

Date: January 16, 2007

Design Methodologies

- Things to keep in mind for your project
 - Design Considerations
 - Design Methodologies
 - Design Specification
 - Design for Testability
- However, the most important thing is ...

ENSC 460/894: Lecture Set 1

HAVE A PLAN!

ENSC 460/894: Lecture Set 1

Design Considerations: "Techy" Terms

- Area
- Performance
 - Max Latency
 - Max Throughput
- Power/Energy Consumption
- Environment
- Scalability
- Security
- Reliability

ENSC 460/894: Lecture Set 1

Design Considerations: "Real World" Terms

- What does it need to do?
- Who is going to be using it?
- What's the environment it will be used in?
- · What are the cost constraints?
- What type of scalability is required for future use?
- Are there security concerns?
- How reliable does the system have to be?
 - Can it fail without drastic consequences?

ENSC 460/894: Lecture Set 1

Design Specification: Use Case Diagram

- Associations (cont'd)
 - May have an optional arrowhead on one end of the line
 - The arrowhead is used to indicate
 - the direction of the initial invocation of the relationship or
 the primary actor within the use case.
 - Arrowheads do not indicate data flow (can be confusing)
- System Boundary Boxes (optional)
 - Indicates the scope of your system
 - Anything within the box represents functionality that is in scope
 - and anything outside the box is not.
 - Drawn as a rectangle around the use cases
 - Rarely used, but can be used to identify which use cases will be delivered in each major release of a system

ENSC 460/894: Lecture Set 1

Design Specification: Use Case Diagram

- Other Use Case Diagram Concepts include:
 - Packages (optional)
 - Extend
 - Include
 - Inheritance
- Won't be covered here
 - For more information, goto:
 - http://www.agilemodeling.com/artifacts/useCaseDiagram.htm
 - The Object Primer (3rd edition) by Scott W. Ambler, Chapter 5

ENSC 460/894: Lecture Set 1

Design Specification

- Don't forget:
 - Accuracy (fixed point/floating point);
 - Design Cost includes fabrication and design time
 - Power/Energy Usage generates heat (battery life)
 - Maximum available area (product dimensions)
 - Flexibility/Adaptability (upgrading functionality)
 - Reliability/Fault tolerance (serviceability and safety)
 - Security

ENSC 460/894: Lecture Set 1

BIST- A DFT technique BIST- A DFT technique · BIST is a Design-for-Testability (DFT) technique · Also can be used to test the functionally of - It makes the electrical testing of a chip diverse blocks built using different technologies easier,faster, on one chip. more efficient, and less costly. - This would normally require high-end mixed-signal The concept of BIST is applicable to just about any kind testers that possess special digital and analog testing of circuit capabilities DRAM is an example application • VERY EXPENSIVE: 6-7 figures They incorporate additional circuits for: - BIST can be used to perform these special tests with · pattern generation, • timing, additional on-chip test circuits eliminates the need to mode selection, and go-/no-go diagnostic tests. acquire such high-end testers. ENSC 460/894: Lecture Set 1 ENSC 460/894: Lecture Set 1 15 16

Design For Testability

- In your case, you are using an FPGA
 - No post-fabrication design concerns
- You can use:
 - Simulation
 - Build visibility into your circuits
 - You can create on-chip Testbeds

ENSC 460/894: Lecture Set 1

17

 XUP Virtex II Pro Development System

 ENSC 460/84: Lecture Set 1

Creating an ipod Design Specification

- Let's make:
 - A Use-Case Diagram
 - A System-Block Diagram
 - An Algorithm Flow Chart

ENSC 460/894: Lecture Set 1

26