundaries of the input signal, resulting

in border artifacts. For lossy compression these artifacts are undesirable because:

1. they require more bits to code; and,

2. they do not represent any real information present in the input signal, instead they are

spurious features resulting from the method used to perform the transform.

The bits used to code this artifact could be better used coding information present in the

original image.

To avoid artifacts resulting from periodic extension, the input signal is symmetric-periodically

(or just symmetrically) extended at the borders. When no compression is desired, the original
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signal can be reconstructed perfectly from its non-expansive DWT coefficients when the

input signal is symmetrically extended and the wavelet filters used to compute the DWT

coefficients are symmetric (biorthogonal wavelets).

It has been shown that for image compression, the non-expansive DWT with symmetric ex-

tension outperforms non-expansive DWT with periodic extension in terms of subjective qual-

ity [25]. Thus image compression algorithms like JPEG2000, compute a 2-D non-expansive

DWT of the input image by symmetrically extending the rows and columns of the input and

filtering using biorthogonal filters.

2.4 Hardware Implementation of the 2-D DWT

2.4.1 Implementation Choices

A wavelet based image compression system will have a 2-D DWT core implemented on FPGA

or as an application specific integrated circuit (ASIC). A typical 2-D DWT core will consist

of a single level 2-D filter bank, memory modules for storing image and DWT data, and

control logic for routing and scheduling. A single level 2-D filter bank may be implemented

in one of the following three ways:

1. Time Domain Convolution (TDC): This approach derives its name from the fact that

the filtering operation is implemented in the time domain using convolution. The

lowpass and highpass filter coefficients are quantized for implementation in hardware.

Quantized values of these coefficients influence the performance of the image compres-

sion system. There are two ways of implementing TDC—(a) lowpass and highpass

filters of the biorthogonal wavelet are directly implemented in hardware; and (b) anal-

ysis polyphase matrix of the biorthogonal wavelet is factored to obtain a sequence of

short “lift” and “update” filters, which are then implemented in hardware. The sec-

ond method (called lifting) has the advantage of an orthogonal analysis and synthesis
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structure, which makes it relatively immune to filter coefficient quantization. TDC is

an intuitive approach to implementation of the filter bank, and has the advantage of

being computationally inexpensive.

2. Fast Fourier Transform (FFT): This approach computes the output of the lowpass and

highpass branches of the filter bank in the frequency domain. For symmetric extension,

the input data is “folded” about its last sample giving a symmetric signal that has twice

the number of samples as the input signal. DFTs of the filters (H(ω) and G(ω)) are

multiplied by a DFT of the symmetrically extended input data (Xsym(ω)), and an

IDFT of the product is computed to obtain the circularly convolved outputs. H(ω)

and G(ω) can be pre-computed and quantized for hardware implementation, while

Xsym(ω) needs to be computed for all input signals using FFT. Compared to TDC,

FFT operates on signals that have double the number of samples. This, added to the

fact that the FFT method requires implementation of the FFT, IFFT algorithms and

involves complex multiplications, makes it computationally expensive and infeasible.

3. Time Domain Matrix (TDM): This approach implements the filtering operation in

time domain using matrix operations. The symmetrically extended input signal is left-

multiplied with a sparse matrix, whose rows are comprised of dyadic circular shifts

of the lowpass and highpass filter coefficients. Filter coefficients need to be quantized

for hardware implementation similar to TDC. The TDM method offers the advan-

tage of improved performance over TDC and FFT for orthogonal wavelets due to an

additional step in the synthesis stage that recovers samples lost to maintain a non-

expansive transform [26]. For biorthogonal wavelets however, TDM offers the same

performance as TDC and FFT, without the need for the additional step to recover lost

samples. Implementation of a biorthogonal filter bank in hardware using TDM is as

computationally expensive as TDC.

We choose TDC for implementation of the filter bank, due to its simplicity and low com-

putational complexity. Direct and lifting forms of TDC are evaluated for performance after
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coefficient quantization.

2.4.2 Figures of Merit

Several important figures of merit are used to measure the performance and efficiency of an

image compression system implemented in hardware. Peak signal-to-noise ratio (PSNR) is

a commonly used quantitative measure that compares the fidelity of a compressed image

with its original. High PSNR values indicate compressed images that are very similar to the

original images. For an 8-bit grayscale R × C image x, the PSNR of a compressed image x̂

is computed in decibels using the relation

PSNR = 10 log10

(

2552

mse

)

where,

mse =
1

RC

R−1
∑

r=0

C−1
∑

c=0

|x(r, c) − x̂(r, c)|2.

Objective measures such as PSNR do not indicate subjective quality at low PSNR values

and high compression ratios. Subject evaluation of a reconstructed image requires visual

inspection of the image for artifacts, and measures perceptual quality of the reconstructed

image.

Several metrics are used to evaluate hardware performance. The first is hardware cost.

Filters in the TDC implementation are multiplierless, and all multiplications are performed

using shifts and additions after approximating each filter coefficient as a sum or difference

of powers of two (SPT). Before a filter is implemented, hardware cost is estimated in terms

of T , the total number of non-zero terms used when writing all the filter coefficients in SPT

format. T is related to hardware cost because it represents the number of terms that must

be added to perform the multiplication; the hardware for multiplication has T − 1 word

adders. A subset of SPT representation called canonical signed digit (CSD) form is used

for representation of coefficients. No two adjacent bits are non-zero in CSD form. The
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canonical form is optimal in terms of how many non-zero digits are required to represent a

given number. For example, the CSD form of -7 has two terms, 01001 (−7 = −8+1), rather

than three terms, 0111 (−7 = −4−2−1)1. On average, a canonical representation uses two-

thirds as many non-zero digits as a binary representation, so the CSD form can significantly

reduce the number of adders required in hardware. However, for some numbers there may

be another form that is just as good as the CSD form; +3, for example, can be written using

two non-zero digits either canonically, 0101 (3 = 4− 1), or non-canonically, 0011 (3=2 + 1).

In such cases, the CSD form is used unless another form has the same number of non-zero

digits and is better in the sense that the terms to be added together have fixed point formats

that match more closely (so that the word adders used for the addition need not be as wide).

Once a filter is implemented in hardware, hardware cost is measured directly in terms of the

number of logic cells used. Throughput, or the number of data outputs per second that the

filter can generate relates to how long it takes to process an image. Latency, or the number

of clock cycles that it takes from the time that an input enters the system to the time

that the corresponding output exits the system, is also an important measure of hardware

performance. For remote, untethered applications where battery power is at a premium,

energy consumed by the hardware to process an image also becomes critical.

2.5 JPEG2000

The JPEG2000 standard uses the scalar wavelet transform for image compression compared

to the discrete cosine transform (DCT) used by JPEG. Part I of the JPEG2000 standard

supports LeGall 5/3 wavelet for reversible (lossless) compression, and the Cohen, Daubechies

and Feauveau (CDF) 9/7 wavelet (commonly known as biorthogonal 9/7) for irreversible

(lossy) compression [1]. The symmetry of the biorthogonal 9/7 filters and the fact that they

1A 1 in the binary or SPT representation of any value indicates that the corresponding power of two

should be negated.
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Figure 2.9: Block diagram of the JPEG2000 coding algorithm.

are “nearly” orthogonal [27], makes it a good candidate for image compression applications.

Figure 2.9 shows the block diagram of a JPEG2000 encoder. The input image undergoes

DC level-shifting and normalization so that all pixels lie within the range [−1
2
, 1

2
]. The

image is then transformed from the RGB domain to the YCbCr domain. 2D DWT of each

plane (luminance, chrominance-blue and chrominance-red) is then computed. The EBCOT

(Embedded Block Coding with Optimal Truncation) algorithm is then used to code the

DWT coefficients.

In this thesis we study the DWT block of the JPEG2000 encoder. TDC implementations of

the biorthogonal 9/7 discrete wavelet transform on field programmable gate arrays (FPGAs)

are examined. The DC gain of the filters used in this thesis is different from the gain of the

filters specified in the JPEG2000 standard. This however is a minor difference and can be

addressed by simple scaling of the DWT coefficients by powers of two after they have been

computed.

The next chapter examines filter structure and coefficient quantization issues for direct im-

plementation of TDC.
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Filter Structure and Quantization

Filter coefficients are quantized before implementation in fast hardware; this changes the

frequency response of the filter. When the quantized filter is part of a filter bank, this change

impacts perfect reconstruction properties of the filter bank, and degrades image compression

performance. If the filter coefficients are quantized such that the filter bank properties are

preserved, then the degradation in compression performance will be minimal. Filter structure

also plays an important role in the performance of the filter bank in the presence of coefficient

quantization. Some filter structures are more immune to coefficient quantization than others

and can be used to minimize performance degradation in the filter bank. This chapter derives

and investigates two filter structures and two “compensating” filter coefficient quantization

methods for improving the performance of multiplierless, quantized filter banks. Rather than

using an optimization technique to guide the design process, the new methods utilize the

perfect reconstruction requirements of the filter bank. The design method is easily extended

to any biorthogonal perfect reconstruction filter bank with finite length filters.

The performance of a hardware implementation of a biorthogonal filter bank depends on how

well the two PR conditions —equations (2.10) and (2.11), and the linear phase characteristic

are preserved. Linear phase and the no-aliasing condition can be preserved by ensuring

that each filter remains symmetric after coefficient quantization. The magnitude response

27
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Table 3.1: Unquantized biorthogonal 9/7 wavelet lowpass filter coefficients.

n h9(n) f7(n)

0 0.03782845550726 -0.06453888262870

1 -0.02384946501956 -0.04068941760916

2 -0.11062440441844 0.41809227322162

3 0.37740285561283 0.78848561640558

4 0.85269867900889 0.41809227322162

5 0.37740285561283 -0.04068941760916

6 -0.11062440441844 -0.06453888262870

7 -0.02384946501956

8 0.03782845550726

of the lowpass and highpass branches of the filter bank determine whether the no-distortion

condition is satisfied.

The unquantized nine-tap lowpass analysis filter of the biorthogonal 9/7 wavelet, H9(z), has

four zeros at z = −1 and four complex zeros in the right-half z-plane; the symmetry and

realness of h9(n) dictate that these eight zeros occur in complex conjugate and reciprocal

pairs. Similarly, the unquantized seven-tap lowpass synthesis filter, F7(z), has four zeros at

z = −1 and two real (reciprocal) zeros in the right-half z-plane. The unquantized lowpass

filter (LPF) coefficients, h9(n) and f7(n), are listed in Table 3.1 [28]; these coefficients are

normalized such that their sum equals
√

2.

The filters can be expressed in their factored form as

H9(z) = k9(z + 1)4(z − z1)(z −
1

z1
)(z − z∗1)(z −

1

z∗1
)

F7(z) = k7(z + 1)4(z − z2)(z −
1

z2
)

where the zero z1 = 0.28409629819231 + j0.24322822591087 dictates the placement of the

quartet of complex conjugate zeros of reciprocal magnitude in the right hand plane forH9(z),

and the zero z2 = 0.32887591778548 dictates the placement of the pair of real zeros of recipro-

cal magnitude in the right hand plane for F7(z). The filter gains are k9 = 0.03782845550726

and k7 = −0.06453888262870.
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There are three primary structures for FIR filters: direct, cascade and lattice. The symmetry

in the biorthogonal 9/7 filters results in at least one lattice coefficient equal to one; thus,

the lattice structure cannot be employed. This chapter examines the direct and cascade

implementations of the 9/7 filters.

3.1 Direct Implementation

Direct form implementations of the two LPFs require that the sixteen coefficients be quan-

tized. The total number of SPT used (T ) must be kept to a minimum in order to achieve

hardware efficiency and speed. The challenge is to allocate a given T across the coefficients

such that compression performance is maximized.

The first method begins with a mostly uniform distribution of T across the sixteen coeffi-

cients; most coefficients are allotted the same number of SPT terms, and the remaining SPT

terms are allocated to those coefficients that are most different (in terms of percent different)

from their unquantized values. This kind of allocation is referred to as mostly uniform allo-

cation. Performance of the filter bank is then improved, not by investigating different ways

to optimally divvy up T , but by exploiting the relationship between the quantized filters

and the no-distortion perfect reconstruction (PR) condition.

3.1.1 Direct Form without Gain Compensation

The first method uses the mostly uniform allocation scheme. Table 3.2 depicts one quanti-

zation of the two LPFs for T = 32; the quantized filters are denoted by H ′
9(z) and F ′

7(z).

The distribution of T is done so as to maintain symmetry. In this direct form, there is no

change to the original filter gains (beyond the slight change in gain that is inevitable when

the coefficients are quantized), so no separate gain factor K is required.

The no-distortion PR condition, equation (2.10), involves the sum of the cascaded LPFs and
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Table 3.2: Quantized filter coefficients for the direct implementation with T = 32 (with and

without gain compensation). Values are shown in both decimal and SPT format.

