
Programming the Basic

Computer

lecture 8

Programming the Basic Computer

� A computer system includes both hardware and
software.

� Hardware consist of the physical components.
� Software refers to computer programs.
� Hardware and software influence each other.
� Binary code is difficult to work with: there is a need for

translating symbolic programs into binary programs, e.g.
(Intel x86):

10110000 01100001 => mov a1, 0x61

� A written program can be machine dependent (assembly
language programs) or machine independent (e.g. C-
language programs).

� A program is a list of instructions for performing a data
processing task.

� There is various programming languages a user can use to
write programs for a computer. However, computer can
execute only programs that are represented internally in a
valid binary form.

� Programs written in any programming language must be
translated to the binary representation prior execution.

� Program categories:
1. Binary code: exact representation of instructions in binary form.
2. Octal or hexadecimal code: translation of binary code into

equivalent octal or hexadecimal representation.
3. Symbolic code: symbolic representation is used for the parts of

the instruction code. Each symbolic instruction is translated
into one binary coded instruction by a program called an
assembler.

4. High-level programming language: developed to reflect the
procedures for solving problems rather than be concerned with
the computer hardware behavior. The program for translating a
high-level language program to binary is called a compiler.

� Machine language refers to categories 1 and 2.

(Mano 1993)

M refers to a
memory word
found at the effective
address

m denotes the
effective address

� Relation between binary and assembly languages:

tedious for a programmer ..a bit easier

..much better

� Using symbolic address and decimal operands
� numerical locations of memory operands are usually not exactly

known while writing a program.
� Decimal numbers are more familiar to humans

pseudoinstruction

label

must be translated
to binary signed-2’s complement
representation

int a = 83;
int b = -23;
int c;
c = a + b;

with C-language

Assembly Language

� Almost every commercial computer has its own
particular assembly language.

� All formal rules of the language must be conformed in
order to translate the program correctly.

� Rules of the assembly language of the Basic Computer
1. The label field may be empty or it may specify a

symbolic address
2. The instruction field specifies a machine instruction of

pseudo instruction.
3. The comment field may be empty or it may include a

comment, which must be preceded by a slash i.e. ‘/’.

� A symbolic address is restricted to three symbols – the
first one is always a letter. The address is terminated by a
comma.

� The instruction field may specify:
1. A memory-reference instruction (MRI)
2. A register-reference instruction (non-MRI)
3. A pseudoinstruction with or without an operand
� A memory-reference instruction occupies two or three symbols

separated by spaces. The first must be a three-letter symbols
defining MRI operation code from Table 6-1. The second is a
symbolic address, and the third is the optional I indicating
indirect address.

� non-MRI has not an address part.

� A defined symbolic address must occur again in a label
field.

� A pseudoinstruction is an instruction for the assembler and
it gives information for the translation phase:

radix

� An example assembly language program:

program

memory

100

data
108
106

converted into a binary
number of signed 2’s complement
form (by the assembler)

(Mano 1993)

� Translation to binary is done by an assembler.
� An assembler is a computer program for translating assembly language

— essentially, a mnemonic representation of machine language — into
object code.

� A cross assembler (cross compiler) produces code for one processor,
but runs on another
� used e.g. in an embedded system software development in PC
� the final program is uploaded into a target device

� As well as translating assembly instruction mnemonics into opcodes
assemblers provide the ability to use symbolic names for memory
locations (saving tedious calculations and manually updating addresses
when a program is slightly modified), and macro facilities for performing
textual substitution — typically used to encode common short
sequences of instructions to run inline instead of in a subroutine.

address symbol table

(Mano 1993)

� Representation of Symbolic Program in Memory
� user types the symbolic program on a terminal.
� A loader program is used to input the characters of the symbolic

program into memory.
� Since user inputs symbols, program’s representation in memory

uses alphanumeric characters (8-bit ASCII; see Table 6-10).
� A line of code is stored in consecutive memory locations with two 8-

bit characters in each location (we have 16-bit wide memory).
� End of line is recognized by the CR code.

(Mano 1993)

� E.g. a line of code:
PL3, LDA SUB I

is stored in seven consecutive memory locations (see
Table 6-11):

(Mano 1993)

� Each symbol (see Table 6-11) is terminated by the code for
space (0x20) except last, which is terminated by the code
of carriage return (0x0D).

� If a line of code has a comment, the assembler recognizes
it from code 0x2F (slash): assembler ignores all characters
in the comment field and keeps checking for a CR code.

� The input for the assembler program is the user’s symbolic
language program in ASCII.

� The binary program is the output generated by the
assembler.

� A two-pass assembler scans the entire symbolic program
twice

� First pass: address table is generated for all address symbols
with their binary equivalent value (see Fig. 6-1).

� Second pass: binary translation with the help of address table
generated during the first pass.

� To keep track of the location of instructions, the assembler uses a
memory word (variable) called location counter (LC): LC stores
the value of the memory location assigned to the instruction or
operand currently being processed.

� The ORG pseudoinstruction initializes the LC to the value of the
first location. If ORG is missing LC is initially set to 0.