Direct without Gain Compensation Direct with Gain Compensation

H ′

9(z) F ′

7(z) H ′

9(z) F ′

7(z)

0 0.03515625 0.000010010 -0.0625 0.00010 0.03515625 0.00001001 -0.0625 0.00010000

1 -0.0234375 0.000001100 -0.03125 0.00001 -0.0234375 0.00001001 -0.03125 0.00001000

2 -0.1171875 0.001000100 0.4375 0.10010 -0.125 0.00100000 0.4375 0.10010000

3 0.376953125 0.011000001 0.78125 0.11001 0.375 0.01100000 0.78515625 0.11001001

4 0.8125 0.110100000 0.4375 0.10010 0.8125 0.11010000 0.4375 0.10010000

5 0.376953125 0.011000001 -0.03125 0.00001 0.375 0.01100000 -0.03125 0.00001000

6 -0.1171875 0.001000100 -0.0625 0.00010 -0.125 0.00100000 -0.0625 0.00010000

7 -0.0234375 0.000001100 -0.0234375 0.00001001

8 0.03515625 0.000010010 0.03515625 0.00001001

K - - - - -

G - - - 1.0166015625 1.0000010001

cascaded HPFs. Since the HPFs are related to the LPFs by equation (2.12), PR can be eval-

uated in terms of only the LPFs. The implication is that better compression performance

can be expected when the product of the quantized LPFs, H ′
LPB(z) = H ′

9(z)F
′
7(z), more

closely resembles the product of the unquantized LPFs, HLPB(z) = H9(z)F7(z). (Here the

subscript LPB stands for the “Low Pass Branch” of the filter bank which loosely comprises

the cascade of the analysis and synthesis LPFs (see Figure 2.3)). Furthermore, since the

preponderance of energy in most images is concentrated at low frequencies, a close resem-

blance between |H ′
LPB(ω)| and |HLPB(ω)| is more critical in the passband, and in particular

at ω = 0 (DC). This observation forms the basis for the second design method.

3.1.2 Direct Form with Gain Compensation

In this method, a few SPT terms are reserved for a compensating gain factor G, the sole

purpose of which is to match |H ′
LPB(ω)| to |HLPB(ω)| at DC. First, the unreserved SPT

terms are allocated using the mostly uniform technique. A compensating gain factor is then
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computed; since |HLPB(ω)|ω=0 is 2, the compensating gain is given by

G =
2

|H ′
LPB(ω)|ω=0

.

The compensating gain G is quantized using the reserved SPT terms, and incorporated with

the F ′
7(z) filter. The result is that the shape of the quantized magnitude response is retained,

but its values at low frequencies are much closer to the unquantized magnitude response.

Figure 3.1 shows a close-up of the direct form with “gain compensation” |H ′
LPB| at low

and high frequencies. |H ′
LPB| approximates |HLPB| closely in the passband; however, the

deviation from zero at ω = π is more pronounced with the compensating gain factor.

Table 3.2 lists the direct form with “gain compensation” quantized coefficients for T = 32.

The coefficients of the two methods are not always identical; three SPT terms must be

reserved for the compensating gain, so the “with gain compensation” case can only allocate

twenty-nine SPT terms to the coefficients.

Figure 3.2 shows the pole zero plots for the unquantized and direct form quantized LPFs

with and without “gain compensation”. In a direct form quantized filter, the location of

each zero depends on all of the coefficients; so for both of these direct form methods, all

of the zeros are perturbed from their original locations. (The zeros still occur as complex

conjugates and reciprocals since symmetry and realness are preserved after quantization). In

particular, the four zeros in the left hand plane are no longer at z = −1. This translates into

DC leakage of the synthesis HPF (J(z) in Figure 2.3) and non-smooth synthesis functions.

Consequently, images compressed and reconstructed using the direct form implementation

(with or without gain compensation) will depict the checkerboarding artifact.

3.2 Cascade Implementation

Consider the cascade form forH ′
9(z) and F ′

7(z) where each filter is the cascade of two sections:

section one captures the four zeros at z = −1 and section two captures the remaining zeros.
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Figure 3.1: (a) Comparison of magnitude response of LPB using unquantized, original filters

and T = 32 direct implementation with and without gain compensation. (b) and (c) zooms

in on the passband and stopband respectively.

In this form, the 9/7 wavelet lowpass filters can be written as

H9(z) = k9(z
4 + 4z3 + 6z2 + 4z + 1) · (z4 + a1z

3 + a2z
2 + a1z + 1) (3.1)

F7(z) = k7(z
4 + 4z3 + 6z2 + 4z + 1) · (z2 + a3z + 1) (3.2)

where k9 and k7 are as before and

a1 = −(z1 + z∗1 +
1

z1
+

1

z∗1
) = −4.63046362055955,

a2 = (z1z
∗
1 +

1

z1z∗1
+
z∗1
z1

+
z1
z∗1

+ 2) = 9.59748437683150,

a3 = −(z2 +
1

z2
) = −3.36953637943799.

This structure preserves symmetry in all of the sections, and offers the advantage of sep-

arating out the four zeros at z = −1 into their own section, so that they are unaffected

by quantization in the rest of the filter. Serendipitously, only six SPT terms are required

to implement the four zeros at z = −1 exactly ; the five coefficients are {1, 4, 6, 4, 1}. The

following four design methods use this cascade structure with a fixed first section.
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Figure 3.2: Comparison of location of zeros for the direct form quantized LPFs with and

without gain compensation. (a) 9-tap H9(z) and (b) 7-tap F7(z).

3.2.1 Cascade Form without Gain Compensation

For this method, six SPT terms are reserved for the first section exactly implementing the

four zeros at z = −1. The coefficients of the second section are normalized so that its first

and last coefficients are exactly “1”, thereby requiring only one SPT term each. Because

of this normalization a quantized, normalizing gain factor, K, must be included—and a few

SPT terms are reserved for this purpose. All remaining SPT terms are allocated to the

remaining coefficients in the second sections using the mostly uniform scheme.

The normalizing gain factors are quantized to k′9 = 0.0390625 = 2−5 + 2−7 and k′7 =

−0.0625 = −2−4. The analysis LPF requires T = 2 for its normalizing gain factor. The

synthesis LPF normalizing gain can be implemented as a simple shift; it requires no SPT

terms and no real hardware. Thus, the gain and section one coefficients require T = 8 in

H ′
9(z) and T = 6 in F ′

7(z) (refer to Table 3.3).

The quantized values of the three remaining coefficients, a′1, a
′
2 and a′3, determines per-

formance of the filter bank. The cascade form without gain compensation uses uniform

distribution of the remaining T across these three coefficients. Table 3.3 lists one quantiza-
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Table 3.3: Quantized filter coefficients for the cascade implementation with T = 32 (with

and without gain compensation). Values are shown in both decimal and SPT format.

Cascade without Gain Compensation Cascade with Gain Compensation

H ′

9(z) F ′

7(z) H ′

9(z) F ′

7(z)

1 001 1 001 1 001 1 001

4 100 4 100 4 100 4 100

6 110 6 110 6 110 6 110

4 100 4 100 4 100 4 100S
ec

ti
o
n

1

1 001 1 001 1 001 1 001

1 0001.0000 1 01.0000 1 0001.0 1 01.00

-4.625 0100.1010 -3.3125 11.0101 -4.5 0100.1 -3.25 11.01

9.5625 1010.1001 1 01.0000 9.5 1010.1 1 01.00

-4.625 0100.1010 -4.5 0100.1S
ec

ti
o
n

2

1 0001.0000 1 0001.0

K 0.0390625 0.0000101 -0.0625 (simple shift) 0.0390625 0.0000101 -0.0625 (simple shift)

G - - - 1.0244140625 1.0000011001

tion of the two LPFs for T = 32 for this method. Symmetry is maintained in both filters

and, unlike the direct implementation, the zeros remain at z = −1 (refer to Figure 3.4).

3.2.2 Cascade Form with Gain Compensation

For this method, as before, six SPT terms are reserved for each of the first sections. Again,

the quantized, normalizing gain factor, K, is included—two SPT terms are reserved for this

purpose.

As in the “direct form with gain compensation” method, the compensating gain factor G

is computed, the purpose of which is to ensure a better fit of frequency response at DC.

G is quantized and incorporated with the F ′
7(z) filter. Figure 3.3 compares the magnitude

responses of the cascade form with and without “gain compensation”. For both imple-

mentations, |H ′
LPB| is indistinguishable from the unquantized magnitude response at high

frequencies due to the unperturbed zeros at z = −1 (Figure 3.4). At low frequencies and es-

pecially around DC, “gain compensation” provides a close approximation to the unquantized
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Figure 3.3: (a) Comparison of magnitude response of LPB using unquantized, original filters

and T = 32 cascade implementation with and without gain compensation. (b) and (c) zooms

in on the passband and stopband respectively.

magnitude response. Although cascade with “gain compensation” closely matches |HLPB|
at DC and very low frequencies, the deviation in the passband for ω ∈ (0.4, 0.8) is larger

than in the direct form with “gain compensation”. Table 3.3 shows these cascade form with

“gain compensation” quantized coefficients for T = 32.

3.2.3 Compensating Zeros

Instead of using a compensating gain factor, the perfect reconstruction (PR) conditions can

be used to directly to obtain quantized filters that give better performance for the same

T . Now, the values of a′1, a
′
2 and a′3 shape |H ′

LPB| instead of G. There are two possible

design methods based on this observation. Both rely on the fact that in the cascaded

implementation, a′1 and a′2 determine the location of the quartet of zeros in the right hand

plane of the low pass analysis filter H ′
9(z), while a′3 determines the location of the pair of

zeros in the right hand plane of the low pass synthesis filter F ′
7(z).
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Figure 3.4: Comparison of location of zeros for the cascade form quantized LPFs with and

without gain compensation.

Cascade Form With z2 Compensation. Here, a1 and a2 are first quantized to a′1 and a′2;

correspondingly, the zero z1 moves to z′1 (with the other three zeros of the complex quartet

moving accordingly). This fixes the frequency response of the quantized lowpass analysis

filter H ′
9(z). It is possible to choose a new location z′2 for z2 such that the deviation of |H ′

LPB|
from the unquantized magnitude response is minimized. For example, if z′1 is closer to the

unit circle than z1, then to compensate for this effect in the cascaded magnitude response,

z′2 should be chosen such that it is further from the unit circle than z2.

The unquantized and quantized magnitude responses of the LPB of the filter bank are given

by

HLPB(z) = Ĥ(z)(z4 + a1z
3 + a2z

2 + a1z + 1) · (z2 + a3z + 1) (3.3)

H ′
LPB(z) = Ĥ ′(z)(z4 + a′1z

3 + a′2z
2 + a′1z + 1) · (z2 + a′3z + 1) (3.4)

where Ĥ(z) = k9k7(z+1)8 and Ĥ ′(z) = k′9k
′
7(z+1)8. a′3 is the new value of a3 that places z′2

at a compensating location. Ideally, the LPB quantized and unquantized transfer functions

should be equal; i.e.

H ′
LPB(z) = HLPB(z). (3.5)
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Figure 3.5: Illustration of zero movement for T = 32 cascade form with z1 compensation.

As z2 (the real zero belonging to F7(z)) moves closer to the unit circle after quantization of

a3, the compensating location for z1 (the zero belonging to H9(z)) is further away from the

unit circle. Unquantized vector lengths: |z1| = 0.37399288298886, |z2| = 0.32887591778548.

Quantized vector lengths: |z′1| = 0.37066793950141, |z′2| = 0.33596061410765.

Since k′9k
′
7 ≈ k9k7, this equality becomes

(z4 + a1z
3 + a2z

2 + a1z + 1)(z2 + a3z + 1)

= (z4 + a′1z
3 + a′2z

2 + a′1z + 1)(z2 + a′3z + 1). (3.6)

Solving equation (3.6) at ω = 0 (z = 1), gives the compensating value of a′3. This value is

then quantized with the remaining available T .

Cascade Form With z1 Compensation. Alternatively, a3 can be first quantized to a′3, so that

z2 moves to z′2 (with its reciprocal zero moving accordingly). Now, z′1 does the compensating;

Figure 3.5 illustrates that as z2 moves closer to the unit circle after quantization of a3,

the compensating location for z1 is further away from the unit circle. Equation (3.6) is

solved for two unknowns: a′1 and a′2, by choosing two frequencies at which H ′
LPB should

match HLPB. In addition to ω = 0, a passband frequency closer to the passband edge,

ω = 0.2π, is chosen. The computed a′1 and a′2 are quantized with the remaining available

SPT terms. If unquantized values of a′1, a
′
2 and a′3 are used, “z1 compensation” will provide

a more accurate |H ′
LPB| than “z2 compensation” since “z1 compensation” fits |HLPB| at two
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Figure 3.6: (a) Comparison of magnitude response of LPB using unquantized, original filters

and T = 32 cascade implementation with z2 and z1 compensation. (b) and (c) zooms in on

the passband and stopband respectively.

frequencies instead of one.

Figure 3.6 illustrates the effect of using compensating zeros; a close-up shows how “z1 com-

pensation” and “z2 compensation” attempt to match |HLPB| in the passband. The deviation

of both curves from the unquantized magnitude response at the matching frequencies occurs

because of the subsequent quantization of the compensating coefficients. Because the zeros

at z = −1 remain fixed in the cascade structure, both methods generate magnitude responses

indistinguishable from the unquantized magnitude response at high frequencies. Table 3.4

lists these cascade form “z1 compensation” and “z2 compensation” quantized coefficients for

T = 32.

Direct Form Revisited. This compensating zeros method could also be used on the direct

form implementation. For instance, the seven coefficients in F ′
7(z) could be quantized and

the nine compensating coefficients in H ′
9(z) could be computed. This would involve the

solution of five linear equations resulting from the selection of five frequencies at which to

fit |H ′
LPB| to |HLPB|. This ability to fit the magnitude responses at five frequencies would
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Table 3.4: Quantized filter coefficients for the cascade implementation with T = 32 (two

compensating-zero cases). Values are shown in both decimal and SPT format.

Cascade with z2 Compensation Cascade with z1 Compensation

H ′

9(z) F ′

7(z) H ′

9(z) F ′

7(z)

1 001 1 001 1 001 1 001

4 100 4 100 4 100 4 100

6 110 6 110 6 110 6 110

4 100 4 100 4 100 4 100S
ec

ti
o
n

1

1 001 1 001 1 001 1 001

1 0001.000 1 001.00000000 1 0001.0000 1 01.0000

-4.625 0100.101 -3.42578125 100.10010011 -4.625 0100.1010 -3.3125 11.0101

9.5 1010.100 1 001.00000000 9.6875 1010.0101 1 01.0000

-4.625 0100.101 -4.625 0100.1010S
ec

ti
o
n

2

1 0001.000 1 0001.0000

K 0.0390625 0.0000101 -0.0625 (simple shift) 0.0390625 0.0000101 -0.0625 (simple shift)

G - - - -

seem like it ought to provide superior performance over the cascade form with compensating

zeros. However, the cascade form will still outperform the direct form for two reasons.

First, the four zeros will no longer be at z = −1 in the quantized direct form (with or

without compensation). Second, there is no expectation that any of the direct form quantized

coefficients will be convenient from the SPT perspective (like several of the coefficients in

the cascade form). For example, in the T = 32 cascade “z1 compensation” case, twenty-

two SPT terms are allocated before compensation, leaving ten SPT terms to represent the

three compensating coefficients (10
3

= 3.33 SPT term per coefficient). However, in the

T = 32 direct “without gain compensation” case, eleven SPT terms are allocated to F ′
7(z),

leaving twenty-one SPT terms to represent the nine compensating coefficients (21
9

= 2.33

SPT term per coefficient)—one full SPT term less per coefficient than in the cascade case.

Thus, the quantization of the compensating coefficients will be more severe for the direct

implementation for a given T . Simulations showed that this “direct with compensating zeros”

approach resulted in PSNR values 4-5dB less than the “direct with gain compensation”

method which, in turn, is always outperformed by the “cascade with z1 compensation”
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method.

Extensions to Other Biorthogonal Wavelets. The compensating zeros method for quantizing

filter banks can be extended to any biorthogonal filter bank. First, the analysis and synthesis

LPFs are each divided into two cascaded sections: the first section is comprised of the zeros

at z = −1 and the second section is comprised of the remaining zeros in the filter. Keeping

the complex conjugate and reciprocal zeros together in the second cascade section ensures

that the filters are real and symmetric. Next, the coefficients in the second section of the

shorter of the two filters (analysis LPF and synthesis LPF) is quantized. Finally, equation

(3.5) is solved for the compensating coefficients of the second section of the longer filter.

Equation (3.5) is solved at as many points on the unit circle as there are unknown symmetric

coefficients in the second cascade section of the longer filter.

3.3 Results

The DWT of three 8-bit grayscale images was computed using the two-channel filter bank

where each set of the six quantized filter coefficients in Tables 3.2, 3.3 and 3.4 were used,

in turn, to replace the unquantized, biorthogonal 9/7 wavelet filter coefficients. A non-

expansive, five-level transform with symmetric extension was computed; SPIHT was em-

ployed for quantizing the transform coefficients and no entropy coder was used [29]. The

images were examined for perfect reconstruction (i.e. a 1:1 compression ratio) and at four

compression ratios (8:1, 16:1, 32:1, and 64:1).

3.3.1 Compression Performance

PSNR Performance. Table 3.5 compares the performance of the six implementations in

terms of peak signal-to-noise ratio (PSNR); these results were generated in software on a

general purpose personal computer. Each method utilized a total of T = 32 SPT terms
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Table 3.5: PSNR comparison of the six quantization methods (all with T = 32). Numbers

shown for the quantized filters indicate PSNR degradation with respect to unquantized

PSNR values. Negative numbers indicate PSNR performance worse than the unquantized

filter, while positive numbers indicate PSNR performance better than the unquantized filters.

Compression
Quantized

Image
Ratio

Unquantized Direct Cascade Cascade

no gain with gain no gain with gain z2 comp. z1 comp.

1:1 58.61 -22.58 -9.65 -35.59 -14.11 -9.83 -1.55

8:1 39.83 -5.50 -1.12 -16.87 -1.13 -0.46 -0.08

16:1 36.71 -3.69 -0.82 -13.84 -0.58 -0.22 -0.01

L
en

a

32:1 33.59 -2.23 -0.55 -10.90 -0.34 -0.13 -0.03

64:1 30.54 -1.25 -0.38 -8.16 -0.14 -0.06 +0.04

1:1 58.64 -23.52 -10.77 -36.72 -15.05 -11.12 -2.18

8:1 35.75 -3.54 -0.72 -13.98 -0.51 -0.29 +0.00

16:1 30.82 -1.46 -0.22 -9.38 -0.30 -0.09 -0.11

B
a
rb

a
ra

32:1 27.04 -0.77 -0.26 -6.23 -0.14 -0.06 -0.07

64:1 24.36 -0.32 -0.13 -4.29 -0.11 -0.03 -0.06

1:1 58.92 -24.08 -11.84 -37.73 -16.05 -11.58 -1.55

8:1 35.27 -3.36 -0.55 -14.22 -0.78 -0.24 -0.16

16:1 30.39 -1.20 +0.04 -9.62 -0.08 +0.24 +0.18

F
in

g
er

p
ri

n
t

32:1 26.63 -0.65 -0.18 -6.46 -0.11 +0.01 -0.06

64:1 23.53 -0.20 -0.08 -4.22 -0.03 +0.00 +0.01

— PSNR degradation < 0.2dB

— 0.2dB < PSNR degradation < 2dB

— 2dB < PSNR degradation

for the two quantized LPFs H ′
9(z) and F ′

7(z). For all compression ratios and all images, the

direct form with gain compensation outperforms the direct form without gain compensation;

similarly for the cascade form with and without gain compensation. The two compensating

zeros methods exhibit the best performance in terms of PSNR. The z1 compensation method

outperforms the z2 compensation method at 1:1 and 8:1, but not at the higher compression

ratios. This is due to the z1 method’s ability to fit |HLPB| at two frequencies instead of one.

The cascade with z1 compensation method resulted in PSNR values within 0.16dB of the

unquantized PSNR values across all three images and all four compression ratios.
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These results also indicate that the PSNR differences between the methods are larger at lower

compression ratios and smaller at higher compression ratios. This is because the quantization

of the filter coefficients becomes relatively less important compared to the quantization of

the transform coefficients at the lower bit rates.

Subjective Performance. Although the PSNR results indicate relatively similar performance

at low bit rates across the four best methods (e.g. differences of 0.01–0.55dB at 32:1 for

direct with gain, cascade with gain, cascade with z2 compensation and cascade with z1

compensation), the subjective results exhibit important differences. The cascade form im-

plementation will, by design, always maintain the four zeros at z = −1 while the direct form

implementation will not. This translates into DC leakage of the synthesis HPF J(z) and

non-smooth synthesis functions. Consequently, images compressed and reconstructed using

the direct form implementation (with or without gain compensation) depict the checker-

boarding artifact. Consider the Goldhill image compressed at 32:1 using the unquantized

filters in Figure 3.7(a) (PSNR=30.13dB). When the same image is compressed at 32:1 using

the direct with gain compensation quantized filters, Figure 3.7(b), the checkerboard is easily

observed at the top of the image; however, the PSNR is not significantly degraded (29.90dB).

The cascade with gain compensation and cascade with z1 compensation methods generate

reconstructed images that are indistinguishable from the unquantized filter reconstruction

at 32:1 (for example, see Figure 3.7(c) for z1 compensation compression, PSNR=30.00dB).

Just as spurious visual characteristics are sometimes not translated into significant decreases

in PSNR, sometimes large differences in PSNR are not evident in subjective evaluations. For

instance, the cascade without gain compensation PSNR results in Table 3.5 are substantially

lower than all of the other filters; however, the reconstructed image looks very similar to the

other filters—with one minor difference. Although the edges and features of the reconstructed

image are virtually identical to the other synthesized images, the cascade without gain

compensation reconstruction looks “washed out” (i.e. lighter or over-exposed) as can be

seen in Figure 3.7(d). |H ′
LPB| for the cascade without gain compensation method has a

similar shape to the unquantized magnitude response (no distortion), but it underestimates
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(a)

Unquantized filters;

(PSNR=30.13dB).

(b)

Quantized direct filters with gain compensation;

(PSNR=29.90dB).

(c)

Quantized cascade filters with z1 compensation;

(PSNR=30.00dB).

(d)

Quantized cascade filters without gain compensation;

(PSNR=21.52dB).

Figure 3.7: Goldhill compressed at 32:1 using different T = 32, quantized filters.
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Table 3.6: Filter property comparison of the six implementations (T = 32).

Filter
Quantized

Property Unquantized Direct Cascade Cascade

no gain with gain no gain with gain z2 comp. z1 comp.

Deviation at DC 0 9.2e-3 -3.8e-5 1.0e-1 -8.1e-4 -5.0e-3 4.9e-4

No Distortion MSE 0 4.0e-3 5.1e-4 5.9e-3 9.1e-4 1.4e-5 2.8e-5

Alias Cancellation MSE 0 0 0 0 0 0 0

Accuracy 4/4 0/0 0/0 4/4 4/4 4/4 4/4

Smoothness (analysis) 1.41 N/A N/A 1.40 1.53 1.37 1.46

Smoothness (synthesis) 2.12 N/A N/A 2.08 2.04 2.16 2.08

Coding Gain 9.71 10.57 9.86 11.21 10.09 9.67 9.69

the ideal response (lower gain).

Quantized Filter Properties. Table 3.6 illustrates that the deviation at DC for cascade

without gain compensation is worse by at least two orders of magnitude than the other

methods. (positive values for the deviation at DC indicate underestimation). Conversely,

significant negative values for deviation at DC resulted in reconstructed images that were

darker than the originals.

Of all the properties described in Table 3.6, the no distortion property best distinguishes

good PSNR performance (the deviation at DC is part of this property). Moreover, the

combination of the no distortion and synthesis smoothness properties best predicts good

subjective quality. (In Table 3.6 , the no distortion and alias cancellation properties describe

the filters’ ability to meet the two perfect reconstruction conditions, equations (2.10)-(2.11));

accuracy is given by the number of zeros at z = −1 in the LPFs; smoothness is evaluated by

examining the eigenvalues of the autocorrelation matrices of the LPFs [30]; and, the coding

gain is calculated using the unified coding gain estimate in [31].
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Figure 3.8: Direct form hardware architectures for the FIR filter.

3.3.2 Hardware Performance

The hardware performance of the filters was evaluated by synthesizing the filters for an Altera

FPGA. The experimental procedure is as follows. Given the desired SPT coefficients (from

Tables 3.2, 3.3, and 3.4), filter synthesis software, written in C, generates a synthesizable

VHDL description of the filter. VHDL was written in a structural style, and care was

taken to ensure that hardware features such as carry chains are fully exploited. The Altera

Quartus II version 2.1 software package is used for logic synthesis, placement and routing on

an EP20K1000EFC672-1X Altera FPGA, a member of the APEX family. The filter designs

are verified by comparing the output of a Quartus simulation of the implemented filter with

the expected output from Matlab. The Quartus software is used to analyze critical path

delays, to determine hardware size, measured here in terms of number of Altera logic cells,

and to estimate power consumption for a sample set of stimuli that include 500 random

patterns, along with 120 other patterns useful for verification. All energy estimates are done

at a common operating frequency of 66.67MHz as described in Appendix A.

Filters were synthesized with enough precision on intermediate signals so that no bits of
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information are ever lost. Fixed-point, two’s complement adders are used, but the number

of integer and fraction bits for each hardware adder are chosen so that no round-off or

overflow can occur. Thus, the fixed-point hardware gives precisely the same results that

infinite precision hardware would give given the quantized coefficients. A major advantage of

this approach is that all hardware implementation effects are fully considered by analyzing

the effects of quantizing the coefficients; there is no need to do a numerical analysis of the

computations themselves. Data formats for signals are represented using the notation (n, l),

where n is the total number of bits, including the sign bit, and l is the weight of the least

significant bit. For example, if a signal has format (12,−2), it has twelve bits, with the least

significant bit in the 2−2’s place, and so it has ten bits of integer and two bits of fraction.

In creating a hardware implementation of a direct or cascade filter, consideration must be

given to the hardware architecture. Figure 3.8 shows the architectural variations considered.

In all cases, a chain of registers is used to shift the data in, and the data is shifted in

accordance with the filter coefficients before being summed. For example, if one of the filter

coefficients were 0.46875 = 2−2 − 2−5, the corresponding data word would go to two shifters

and be shifted two and five places, respectively, before being summed. The main difference

between the variations is in how the summing is done. The first variation, shown in part (a)

of Figure 3.8, uses a pipelined tree of ripple carry adders (RCAs). This tree has depth that

grows logarithmically with T , the number of terms to be added (and the number of non-zero

digits in the SPT representations of all the filter coefficients); depth is ⌈log2(T )⌉, and plays

a role in the latency of the filter. The delay of a ripple carry adder grows linearly with the

bit width of the adder, and the throughput of the RCA tree depends on the bit width of the

widest ripple carry adder in the tree.

The other architectural variations replace the RCA tree with a pipelined tree of carry save

adders (CSAs), as shown in part (b) of Figure 3.8. Carry save addition propagates two

separate partial results, rather than one complete sum. Thus, each carry save adder (CSA)

in the tree takes three data words in, and produces two words at the output (denoted a sum

word and a carry word). This tree’s depth is ⌈log1.5(T )⌉. By splitting the sum and carry
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information into two separate words to be dealt with independently, the carry save adder has

the highly desirable property that its delay is simply the delay of a full adder, independent

of the bit width of the signals being added. This means that the throughput of the CSA

tree is high, and independent of the bit widths of the intermediate signals. The fact that

the CSA tree is deeper than a similar RCA tree means that these architectural variations

have higher latency than the first, but latency is easily tolerated, and less important than

throughput, for image processing applications.

The CSA tree produces two outputs that must be summed, or “vector-merged”, using con-

ventional techniques to produce the final filter output. For the second architectural variation,

a simple ripple carry adder (RCA) is used for the vector merge. Here, the vector merge adder

is the slowest element in the system, and therefore the throughput of the entire system will

depend on the delay of this adder. The third architectural variation uses a parallelized adder

instead to increase the throughput; a number of RCAs, operating round-robin style, work in

parallel to better keep up with the high throughput of the CSA tree. The result is a system

with higher throughput, but also higher hardware cost.

Direct filters with no gain compensation are implemented exactly as shown in Figure 3.8;

for cascade filters, each section is implemented as shown, and the sections are cascaded

together. Gains, whether for a direct or cascade filter, are implemented as an additional

cascaded section, as though a gain were an additional filter with a single coefficient.

Table 3.7 compares the three architectural variations for a single filter design, the T = 32

direct filters without gain compensation, whose coefficients are shown in Table 3.2. All

variations produce precisely the same mathematical results, and give the same PSNR when

used for image compression. From the table, it is easy to see that the variations provide a

trade-off between hardware cost and hardware performance. The architecture with a simple

RCA tree is small, with low latency, but relatively low in throughput. Using a CSA tree

with a parallelized vector merge adds significantly to size and latency, but also significantly

improves throughput. These comments apply in general, and so in comparing the filter
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Table 3.7: Comparison of three different hardware architectures for T = 32 direct filters

without gain compensation. Filter coefficients are shown on the left-hand side of Table 3.2.

RCA tree
CSA tree with CSA tree with

RCA vector merge parallelized vector merge

H ′

9(z) F ′

7(z) H ′

9(z) F ′

7(z) H ′

9(z) F ′

7(z)

number SPT terms 21 11 21 11 21 11

size (logic cells) 574 307 648 349 850 465

latency (clock cycles) 5 4 8 6 12 10

input data format (8,0) (8,0) (8,0) (8,0) (8,0) (8,0)

output data format (18,-9) (14, -5) (18,-9) (14, -5) (18,-9) (14, -5)

clock rate (MHz) 68.68 102.72 107.55 114.98 199.16 204.12

energy (mJ) 6.37 6.14 6.78

Table 3.8: Comparison of hardware metrics for design methods for T = 32. All filters use a

CSA tree with an RCA vector merge.

Direct Direct Cascade Cascade Cascade Cascade

no gain with gain no gain with gain z2 comp. z1 comp.

H′

9
(z) F ′

7
(z) H′

9
(z) F ′

7
(z) H′

9
(z) F ′

7
(z) H′

9
(z) F ′

7
(z) H′

9
(z) F ′

7
(z) H′

9
(z) F ′

7
(z)

SPT terms 21 11 17 15 20 12 17 15 19 13 20 12

size (logic cells) 648 349 519 473 677 387 554 563 669 470 690 387

latency (clocks) 8 6 7 9 13 10 13 14 13 10 13 10

input format (8,0) (8,0) (8,0) (8,0) (8,0) (8,0) (8,0) (8,0) (8,0) (8,0) (8,0) (8,0)

output format (18,-9) (14,-5) (17,-8) (27,-18) (20,-11) (17,-8) (18,-8) (25,-16) (19,-10) (21,-12) (21,-11) (17,-8)

clock rate (MHz) 107.55 114.98 103.57 78.31 86.25 128.75 97.97 71.05 86.50 77.82 94.02 128.75

energy (mJ) 6.15 6.18 6.34 6.45 6.44 6.36

design methods, results are presented for the middle variation (CSA tree with an RCA

vector merge), keeping in mind that the other variations can be used to meet lower cost or

higher throughput requirements.

Table 3.8 shows the hardware performance for the quantized 9/7 LPFs, synthesized using

the six proposed design methods. All filters share T = 32 SPT terms between the low pass

analysis filter H ′
9(z) and the low pass synthesis filter F ′

7(z). The cascade form filters are

slightly larger than the direct form filters, and have higher latency; this is to be expected,

because breaking a filter into sections implies a larger total number of filter coefficients, and

therefore more registers. Adding up the number of logic cells required for H ′
9(z) and F ′

7(z),

the two direct form systems require 997 and 992 logic cells, respectively, while the cascade
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form systems require between 1064 and 1139 logic cells. All filters take in inputs of data

format (8,0), i.e., eight bit two’s complement integers. They vary in terms of their output

data formats, depending on the precision of the coefficients used; for example, output formats

for F ′
7(z) range from fourteen bits for the “direct without gain compensation” method, for

which the coefficients span only five bit positions, to twenty-five bits for the “cascade with

gain compensation” method, which has a gain that alone spans eleven bit positions. A larger

span implies internal signals of larger bit width, since no information is lost due to truncation

or round off. The clock rate results also indicate system throughput, since the filter takes

in one input and produces one output at every clock. The results show that clock rate is

largely related to the bit widths of the output signal (with some variation attributable to

differences in routing choices made by the Quartus synthesis software); this is to be expected,

since the critical path in the architecture is through the vector merge adder, and its delay is

proportional to the output bit width. The cascade form filters also require more energy than

the direct form filters to compute the DWT. This is a consequence of the higher number of

logic elements and wider output bit widths in the cascade form filters.

3.4 Summary

This chapter addressed the filter structure and filter coefficient quantization design issues for

a fast, multiplierless hardware implementation of the traditional (convolution based) DWT

filter bank. A cascade form implementation is the better choice compared to the the direct

form implementation since it leaves the LPF zeros at z = −1 unperturbed, avoiding the

checkerboarding artifact in compressed images. Two compensation techniques—“gain com-

pensation” and “zero compensation”—were developed to reduce degradation of the quantized

filter bank properties. The “z1 compensation” technique yields the best filter bank perfor-

mance in terms of compression performance. From a hardware perspective, the direct form

implementations were slightly smaller, had lower power consumption and had smaller latency

than the cascade form implementations. Among the cascade form filters, z1-compensated
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filters resulted in the fastest hardware with low energy consumption.

The next chapter seeks to improve the performance of “z1 compensation” by examining a

polyphase implementation.



Chapter 4

Polyphase Implementation

The TDC based filter bank structure as shown in Figure 2.3 is inefficient in terms of data

throughput, regardless of whether the filters are implemented in the direct form or as a

cascade of sections. In the analysis stage, the downsampling operation follows the filtering,

and half the samples just computed by the filters are discarded. Thus, the output rate of

the analysis stage is half the input rate. In the synthesis stage, the upsampling operation

precedes the filtering operation. Here, the filters operate at double the input rate; however,

because upsampling inserts zeros in the input data, at any given time, half of the multipliers

in the synthesis filters are multiplying by zero. Thus, half of the mathematical operations

are wasted. The filter bank in Figure 2.3 is referred to as a non-polyphase structure. This

chapter presents a polyphase structure that can avoid wasted operations and double filter

bank throughput.

4.1 Polyphase Structures

The basic block of the analysis side of a filter bank is a filter h[n] = (h0, h1, h2, h3, h4, h5, ....) ↔
H(z) followed by a downsampling operation, as shown in Figure 4.1a. Separating the odd

51
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H(z) ↓ 2- - -

(a) Non-polyphase structure

↓ 2

↓ 2

Ho(z)

He(z)

+

z−1

-

-

-

- - ?-

(b) Polyphase structure

Figure 4.1: Direct form filter, analysis side.

and even powers in the transfer function we have

H(z) = h0 + h1z
−1 + h2z

−2 + h3z
−3 + h4z

−4 + ....

= (h0 + h2z
−2 + h4z

−4 + ....)

+z−1(h1 + h3z
−2 + h5z

−4 + ....)

= He(z
2) + z−1Ho(z

2) (4.1)

where

He(z) ↔ (h0, h2, h4, ...) (even phase of h[n])

Ho(z) ↔ (h1, h3, h5, ...) (odd phase of h[n]) .

Once the even and odd powers have been separated, the order of the downsampling opera-

tion and the filter can be exchanged, according to the first Noble identity [30]. The resulting

polyphase filter structure, shown in Figure 4.1b, is computationally equivalent to the orig-

inal structure in Figure 4.1a, but much more efficient: rather than filtering the full input

stream, and then downsampling the results, it downsamples the input stream so that only

the necessary computations are done.

A similar transformation applies to the synthesis side of the filter bank. The synthesis filter

f [n] = (f0, f1, f2, f3, f4, ....) ↔ F (z) is divided into its even- and odd-indexed coefficients:

Fe(z) ↔ (f0, f2, f4, ...) (even phase of f [n])

Fo(z) ↔ (f1, f3, f5, ...) (odd phase of f [n]) .
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(a) Non-polyphase structure
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6
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(b) Polyphase structure

Figure 4.2: Direct form filter, synthesis side.

Again, the resulting polyphase structure is equivalent to, but with twice the throughput of,

the original structure. Both structures are shown in Figure 4.2.

The polyphase structure can be applied to both direct and cascade filter banks. The following

subsections describe its application to the direct structure, to the cascade structure, and to

a hybrid direct-cascade structure.

4.1.1 Direct Polyphase Structure

For a polyphase, direct implementation of the biorthogonal 9/7 filter bank, each filter is split

into its even and odd phases. Each phase will still be symmetric. Applying the polyphase

idea does not change the coefficients at all, so a direct form polyphase implementation (direct-

poly) requires the same total number of SPT terms as the direct form without polyphase

(direct-no-poly). The advantage of a direct-poly implementation, is that the throughput is

doubled with no significant change in hardware cost. The direct-poly and direct-no-poly

structures produce precisely the same data outputs, and therefore have the same effect on

image compression quality. In particular, this implies that the direct-poly implementation

will still have the same problems as the direct-no-poly implementation: the zeros at z = −1

will not be preserved, and reconstructed images will exhibit the checkerboard artifact.

The direct-poly structure of one stage of the filter bank in Figure 2.3 is shown in Figure 4.3.
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Figure 4.3: Direct-poly structure for the filter bank.

4.1.2 Cascade Polyphase Structure

The cascade filter structure puts the zeros at z = −1 in a separate filter section so as to

ensure that they are not perturbed, even after coefficient quantization. Figure 4.4a shows

the cascade structure (two sections H1(z) and H2(z) and a gain of K) followed by the

downsampling operation.

To apply the polyphase idea to the cascade structure, the filter is rewritten in so that the

Noble identity can be used to move the downsampling operation to the filter input. Starting

with the polyphase representation of both cascaded sections, H1(z) and H2(z), the equations

are rearranged such that the delays are first grouped and factored out, and then the Noble

identity is employed:

H(z) = H1(z).H2(z)

= [H1e(z
2) + z−1H1o(z

2)].[H2e(z
2) + z−1H2o(z

2)]

= H1e(z
2)H2e(z

2) +

z−1.[H1o(z
2)H2e(z

2) +H2o(z
2)H1e(z

2)] +

z−2H1o(z
2)H2o(z

2). (4.2)

The result is the cascade-polyphase form in Figure 4.4b. This structure doubles the through-
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(b) Non-optimal polyphase structure
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(c) Cascade polyphase structure

Figure 4.4: Cascade form filter, analysis lowpass filter.

put of the original cascade-no-poly form while still preserving the zeros at z = −1. The

structure in Figure 4.4b can be further simplified by absorbing the delay following the down-

sampling in the second branch into H1o(z). The two branches containing H2e(z) can then

be combined into one branch and the two branches containing H2o(z) can be combined into

another branch to give the structure in Figure 4.4c [32].

The structure in Figure 4.4c represents the analysis LPF H(z) of the filter bank, which is

split into two sections—H1(z) containing the four zeros at z = −1 and H2(z) containing the

remaining zeros in the right half of the z-plane. Since each polyphase section of first cascade

filter H1(z) appears twice in the structure, the cascade polyphase implementation requires
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more hardware than the original non-polyphase cascade form. This extra hardware, however

can be used to implement the analysis HPF G(z) of the filter bank as shown next.

The cascade form for the biorthogonal 9/7 lowpass filters are (equations (3.1) and (3.2)),

H(z) = k9H1(z) ·H2(z) and

F (z) = k7F1(z) · F2(z),

where

H1(z) ↔ {1, 4, 6, 4, 1}, H2(z) ↔ {1, a1, a2, a1, 1},

F1(z) ↔ {1, 4, 6, 4, 1}, F2(z) ↔ {1, a3, 1}.

The analysis highpass filter G(z) is related to the synthesis lowpass filter F (z) by G(z) =

F (−z); the cascade form of G(z) can thus be written as,

G(z) = k7G1(z) ·G2(z),

where

G1(z) ↔ {1,−4, 6,−4, 1} and G2(z) ↔ {1,−a3, 1}.

Splitting G1(z) into its polyphase sections, we see that

G1e(z) = H1e(z) and G1o(z) = −H1o(z).

Thus the cascade polyphase structure for the analysis highpass filter can be obtained from

the lowpass filter structure in Figure 4.4c, by simply scaling the branches containing H1o(z)

by -1, and using the polyphase sections G2e(z) and G2o(z) in place of H2e(z) and H2o(z)

respectively.

The cascade polyphase structure for the analysis lowpass and highpass filters can be combined

to give the structure in Figure 4.5—a unified cascade polyphase structure for the analysis side

of the biorthogonal 9/7 filter bank [32]. Since the polyphase sections belonging to H1(z) are

used by both—H(z) and G(z), the total SPT required for this cascade-polyphase structure

is the same as that required for the non-polyphase cascade form.
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Figure 4.5: Cascade polyphase structure for analysis side.

4.1.3 Direct-Cascade Polyphase Structure

The direct form coefficients in Table 3.2 (with and without gain compensation), do not

preserve the zeros at z = −1. As a result subjective quality of images compressed using

the direct-poly structure is inferior to that obtained using the cascade-poly structure. The

cascade structure has the coefficients that maintain zeros at z = −1, and can be used to

derive the direct-poly coefficients.

Starting with the quantized coefficients from the “cascade with z1 compensation” method

shown in Table 3.3, the coefficients of the first and second sections are convolved together to

make a single section. This single section is mathematically equivalent to the original cascade,

but can be implemented in a direct form polyphase implementation. The normalizing gain

factor, K, remains a separate stage. The resulting coefficients are shown in Table 4.1.

This structure is referred to as the direct-cascade-poly form, since it is equivalent in image

compression performance to the cascade, but is a direct polyphase structure.

The number of SPT terms required for the direct-cascade-poly structure depends on the

particular coefficients; in general, the convolved coefficients for the direct-cascade-poly struc-

ture will require more terms than the original cascade-no-poly coefficients from which they

were derived. For the “z1 compensation” coefficients, the cascade-no-poly structure re-

quired T = 32 SPT terms and the direct-cascade-poly structure required T = 45. The
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Table 4.1: Direct-cascade-poly coefficients obtained by convolving the “z1 compensation”

coefficients in Table 3.3, T = 45.

n H ′(z) F ′(z)

0 1 00001.0000 -1 0001.0000

1 -0.625 00000.1010 -0.6875 0000.1011

2 -2.8125 00011.0101 6.25 0110.0100

3 10.375 01010.0110 11.875 1100.0010

4 23.125 11001.0010 6.25 0110.0100

5 10.375 01010.0110 -0.6875 0000.1011

6 -2.8125 00011.0101 -1 0001.0000

7 -0.625 00000.1010

8 1 00001.0000

K 0.0390625 0.0000101 0.0625 (simple shift)

G - -

direct-cascade-poly design method gives the high throughput of a polyphase structure with

a moderate increase in hardware cost, while preserving image compression quality by leaving

the zeros at z = −1 unperturbed.

4.2 Results

Polyphase and non-polyphase structures are implemented using the architecture shown in

Figure 3.8b, where each filter coefficient is implemented using a carry save adder (CSA) tree

and a vector merge adder. Results involve four different combinations of filter coefficient

quantization technique, form and structure: a direct form with gain compensation (from

Table 3.2) in both non-polyphase and polyphase structures (direct-no-poly and direct-poly),

a cascade form with z1 compensation (from Table 3.3) in non-polyphase and polyphase

structures (cascade-no-poly and cascade-poly), and a direct form that effectively implements

cascade with z1 compensation in a polyphase structure (direct-cascade-poly).

From an image compression performance point of view, since the direct-no-poly and direct-
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Table 4.2: Hardware metrics for polyphase implementations of the filter banks.

Non-Polyphase Polyphase

direct-no-poly cascade-no-poly direct-poly cascade-poly direct-cascade-poly

SPT terms 32 32 32 32 45

size (logic cells) 992 1077 1143 1371 1415

latency (clock cycles) 9 13 19 26 21

full rate (MHz) 78.31 94.02 143.67 111.70 130.45

half rate (MHz) - - 71.83 55.85 65.22

Energy (mJ) 6.18 6.36 7.83 4.81 8.17

approx format, sl (17, -8) (21, -11) (17, -8) (21, -11) (21, -11)

details format, dl (27, -18) (17, -8) (27, -18) (17, -8) (17, -8)

poly are mathematically equivalent, both give the same results as shown in Table 3.5 under

“direct with gain compensation”. Similarly, the cascade-no-poly, cascade-poly and direct-

cascade-poly systems, all give the results noted under “cascade with z1 compensation”.

The structures using cascade coefficients result in significantly better qualitative results

since there is no checkerboarding; the checkerboard artifact is easily visible with the direct

structures at most compression ratios.

Hardware performance of the four systems was evaluated as in Chapter 3. Table 4.2 summa-

rizes the hardware performance of the filter banks. The polyphase filters operate at a higher

rate than the non-polyphase versions; for example, the direct polyphase filter bank has a full

rate of 144 MHz, while the non-polyphase version has a full rate of only 78 MHz. The dif-

ference in rate between the non-polyphase filters and the polyphase filters can be accounted

for by considering which hardware must run at the full rate of speed. In the non-polyphase

filters, where downsampling occurs after the analysis filters and upsampling occurs before

the synthesis filters, practically all of the hardware (i.e., all the individual filters) must run at

the full rate. In essence, the non-polyphase analysis hardware computes twice as many out-

puts as needed, and then throws half of them away during downsampling. In the polyphase

filters, where downsampling occurs before the analysis filters and upsampling occurs after

the synthesis filters, only the downsampling and upsampling hardware must run at the full
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rate; the filters themselves run at the slower half rate. The polyphase filters perform only

half as many computations as their non-polyphase counterparts, since they perform only the

computations that are needed. Since the filters are by far the most complicated part of the

system, with the longest critical paths, a polyphase system that requires that they run only

at half speed will be able to use a faster system clock.

The cascade-poly structure is faster than the cascade non-poly structure, but does not show

the almost doubling of throughput exhibited by the direct-poly structure. Of the three

structures derived from the cascade coefficients, the direct-cascade-poly structure has the

highest throughput; but this comes at the cost of larger hardware, since it requires 45 SPT

terms compared to 32 SPT terms for the two other structures. Note that in hardware, the

polyphase implementations do not show an exact doubling of throughput compared to the

non-polyphase structures, as one would expect. This is because in an FPGA implementation,

throughput not only depends on whether each filter has been implemented as polyphase, but

also on a number of timing parameters such as gate delays, latency of the vector merge adders

and routing delays, and the interaction between these parameters.

The energy required for computing a 5-level DWT of a 512 × 512 image (see Appendix A)

is reported in the last row of Table 4.2. The direct non-polyphase structure requires less

energy than the direct polyphase structure, while the cascade polyphase structure requires

less energy than the cascade non-polyphase structure. Among the polyphase structures, the

cascade-poly structure is the most energy efficient. This is because, of the 18 coefficients

needed to implement the cascade-poly structure, only 4 coefficients (a2, and 2 instances for

a1 for H(z), and a3 for G(z)) have wide bit widths. All other coefficients have compact bit

widths, resulting in smaller, low-power adders. In contrast, the direct-cascade-poly structure

has coefficients with wide bit widths as seen in Table 4.1.
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4.3 Summary

The polyphase structure of the filter bank can be used to increase throughput of the filter

bank. In an FPGA implementation the actual increase in throughput depends on a number of

hardware timing parameters, and may not always equal the theoretical doubled throughput.

The best image compression performance is obtained by adopting the cascade form for filters

and quantizing coefficients using z1 compensation. The cascade-poly structure results in a

low-power polyphase implementation using the cascade coefficients. The direct-cascade-poly

structure gives the same image compression performance at higher throughput, but at the

cost of larger hardware and higher energy consumption.

The next chapter studies “lifting”—an alternative polyphase implementation for computing

the DWT.
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Lifting Implementation

The polyphase and non-polyphase implementations of the biorthogonal 9/7 DWT in Chap-

ters 3 and 4 employ Mallat’s pyramid algorithm based on the perfect reconstruction filter

bank shown in Figure 2.3. This chapter examines the “lifting” approach to computing the

DWT. Lifting provides an efficient alternative to the traditional convolution filter bank im-

plementation. This method not only requires fewer computations than the conventional

method, but it also operates in polyphase—i.e. the output rate of the analysis stage is the

same as the input rate, and hence there are no wasted computations.

5.1 Lifting Structure

Consider the signals in a two-channel PR filter bank shown in Figure 5.1. Splitting the input

X(z) into its even and odd phases, and using the polyphase forms for the analysis filters,

H(z) = He(z) + z−1Ho(z) and

G(z) = Ge(z) + z−1Go(z),

62
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Figure 5.1: A two-channel (PR) filter bank.

the analysis stage of the filter bank can be expressed in the matrix form as

[

V0(z)

V1(z)

]

=

[

He(z) Ho(z)

Ge(z) Go(z)

] [

Xe(z)

z−1Xo(z)

]

. (5.1)

Using the polyphase forms for the filters on the synthesis side, the reconstructed signal can

be expressed as:

X̂(z) =
[

z−1 1
]

[

Fo(z
2) Jo(z

2)

Fe(z
2) Je(z

2)

] [

V0(z
2)

V1(z
2)

]

. (5.2)

Perfect reconstruction will be obtained when [33],

Fp(z)Hp(z) = z−d

[

0 1

z−1 0

]

, (5.3)

where,

Hp(z) =

[

He(z) Ho(z)

Ge(z) Go(z)

]

, and

Fp(z) =

[

Fo(z) Jo(z)

Fe(z) Je(z)

]

,

are the analysis and synthesis polyphase matrices respectively, of the two-channel filter bank.

When the polyphase matrices satisfy the PR condition of equation (5.3), the reconstructed

signal is x̂(n) = x(n − n0), where n0 = 2d + 2. The polyphase form of the filter bank is

shown in Figure 5.2.
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Figure 5.2: Filter bank using the analysis and synthesis polyphase matrices.

For the biorthogonal 9/7 filters, the polyphase matrices are 1:

Hp(z) =

[

h4(z
2 + z−2) + h2(z + z−1) + h0 h3(z

2 + z−1) + h1(z + 1)

g1(1 + z) + g3(z
2 + z−1) g0z + g2(z

2 + 1)

]

and

Fp(z) =

[

f1(z + 1) + f3(z
−1 + z2) j0 + j2(z

−1 + z) + j4(z
−2 + z2)

f0 + f2(z + z−1) j1(1 + z−1) + j3(z + z−2)

]

. (5.4)

The filters (H(z), G(z)) constitute a complementary filter pair; i.e. their analysis polyphase

matrix has determinant 1. Thus, it can be decomposed using the Euclidean algorithm for

Laurent polynomials [17], so that

Hp(z)
T =

m
∏

i=1

[

1 si(z)

0 1

] [

1 0

ti(z) 1

] [

K 0

0 1/K

]

.

This factorization is not unique, and there are a number of {si(z), ti(z)} pairs that lead to

the same analysis and synthesis polyphase matrices. For odd length symmetric wavelet filters

whose lengths differ by 2, such as the biorthogonal 9/7 wavelet filters, the polyphase matrix

1The biorthogonal 9/7 filters are given by [34]:

H(z) = h0 + h1(z + z−1) + h2(z
2 + z−2) + h3(z

3 + z−3) + h4(z
4 + z−4)

G(z) = g0z + g1(z
2 + 1) + g2(z

3 + z−1) + g3(z
4 + z−2)

F (z) = f0 + f1(z + z−1) + f2(z
2 + z−2) + f3(z

3 + z−3)

J(z) = j0z + j1(1 + z−2) + j2(z + z−3) + j3(z
2 + z−4) + j4(z

3 + z−5).

where,

h0 = j0 = 0.85269867900889 f0 = g0 = 0.78848561640558

h1 = −j1 = 0.37740285561283 f1 = −g1 = 0.41809227322162

h2 = j2 = −0.11062440441844 f2 = g2 = −0.04068941760916

h3 = −j3 = −0.02384946501956 f3 = −g3 = −0.06453888262870

h4 = j4 = 0.03782845550726



Chapter 5. Lifting Implementation 65

Table 5.1: Lifting coefficients for the biorthogonal 9/7 wavelet filters.

Irrational Rational

α -1.58613434. . . -3/2

β -0.0529801185.. . -1/16

γ 0.882911076. . . 4/5

δ 0.443506852. . . 15/32

ζ 1.14960439. . . 4
√

2/5

can be factored such that {si(z), ti(z)}, are two-tap symmetric filters. These filters find favor

for hardware implementation as they reduce the number of multipliers to be implemented.

Factoring the biorthogonal 9/7 polyphase matrix results in the form [17]:

Hp(z)
T =

[

1 α(1 + z−1)

0 1

] [

1 0

β(1 + z) 1

] [

1 γ(1 + z−1)

0 1

]

[

1 0

δ(1 + z) 1

] [

ζ 0

0 1/ζ

]

(5.5)

where, the floating point values of α, β, γ, δ and ζ (called the lifting coefficients) are listed

in Table 5.1 under “Irrational”.

Implementation of the analysis side of the biorthogonal 9/7 filter bank using the lifting

scheme is shown in Figure 5.3 (i.e. implementation of the matrix Hp(z)). The analysis side

of the filter bank is represented by the operations:

s
(0)
l = x2l

d
(0)
l = x2l−1

d
(1)
l = d

(0)
l + α(s

(0)
l + s

(0)
l−1)

s
(1)
l = s

(0)
l + β(d

(1)
l + d

(1)
l+1)

d
(2)
l = d

(1)
l + γ(s

(1)
l + s

(1)
l−1)

s
(2)
l = s

(1)
l + δ(d

(2)
l + d

(2)
l+1)

sl = ζs
(2)
l
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Figure 5.3: Lifting implementation of the analysis side of the biorthogonal 9/7 filter bank.

dl = −d(2)
l /ζ. (5.6)

The lowpass and highpass filtering operations have been replaced by 4 two-tap “lift” and

“update” filters and a scaling step at the end. The synthesis side of the filter bank simply

inverts the scaling, and reverses the sequence of the lifting and update steps. Figure 5.4

shows the synthesis side of the filter bank using lifting. Figures 5.3 and 5.4 show that if

the scaling factors ζ and 1/ζ are ignored and the synthesis stage immediately follows the

analysis stage (i.e. no compression), analysis is exactly inverted regardless of the quantized

values used for α, β, γ and δ. Thus, the lifting structure is inherently orthogonal, giving it a

significant advantage over convolution where perfect reconstruction is not guaranteed after

the coefficients are quantized.

The irrational lifting coefficients in Table 5.1 have infinitely long binary representations; for a

fast hardware implementation these coefficients must be quantized, or approximated in fixed-

point. As before, the more SPT terms used to represent the lifting coefficients (the higher the

value of T ), the closer the quantized lifting coefficients are to the unquantized coefficients—
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Figure 5.4: Lifting implementation of the synthesis side of the biorthogonal 9/7 filter bank.
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and consequently, the closer the PSNR values achieved by the fixed-point hardware are to

the PSNR values obtained with unquantized coefficients.

The unquantized 9/7 analysis lowpass and highpass filters have four zeros at z = −1 and

1 respectively. These zeros determine the smoothness of the analysis and synthesis scaling

functions and prevent DC leakage in the analysis highpass filter. Tay and Guangjun et. al.

independently derived a set of rational lifting coefficients by moving two zeros of the analysis

lowpass filter away from z = −1 [18, 19]. These coefficients are listed in Table 5.1 under

“Rational”. The rational lifting coefficients generate PSNR values almost exactly equal to

the irrational coefficient PSNR values [19]. The rational coefficients are also more easily

quantized than the irrational; all except γ and ζ have finite binary representations and can

be represented exactly—with no approximation—with a small T .

5.2 Lifting Coefficient Quantization

5.2.1 Quantization Objectives

Hardware implementation of the lifting structure requires quantization of the six lifting

coefficients—α, β, γ, δ, ζ and 1/ζ . Quantization of the six lifting coefficients changes the

magnitude response of the analysis filters. As seen in Chapter 3, good compression per-

formance requires that the magnitude response of the quantized analysis filters (H ′(z) and

G′(z)) closely approximate the magnitude response of the unquantized 9/7 filters (H(z) and

G(z)). Quantized values of α, β, γ and δ determine the shape of the magnitude responses;

whereas, quantized values of ζ and 1/ζ , determine the DC gain and Nyquist gain of H ′(z)

and G′(z) respectively.

Quantization techniques presented in the following subsections, for both the irrational and

rational lifting coefficients, attempt to:

1. perfectly reconstruct the DC component (|H ′(0)||G′(π)| = 2),
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2. prevent DC leakage and avoid the checkerboarding artifact at low bit rates (|G′(0)| =

0), and

3. minimize the mean-squared-error (MSE) of the magnitude responses of the quantized

lowpass and highpass filters (|H ′(ω)| and |G′(ω)|).

5.2.2 Quantization of Irrational Coefficients

Lifting coefficient quantization can be posed as a problem of allocating a fixed number T of

SPT terms to the six coefficients (α, β, γ, δ, ζ and 1/ζ) while retaining acceptable subjective

quality for the reconstructed image. Here, “acceptable” subjective quality is defined by the

absence of the checkerboarding artifact. (For all approaches, the T used is the smallest

number of terms that did not result in checkerboarding.) The following three approaches

were developed for quantizing the irrational lifting coefficients.

5.2.2.1 Mostly Uniform Allocation (MUA)

Here all six lifting coefficients are allotted the same base number of SPT terms and then the

largest magnitude coefficients are allotted extra terms. Once the number of terms for a given

coefficient is decided, the unquantized coefficient is quantized to the closest SPT coefficient

with that number of terms. Three SPT terms were used as the base, and three extra terms

were allotted to α and ζ , for a total of T = 21 terms. Quantized lifting coefficients obtained

with lower values of T resulted in checkboarding; T = 21 was the smallest value that yielded

images free from checkerboarding. Table 5.2 lists these coefficients under “irrational: MUA”.

5.2.2.2 Exhaustively Searched Allocation (ESA)

All possible allocations of a fixed number T of SPT terms to the six lifting coefficients are

examined. For each allocation, α, β, γ and δ are quantized to the closest SPT coefficient
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Table 5.2: Quantized lifting coefficients for biorthogonal 9/7 wavelet filters.

Quantized irrational coefficients Quantized rational coefficients

MUA ESA SA MUA MUA-LS MUA-LSGC

T=21 T=19 T=19 T=20 T=19 T=21

α -1.5859375 -1.59375 -1.5546875 -1.5 -1.5 -1.5

β -0.052734375 -0.0546875 -0.0546875 -0.0625 -0.0625 -0.0625

γ 0.8828125 0.8828125 0.85546875 0.7998046875 0.7998046875 0.7998046875

δ 0.44140625 0.4453125 0.4453125 0.46875 0.46875 0.46875

ζ 1.1484375 1.140625 1.1328125 1.13134765625 0.7998046875 0.7998046875

−1/ζ -0.87109375 -0.876708984375 -0.8828125 -0.8837890625 -1.25 -1.25030517578125

Lumped scaling N/A N/A N/A N/A
√

2
√

2

with the allotted number of terms; together, they determine the shape of the magnitude

response of the quantized filters. Next, a gain factor ζcomp is computed such that the DC

gain of the analysis LPF equals
√

2; this gain compensates for the change in DC gain due

to quantization of α, β, γ and δ. Quantized versions of the gain factors are then obtained

by approximating ζcomp and 1/ζcomp using the terms allotted to them. The following cost

function, CFESA, is used to evaluate the quantized coefficient sets:

CFESA = MSEh +MSEg + dev dc, (5.7)

where

MSEh =
1

π

π
∫

0

(|H(ω)| − |H ′(ω)|)2dω,

MSEg =
1

π

π
∫

0

(|G(ω)| − |G′(ω)|)2dω,

dev dc = |2 − |H ′(0)||G′(π)||.

CFESA measures the deviation of H ′(z) from H(z), the deviation of G′(z) from G(z), and

the degree to which an image’s DC component is reconstructed. The smallest number of

SPT terms for which the reconstructed images did not exhibit checkerboarding was T = 19.

The coefficient set judged to be best resulted in the smallest CFESA using 19 terms. Table

5.2 lists the resulting coefficients under “irrational:ESA”.
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5.2.2.3 Simulated Annealing (SA)

Simulated annealing searches for the best quantized coefficient set given a domain for each

coefficient [35][36]. The domain denoted D(B, Tmax) is the set of all real numbers between 2

and -2 whose SPT representation is up to B bits wide and has up to Tmax non-zero terms. SA

has the advantage that constraints can be placed on the bit widths of the lifting coefficients

by fixing B; however, there is no direct control over the total T for the set.

Coefficients are quantized in two passes. In the first pass, SA iteratively searches for the

best four-coefficient set {α, β, γ, δ}. For this pass, scaling factors ζ and 1/ζ are set to 1, and

the quality of a candidate set is measured by the cost function, CFSA. The cost function

uses the MSE between the quantized and unquantized magnitude responses. MSE in the

stopband is weighted more heavily than MSE in the passband to ensure that G′(z) has a

magnitude response close to 0 at z = 1.

CFSA = 0.75(MSEstopband) + 0.25(MSEpassband),

where

MSEstopband =
2

π

π
∫

π/2

(|H(ω)| − |H ′(ω)|)2dω +

2

π

π/2
∫

0

(|G(ω)| − |G′(ω)|)2dω,

MSEpassband =
2

π

π/2
∫

0

(|H(ω)| − |H ′(ω)|)2dω +

2

π

π
∫

π/2

(|G(ω)| − |G′(ω)|)2dω

In the second pass, SA uses the best quantized {α, β, γ, δ} from the first pass and iteratively

searches for the best quantized scaling factors ζ and 1/ζ . For this pass, the cost function

CFESA from equation (5.7) is used.
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Optimal quantized lifting coefficients were obtained using D(9, 4) for {α, β, γ, δ} and D(8, 4)

for the scaling factors. Using smaller bit widths or fewer non-zero digits resulted in checker-

boarding. The optimal lifting coefficient set used a total of T = 19 SPT terms; Table 5.2

lists these coefficients under “irrational:SA”.

5.2.3 Quantization of Rational Coefficients

Of the rational lifting coefficients depicted in Table 5.1, α, β and δ can be represented

exactly in SPT with a small number of terms, but γ, ζ and 1/ζ have infinitely long SPT

representations. Hence the fixed-point quantization of γ, ζ and 1/ζ require approximations.

The following three approaches were developed for quantizing these three coefficients.

5.2.3.1 Mostly Uniform Allocation (MUA)

The mostly uniform allocation scheme described above is again used for quantizing γ, ζ and

1/ζ . This scheme resulted in coefficients that required a total of T = 20. These coefficients

are listed in Table 5.2 under “rational:MUA”.

5.2.3.2 With Lumped Scaling (MUA-LS)

The rational gain factors ζ and 1/ζ include factors of
√

2 and 1/
√

2, respectively. Implemen-

tation of these factors in hardware can be avoided by lumping them together. For example,

one 2-D DWT stage includes both row and column filtering and two factors are required.

The
√

2 factors can be defered until 2 such factors can be combined into one factor of 2, 1/2

or 1. Multiplication and division by 2 can then be easily implemented as bit shifts.

With lumped scaling, γ and ζ are both equal to 0.8, which has an infinitely long binary (and

SPT) representation. Therefore, γ and ζ must be approximated by quantization; the other

coefficients, including 1/ζ = 1.25, are represented exactly. γ and ζ are quantized to γ′ and
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ζ ′ by allocating the remaining T s to each coefficient. A total of T = 19 terms are used for

the set and the coefficients are labeled “rational:MUA-LS” in Table 5.2.

5.2.3.3 With Lumped Scaling and Gain Compensation (MUA-LSGC)

This method uses lumped scaling to avoid implementation of the
√

2 factors as before, but

modifies 1/ζ from its original value of 1.25 in order to compensate for the change in DC gain

caused by quantization of γ. γ and ζ are quantized as in MUA-LS, and a new value of 1/ζ ,

[1/ζ ]comp, is computed using the quantized value of ζ ; i.e.

[1/ζ ]comp =
1

ζquantized
.

[1/ζ ]comp is then quantized using the terms allotted to it. A total of T = 21 terms are used

and the coefficients are labeled “rational:MUA-LSGC” in Table 5.2.

5.3 Results

5.3.1 Compression Performance

Table 5.3 compares the PSNR performance of the six quantized coefficient designs. Among

the quantized irrational designs, quantized coefficients obtained using the ESA method per-

formed best; among the quantized rational designs, all three designs performed equally well

under compression, but at 1:1 the gain compensation technique employed in MUA-LSGC

outperforms MUA-LS and MUA. Among all the quantized coefficient designs, the rational

coefficients quantized with lumped scaling and gain compensation (MUA-LSGC) yield the

best PSNR performance.

Table 5.4 shows the filter properties for the six lifting implementations. Among the quantized

irrational coefficients, the quantized set obtained using ESA has the smallest deviation-at-

DC (1.96e-5) and no-distortion MSE (5.8e-11). Among the quantized rational coefficients the
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Table 5.3: PSNR performance of the six quantized lifting coefficient designs. Numbers shown

for the quantized filters indicate PSNR degradation with respect to unquantized PSNR

values. Negative numbers indicate PSNR performance worse than the unquantized filter,

while positive numbers indicate PSNR performance better than the unquantized filters.

Quantized irrational coefficients Quantized rational coefficients

Unquantized MUA ESA SA MUA MUA-LS MUA-LSGC

T=21 T=19 T=19 T=20 T=19 T=21

1:1 58.75 -2.62 +0.01 -0.08 -0.40 -1.34 +0.05

8:1 32.76 -0.01 +0.00 -0.01 +0.00 +0.00 +0.00

32:1 27.99 -0.01 +0.00 -0.02 -0.01 -0.01 -0.01

A
er

ia
l2

100:1 24.79 -0.01 -0.01 -0.04 -0.01 -0.01 -0.02

1:1 58.70 -4.17 +0.00 -0.18 -0.67 -2.12 +0.05

8:1 32.83 -0.02 -0.01 -0.03 -0.01 -0.01 -0.01

32:1 24.81 -0.02 -0.01 -0.03 +0.00 +0.00 +0.00B
ik

e

100:1 21.24 -0.02 -0.03 -0.14 -0.03 -0.04 -0.04

1:1 58.68 -3.20 +0.00 -0.13 -0.45 -1.53 +0.06

8:1 33.68 +0.00 +0.01 +0.02 +0.01 +0.01 +0.01

32:1 27.29 -0.01 -0.01 -0.07 -0.01 -0.01 -0.01W
o
m

a
n

100:1 24.51 -0.02 -0.03 -0.07 -0.03 -0.03 -0.03

— PSNR degradation < 0.06dB

— 0.06dB < PSNR degradation < 0.5dB

— 0.5dB < PSNR degradation

Table 5.4: Filter properties for the six quantized lifting coefficient designs.

Filter
Quantized irrational coefficients Quantized rational coefficients

Property
Unquantized MUA ESA SA MUA MUA-LS MUA-LSGC

T=21 T=19 T=19 T=20 T=19 T=21

Deviation at DC 0 -8.0e-4 2.0e-5 -1.2e-4 2.5e-4 4.9e-4 3.9e-7

No Distortion MSE 0 6.3e-7 5.8e-11 1.5e-8 6.5e-8 2.4e-7 1.4e-14

Alias Cancellation MSE 0 0 0 0 0 0 0

Accuracy 4/4 0/0 0/0 0/0 0/0 0/0 0/0

Smoothness (analysis) 1.41 1.39 1.31 1.41 1.52 1.52 1.52

Smoothness (synthesis) 2.12 2.04 1.96 2.02 2.04 2.04 2.04

Coding Gain 9.71 9.69 9.70 9.70 9.71 9.71 9.70

MUA-LSGC coefficients exhibit the lowest deviation-at-DC (3.8e-7) and no-distortion MSE

(1.4e-14). This explains the superior performance of ESA and MUA-LSGC compared to the
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Figure 5.5: Comparison of magnitude response of analysis filters using unquantized, original

filters and filters obtained using quantized irrational lifting coefficients.

other quantized coefficients. All six designs resulted in similar smoothness of the analysis

and synthesis scaling functions; moreover, the coding gain of all six designs (9.69-9.71) was

almost identical to the unquantized coding gain (9.71).

Figure 5.5 compares the magnitude response of the lowpass and highpass analysis filters using
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Figure 5.6: Comparison of location of zeros between unquantized and quantized irrational

lifting coefficients. (a) 9-tap H(z) and (b) 7-tap F (z).

the unquantized and quantized irrational lifting coefficients. Among the three quantized

coefficient sets, the coefficients obtained using ESA gives the closest match to the unquantized

magnitude response in the passband of the analysis filters. The magnitude responses for the

unquantized filters and ESA, is practically indistinguishable between the frequencies [0, 0.04]

for the lowpass filter and [0.46, 0.5] for the highpass filter. Similarly, the ESA method gives

the best match to the unquantized magnitude response in the stopband for the highpass

analysis filter. Although the value of the magnitude response at f = 0 is not zero, the

value is very small and there is no significant DC leakage through the highpass analysis

filter. In the lowpass stopband frequencies, the ESA method yields the worst match to the

unquantized magnitude response. For natural images however, since a very small fraction of

the energy occurs at high frequencies around 0.5, high frequency leakage through the lowpass

filter does not have a significant impact on the reconstructed image.

Pole zero plots for the unquantized biorthogonal 9/7 lowpass filters and the filters resulting

from the three quantized irrational coefficient sets are shown in Figure 5.6. The quantized

filters do not have zeros at z = −1; instead they are distributed around z = −1 in a manner

so that the magnitude response at f = 0.5 is zero.
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Figure 5.7: Comparison of magnitude response of analysis filters using unquantized, original

filters and filters obtained using quantized rational lifting coefficients.

Figures 5.7 and 5.8 show the magnitude responses and pole-zero plots for filters obtained

using the three quantized rational coefficient sets. The three quantized magnitude responses

are indistinguishable. All quantized rational implementations have a small a non-zero value

(4.1e-4) for the analysis highpass magnitude response at f = 0. The pole-zero plots show
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Figure 5.8: Comparison of location of zeros between unquantized and quantized rational

lifting coefficients. (a) 9-tap H(z) and (b) 7-tap F (z).

that the quantized lowpass analysis and synthesis filters do not have zeros at z = −1, but

they are distributed around z = −1 in a manner so that the magnitude response at f = 0.5

is zero.

Comparing PSNR results for the lifting implementation in Table 5.3 to PSNR results for

the convolution implementation in Table 3.5, it can be seen that the lifting implementation

performs better in terms of image compression performance. This is due to the increased

robustness of lifting to coefficient quantization arising from the inherent orthogonality of the

structure. Although this orthogonality should have ensured perfect reconstruction (PSNR =

∞) at 1:1, all filters in Table 5.3 (with quantized and unquantized lifting coefficients) show

finite PSNR values at 1:1. There are two reasons for this—(a) DWT coefficients are rounded

to integers after the 5-level analysis stage and before quantization, introducing irretrievable

loss of information in the DWT coefficients before the synthesis stage, and (b) in the case of

the quantized filters, the product of the quantized ζ and quantized 1/ζ is not exactly equal

to 1.
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Table 5.5: Hardware performance of the six quantized lifting coefficient designs.

Quantized irrational coefficients Quantized rational coefficients

MUA ESA SA MUA MUA-LS MUA-LSGC

SPT Terms 21 19 19 20 19 21

size (logic cells) 2705 2284 2441 1981 1958 2123

Latency(clock cycles) 53 51 51 47 49 49

input format (8, 0) (8, 0) (8, 0) (8, 0) (8, 0) (8, 0)

fmax(MHz) 60.90 72.59 70.29 78.55 75.74 63.63

Energy (mJ) 6.45 6.27 6.17 5.63 5.61 5.79

approx format, sl (47, -38) (41, -32) (45, -36) (40, -31) (39, -30) (39, -30)

details format, dl (40, -31) (40, -31) (38, -29) (34, -25) (27, -17) (39, -29)

5.3.2 Hardware Performance

Table 5.5 depicts the hardware performance of the six quantized coefficient designs. The max-

imum possible operating frequency fmax is obtained via timing analysis, and indicates sys-

tem throughput. The energy shown is that required to compute a five-level, two-dimensional

DWT of a 512 × 512 block of random pixels. The table also shows the fixed-point formats

of the approximation and detail coefficients produced; the notation is (n, f): n is the total

number of bits, including the sign, and 2f is the weight of the least significant bit.

The quantized rational designs are smaller, faster, and require less energy than the quantized

irrational designs. The primary reason is that the rational coefficients have narrower bit

widths, which implies narrower adders that are faster and require less energy. (For example,

the first coefficient, -1.5, requires only three bits.) In the lifting structure, intermediate

signals grow in bit width after each lifting stage, with the amount of growth determined by

the corresponding coefficient. In the rational designs, the bit width grows more slowly, with

bit widths near the input of the system being particularly small. These smaller bit widths

imply narrower adders, and smaller hardware. Smaller hardware translates into lower energy

consumption. Throughput is a consequence of the width of the largest adder in the system,

so lower bit widths at the output make for faster, higher performance systems.



Chapter 5. Lifting Implementation 79

5.4 Summary

The lifting implementation is a polyphase implementation of the filter bank. The inherent

orthogonality in the lifting structure makes it more immune to coefficient quantization com-

pared to traditional convolution methods. This chapter investigated various quantization

schemes for the lifting coefficients of the biorthogonal 9/7 wavelets. Coefficient quantiza-

tion was accomplished such that the magnitude responses of the quantized analysis filters

were minimally impacted. The MUA-LSGC quantization method yields optimal, quantized

lifting coefficients for the biorthogonal 9/7 wavelet filters. This method began with the un-

quantized, rational coefficients previously reported. These coefficients offer the best image

compression performance (in terms of PSNR) with a small, fast hardware implementation.

The energy required by MUA-LSGC to compute the DWT of an image is lower than any of

the quantized coefficient designs that began with the irrational lifting coefficients.

The next chapter compares the two TDC implementation approaches introduced in Chapters

3-5: convolution and lifting.



Chapter 6

Convolution versus Lifting

The last three chapters addressed the hardware implementation of the DWT using two dif-

ferent approaches. The first approach, called the “convolution” approach, uses a filter bank

for computing the DWT, and can employ either a non-polyphase or polyphase structure.

The best image compression performance for a hardware implementation based on the con-

volution approach was obtained in Chapter 3 by using a cascade form for the filters, and

using z1 compensation for filter coefficient quantization. In Chapter 4 the throughput of

the convolution-based filter bank was increased by using a polyphase structure for the filter

bank. The second approach to computing the DWT is “lifting”. This approach requires

fewer computations than convolution and also operates in polyphase. In Chapter 5, optimal

quantized values for two sets of lifting coefficients were arrived at for good image compres-

sion performance. This chapter compares the best non-polyphase, polyphase and lifting

implementations, and evaluates them on the basis of image compression and hardware per-

formance.

80
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6.1 Candidates

Coefficient quantization plays a crucial role in the image compression performance of both—

convolution and lifting implementations of the DWT. The filter and filter bank structures

influence hardware metrics such as throughput, latency and power consumption of the im-

plementation. The best approaches to coefficient quantization preserve the two important

filter bank properties, no-distortion MSE and deviation-at-DC, for image compression per-

formance. We now compare the convolution approach and the lifting approach, using the

“best” quantized coefficient set obtained for each approach. The “best” set of quantized

coefficients is the set that requires the least number T of SPT terms, while retaining rea-

sonable image compression performance. Here “reasonable” is defined by the absence of

checkerboarding in the compressed image and PSNR degradation of no more than 0.1dB at

compression ratios ranging from 1:1 to 100:1.

6.1.1 Convolution Approach

6.1.1.1 Non-polyphase Implementation

The convolution approach requires quantization of the highpass and lowpass analysis filter

coefficients. As seen in Chapter 3, the best quantization technique for biorthogonal filter

coefficients is the z1 compensation method. Chapter 3 illustrated the performance of a

set of quantized coefficients with T = 32. Although 32 SPT terms provided reasonable

performance at high compression ratios, it is too restrictive for reasonable performance under

perfect reconstruction (1:1). To improve performance at 1:1, an additional 10 SPT terms are

allocated to coefficients of the second cascade section in the analysis filters. The quantized

coefficients and their SPT representations are listed in Table 6.1.

Quantized coefficient values are arrived at with z1 compensation, with a3 being quantized

first, and quantized values of a1 and a2 used to offset changes in the magnitude response of
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Table 6.1: Optimal quantized coefficients for convolution-based implementation (T = 42).

H ′

9(z) F ′

7(z)

1 001 1 001

4 100 4 100

6 110 6 110

4 100 4 100S
ec

ti
o
n

1

1 001 1 001

1 0001.000000000000 1 0001.0000000000

-4.630615234375 0100.101000101001 -3.36962890625 1001.0100010101

9.59765625 1010.101010010000 1 0001.0000000000

-4.630615234375 0100.101000101001S
ec

ti
o
n

2

1 0001.000000000000

K 0.0390625 0.0000101 -0.0625 (simple shift)

G - -

the lowpass branch arising from quantization of a3.

6.1.1.2 Polyphase Implementation

The non-polyphase structure suffers from wasted computations and low throughput. A

polyphase implementation can be used to increase the throughput of the filter bank. The

cascade-poly structure derived in Chapter 4, (Figure 4.5) can be used to implement the

T = 42 cascade coefficients in Table 6.1. This structure combines the increased throughput of

the polyphase structure with the superior compressed image quality of the cascade structure

and z1 compensated coefficients.

6.1.2 Lifting Approach

6.1.2.1 Irrational Coefficients

The lifting approach requires quantization of six lifting coefficients. Three coefficient quanti-

zation techniques were described in Chapter 5 for quantization of irrational lifting coefficients
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obtained from factoring the biorthogonal 9/7 analysis polyphase matrix. The best quantized

coefficient set was obtained using the Exhaustively Searched Allocation (ESA) method. This

method examined all possible allocations of a given T across the six lifting coefficients, and

chose the allocation that yielded the best quantized match to the unquantized lowpass and

highpass magnitude responses. The ESA coefficients, shown in Table 5.2, required T = 19

and are chosen to represent the lifting approach using irrational coefficients.

6.1.2.2 Rational Coefficients

Chapter 5 discussed three methods for quantizing the rational lifting coefficients for the

biorthogonal 9/7 that were reported previously. In addition to giving comparable image

compression performance as the irrational coefficients, these coefficients also have a conve-

nient SPT representation for implementation in hardware. Coefficients that have finite SPT

representation, are represented exactly in hardware without approximation. The best com-

pression performance was obtained using Mostly Uniform Allocation with Lumped Scaling

and Gain Compensation (MUA-LSGC). With lumped scaling, the
√

2 factors in the scaling

coefficients were combined to result in a single scaling factor of either 2, 1
2

or 1 at the end of

one level of 2D filtering. Gain compensation is used to ensure near perfect reconstruction of

the DC component of the image. The MUA-LSGC coefficients, shown in Table 5.2, required

T = 21 and are chosen to represent the lifting approach using rational coefficients.

6.2 Results

The two convolution designs and the two lifting designs were used to compute the five-level,

non-expansive, symmetric extension DWT of three eight-bit grayscale images from the ITU

standard digitized image set [37]. Perfect reconstruction and three compression ratios (8:1,

32:1 and 100:1) are examined.

Digital hardware for one level of analysis for each structure was implemented on an Altera
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Table 6.2: PSNR and hardware performance of convolution and lifting based implementa-

tions.

Convolution Lifting

Unquant. Non-poly Poly ESA MUA-LSGC

(T=42) (T=42) (T=19) (T=21)

1:1 58.75 58.70 58.70 58.76 58.80

8:1 32.76 32.75 32.75 32.76 32.76

32:1 27.99 27.98 27.98 27.99 27.98

A
er

ia
l2

100:1 24.79 24.86 24.86 24.78 24.77

1:1 58.70 58.63 58.63 58.70 58.75

8:1 32.83 32.81 32.81 32.82 32.82

32:1 24.81 24.85 24.85 24.80 24.81B
ik

e

100:1 21.24 21.42 21.42 21.21 21.20

1:1 58.68 58.62 58.62 58.68 58.74

8:1 33.68 33.59 33.59 33.69 33.69

32:1 27.29 27.43 27.43 27.28 27.28

W
o
m

a
n

100:1 24.51 24.56 24.56 24.48 24.48

size (#logic elements) 1780 1913 2284 2123

fmax(MHz) 56.38 93.63 72.59 63.63

Latency(clocks) 15 26 51 49

Energy (mJ) 7.89 5.36 6.27 5.79

approx format, sl (29, -19) (29, -19) (41, -32) (39, -30)

details format, dl (24, -15) (24, -15) (40, -31) (39, -29)

Apex EP20K1000EFC672-1X FPGA. A multiplierless architecture is used; computations

are organized in a fully pipelined tree of carry save adders with a ripple carry adder at the

base. The Quartus II v2.1 software package is used for synthesis, placement and routing of

structural VHDL descriptions of the architectures. The fixed-point formats are chosen to

avoid truncation and round-off, given the quantized values of the coefficients.

6.2.1 Compression Performance

Table 6.2 compares the PSNR performance of the four implementations. All implementations

give PSNR values, no more than 0.1dB worse than the unquantized PSNR values. The lifting

implementations require fewer T for achieving this PSNR performance compared to the
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Table 6.3: Filter properties for convolution and lifting based implementations.

Filter Convolution Lifting

Property Unquantized Non-poly Poly ESA MUA-LSGC

T=42 T=42 T=19 T=21

Deviation at DC 0 -2.2e-5 -2.2e-5 2.0e-5 3.9e-7

No Distortion MSE 0 5.0e-9 5.0e-9 5.8e-11 1.4e-14

Alias Cancellation MSE 0 0 0 0 0

Accuracy 4/4 4/4 4/4 0/0 0/0

Smoothness (analysis) 1.41 1.41 1.41 1.31 1.52

Smoothness (synthesis) 2.12 2.12 2.12 1.96 2.04

Coding Gain 9.71 9.70 9.70 9.70 9.70

convolution implementations. This is in part due to the fact that the lifting implementation

has fewer coefficients to quantize than the convolution implementation. The orthogonality of

the lifting structure also ensures high PSNR values in the presence of coefficient quantization.

Filter properties for the four implementations are shown in Table 6.3. The lifting implemen-

tations have better no-distortion-MSE and deviation-at-DC characteristics than the convo-

lution implementations. This explains the better performance of lifting compared to convo-

lution at perfect reconstruction (1:1) and low compression ratios. The two lifting implemen-

tations have lower values for smoothness of the analysis filters. Smoothness is related to the

number of zeros at z = 1 for the analysis lowpass filter, which in turn is related to the vanish-

ing order of the wavelet. Vanishing order impacts the compaction property of the wavelets;

higher the number of zeros at z = 1, higher is the vanishing order and consequently better

is the compaction property and compression efficiency of the wavelet. The lifting implemen-

tations have a lower vanishing order than the convolution implementations, and hence at

high compression ratios (100:1), convolution implementations yield better PSNR than lifting

implementations.
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6.2.2 Hardware Performance

Table 6.2 depicts the hardware performance of the four implementations. The maximum pos-

sible operating frequency fmax is obtained via timing analysis and indicates system through-

put. The energy required by the filters to perform the computations of a five-level, two-

dimensional DWT for a 512 × 512 image is calculated as described in Appendix A. The

convolution designs resulted in smaller hardware and smaller latencies compared to lifting,

despite the fact that lifting required lower T than convolution. This demonstrates that

although T can serve as an estimate for hardware cost before FPGA implementation, the

actual hardware cost depends on a number of factors such as bit widths of the filter coef-

ficients and the architecture of the filter bank. The lifting structure employs a number of

filters that are in cascade, and also have wider output bit widths for the approximate and

detail coefficients. These factors contribute to making the lifting structure bigger and slower.

Lifting and convolution polyphase implementations have higher throughput than the convo-

lution non-polyphase implementation. The lifting structure exhibits lower throughput than

the convolution polyphase implementation due to the large bit widths of some of the lifting

coefficients; throughput could be improved at the expense of latency by further pipelining

the hardware. The convolution polyphase implementation also requires lower energy than

any of the other implementations for computation of the DWT. This is because compared to

the non-polyphase implementation, it performs half the number of computations resulting in

lower average power consumption. The larger hardware required for lifting structures means

that they consume slightly more energy compared to the convolution polyphase structure.

The lifting implementations resulted in approximation and detail coefficients with larger

bit widths compared to the convolution implementation. This is because in the convolu-

tion implementation, the output bit width depends only on the widest coefficient in the

filter; in lifting, the output bit width is proportional to the sum of the bit widths of all

lifting coefficients. Bit width of output coefficients becomes a concern for multiple levels of

DWT decomposition, where growing bit widths at the end of each stage warrants coefficient
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truncation between levels, leading to image compression performance degradation.

6.3 Summary

This chapter compared the convolution and lifting approaches to computing the DWT.

The optimal quantized coefficients for each implementation were selected to synthesize non-

polyphase, polyphase and lifting structures on an FPGA. All these designs resulted in PSNR

performance that was within 0.1dB of the unquantized PSNR performance at all compression

ratios. However, the cascade-polyphase structure resulted in smallest hardware with lowest

energy consumption and highest throughput.



Chapter 7

Conclusion

7.1 Concluding Remarks

This thesis treated the issue of filter coefficient quantization and filter bank structure for a

fast, multiplierless implementation of the biorthogonal 9/7 DWT with image compression ap-

plications. Quantization of filter bank coefficients is known to impact perfect reconstruction

properties and degrade image compression performance of the filter bank while filter bank

structure determines hardware metrics such as throughput, latency and power-consumption

for the implementation. This work determines which filter bank structure is best suited for

an FPGA implementation, and arrives at an optimal set of quantized coefficients for this

structure.

Properties of the filter bank that are critical for image compression performance were iden-

tified in chapter 3. The “no-distortion-MSE” and “deviation-at-DC” properties determine

PSNR values for the compressed image. Additionally, it is important for the highpass anal-

ysis filter to have magnitude response of zero at f = 0, so as to avoid checkerboarding in the

compressed image. The cascade form was chosen for filter implementation, since it preserves

zeros at z = 1 for the highpass analysis filter. Two techniques—“gain compensation” and

88
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“zero compensation” were developed for quantization of cascade filter coefficients. These

techniques attempt to preserve the no-distortion-MSE and deviation-at-DC properties of

the filter bank by quantizing the synthesis filters so that it offsets the degradation caused by

quantization of the analysis filters. The best image compression performance was obtained

using a cascade form for the filters with quantized “z1 compensation” coefficients.

Chapter 4 looked at polyphase structures that aimed to improve efficiency of the traditional

filter bank by avoiding wasted computations. A cascade-polyphase structure was derived,

that combined the fast throughput of the polyphase structure with the superior compression

performance of the cascade form and “z1 compensation” coefficients, resulting in fast, low-

power implementation. A faster polyphase alternative can be obtained by convolving out

the coefficients of the cascaded filters, and implementing the resulting coefficients in a direct-

polyphase structure, but this implementation has higher power requirements compared to

the cascade-polyphase structure. Results in chapter 4 also showed that an FPGA implemen-

tation of the polyphase structure cannot achieve the theoretical doubled throughput that

one expects in a polyphase structure. This is because throughput not only depends on the

polyphase implementation of filters, but also on various FPGA timing parameters and their

interactions.

Chapter 5 looked at the lifting approach to computing the DWT. Since its development

for building new wavelets, lifting has found favor for implementation of the DWT, because

of its need for fewer computations, ability to support in-place computations and polyphase

operation. Two sets of lifting coefficients were examined—an irrational set obtained from

factorization of the biorthogonal 9/7 wavelet polyphase matrix and a rational set proposed

previously. Three quantization methods were developed to quantize the irrational and ratio-

nal coefficients each. The quantization methods were driven by the no-distortion-MSE and

deviation-at-DC properties identified in chapter 3 to obtain optimal quantized coefficients.

The lifting structure is more immune to coefficient quantization than the convolution based

polyphase and non-polyphase structures due to its inherent orthogonality. The best quan-

tized set was obtained starting with the rational lifting coefficients and using lumped scaling
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and gain compensation to quantize coefficients.

In chapter 6, the convolution and lifting approaches to computing the DWT were com-

pared. Best quantized coefficient sets were chosen to represent non-polyphase, polyphase

and lifting implementations. The cascade-polyphase structure using z1 compensated coeffi-

cients outperformed non-polyphase and lifting implementations in terms of throughput and

power consumption. This was despite the fact that lifting was theoretically shown to require

fewer computations in terms of multiplications and additions compared to the convolution

approach. This goes to show that when implementing on an FPGA, a number of factors

such as implementation structure and bit width of quantized coefficients play a role in de-

termining the final throughput and energy requirements of the implementation. Though the

lifting structure only uses two-tap symmetric filters, these filters were arranged in a cascaded

manner. Growing bit widths of intermediate coefficients, meant that additional bits had to

be kept track of after every filtering operation resulting in big, slow hardware.

To summarize, the cascade-polyphase structure is the best choice for implementing the DWT

on FPGA, in terms of throughput and energy. Coefficients for this structure can be quantized

using the z1 compensation method. If faster hardware with lower latency is desired for real-

time applications, the cascade section coefficients can be convolved out to obtain direct form

coefficients, to be used in a direct-polyphase implementation. This however comes at the

cost of higher power-consumption. In applications where perfect reconstruction of images at

1:1 is essential, lifting is a better choice than convolution. The orthogonality of the lifting

structure provides good PSNR performance even under coefficient quantization at the cost

of bigger, slower hardware.

Work done in this thesis also shows that the number of SPT terms T , used for the filter

coefficients is not the only indicator of hardware cost. Within a given implementation (i.e.

lifting or polyphase), T serves as an estimate for hardware cost before implementation.

However, final hardware cost, measured in terms of number of logic elements, depends on

the structure being implemented (lifting, polyphase etc.) and bit widths of filter coefficients
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and intermediate signals.

7.2 Future Work

The focus of this thesis was on the filter structure and coefficient quantization aspect of DWT

implementation. Considerable amount of work has been done in the hardware architecture

aspect of 2D DWT implementation, and it continues to be a field for future research. Some

of the areas for future work are:

1. Further improvements in hardware performance can be obtained by addressing hard-

ware architecture issues such as pipelining, placement and routing and memory access.

FPGA implementations of the cascade-polyphase and the rational lifting implementa-

tion can be tweaked and optimized to improve hardware performance.

2. A complete 2D DWT implementation will need to address issues related to memory

access for reading and writing of DWT coefficients and intermediate results. A good

implementation will require few memory accesses, and use fast internal cache memory

for intermediate results.

3. Multiple levels of DWT computation present the problem of growing signal bit widths.

Starting with 8-bit image data, the input to each successive DWT level will have wider

bit widths, making it impractical to save all bits of precision in memory till the final

decomposition level. Intermediate DWT coefficients will have to be truncated after

every level, so that data read from and written to memory will have fixed bit widths.

For the lifting implementation, where bit widths grow after every filter within a single

lifting stage, intermediate signals may have to be truncated within a level. Truncation

of DWT coefficients and other intermediate values during the computation of the DWT

further impacts PSNR performance, and presents another interesting topic for further

study.



Appendix A

Energy Computation for Filter

Implementations

Energy numbers reported in this thesis estimate that required for the computation of a 5-

level DWT of a 512 × 512 image. All energy estimates are made at an operating frequency

of 40MHz, unless specified otherwise. Hardware for the filters that comprise the analysis

side of the convolution or lifting based implementation is synthesized to obtain a system

that operates at 40MHz. The hardware is then used to compute the 5-level DWT for 500

blocks of random patterns along with 120 other patterns useful for verification; each block

is 512 × 512 in size. The Quartus II version 2.1 software package reports an estimate of

average power throughout the run. The processing time in milliseconds for computing the

5-level DWT of the image is then computed as follows:

PT (ms) =
4
∑

n=0

3 · M

2n+1
·
(

M

2n
+Mext + L

)

· 1

f
· 10−3 (A.1)

where, M ×M is the image size in pixels (M = 512 here), Mext is the number of pixels

required for symmetric extension (Mext = 9 here), L is the latency in clock cycles, f is the

frequency in Hz at which samples are fed to the analysis side and PT is the processing time

in milli-seconds.
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The processing time is then multiplied by average power to get an estimate of energy con-

sumed by the hardware implementation.
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