� The LC is incremented (by 1) after processing each line of code.

(Mano 1993)

(Mano 1993)

� Address symbol table occupies three words for each label
symbol encountered and constitutes the output data that
the assembler generates during the first pass.

� Second pass:
� Machine instructions are translated by means of table-lookup

procedures: search of table entries to determine whether a specific
item matches one of the items stored in the table.

� The assembler uses four tables. Any symbol encountered must be
available as an entry in one of the tables:

1. Pseudoinstruction table
2. MRI table: 7 symbols of memory-reference instructions and

their 3-bit operation codes.
3. Non-MRI table: 18 register-reference and io-instructions

and their 16-bit binary codes.
4. Address symbol table (generated during 1st pass)

� The assembler searches the four tables to determine the binary
value of the symbol that is currently processed.

(Mano 1993)

� Error diagnostics:
� invalid machine code not found in the MRI or non-MRI tables.
� Symbolic address not found from the address table.
⇒ cannot be translated because the binary value is not known: error

message for the user.

Program Loops

� Program loop is a sequence of instructions that are executed many
times (within the loop) with a different set of data.

int a[100];
.
.
int sum = 0;
int i;
for (i=0;i<100;i++)

sum = sum + a[i];

� A program that translates a program written in a high level
programming language to a machine language program is
called a compiler.

� A compiler is a more complicated program than an
assembler.

� Demonstration of basic functions of a compiler: translating
the previous c-program (loop) to an assembly language
program.

indexing of
do statement

DIMENSION and
INTEGER statements

loop counter if counter is
zero then exit
from the loop

program loop

corresponds
assignment
SUM = 0

NOTE: indirect addressing provides the pointer mechanism. Registers used to store pointers
and counters are called index registers (memory words are used in this example).

Programming Arithmetic and Logic

Operations

� Fig. 6-3 shows a flowchart of a multiplication program of
the basic computer
� multiplication of two 8-bit unsigned numbers (integers).
� 16-bit product.
� Program loop is traversed eight times, once for each significant

bit.
� X holds the multiplicand, Y holds the multiplier, and P holds the

product.
� Example shows how an arithmetic operation can be implemented

by a program.

(Mano 1993)

� Double-precision addition: addition of two 32-bit unsigned
integers.

� Added numbers place in two consecutive memory
locations, AL and AH, and BL and BH.

� Sum is stored in CL and CH:

� Any logic operation can be implemented by a program
using AND and complement operations.

� E.g. x + y = (x’y’)’ by DeMorgan’s theorem.
� OR operation of two logic operands A and B:

� Other logical operations can be implemented in a similar
fashion.

� The basic computer has two shift instructions: CIL, CIR.
Logical and arithmetic shifts can be programmed.

� Logical shift-right (zeros added to the leftmost position):

� Logical shift-left (zeros added to the rightmost position):

� Arithmetic right-shift (sign bit remains):

� Arithmetic left-shift (zeros added to the rightmost position) – E must be checked
for an overflow, e.g.:

CLE /clear E
CIL /circulate left E and AC
SZE /skip if E is zero (= AC was positive)
BUN NEG /branch for checking the negative case
SPA /skip if AC is positive
BSA OVF /branch to overflow handling
BUN RET I /return main program

NEG, SNA /skip if AC is negative
BSA OVF
BUN RET I

Subroutines

� A set of common instructions that can be used (called) in a program
many times is called a subroutine.

� A branch can be made to the subroutine from any part of the main
program.

� The return address must be stored (somewhere) in order to
successfully return from the subroutine.

� In the basic computer the link between main program and
subroutine is the BSA instruction.

� E.g. a subroutine (Table 6-17) for shifting the content of AC four
times to the left.

(0-3)

(Mano 1993)

� From the example (Table 6-17) we see that the first
memory location of each subroutine serves as a link
between the main program and the subroutine.

� The procedure for branching to a subroutine and returning
to the main program is referred as a subroutine linkage.

� The BSA instructions performs a subroutine call.
� The last instruction of the subroutine (indirect BUN)

performs a subroutine return.
� In many computers, index registers are employed to

implement the subroutine linkage: registers are used to
store and retrieve the return address.

� Data can be transferred to a subroutine by using registers
(e.g. AC in previous example) or through the memory.

� Data can be placed in memory locations following the call
(return from subroutine must be correspondingly modified).
Data can also be placed in a block of storage (structure):
the first address of the block in then placed in the memory
location following the subroutine call.

� E.g. of parameter linkage (Table 6-17): OR operation.
� The subroutine must increment the return address for each

operand.
� E.g. of subroutine to move a block of data is presented in

Table 6-18.

(Mano 1993)

(Mano 1993)

(= 100)

(=200)

/subroutine returns here

return address
must be incremented
three times

Input-Output Programming

� Input-output programs are needed for writing symbols to
computer’s memory and printing symbols from the
memory.

� Input-output program are employed for writing programs
for the computer, for example.

� Table 6-19 lists programs for the Basic Computer to
input and output one character: non-interrupt based
programs.

(Mano 1993)

� The second example (Table 6-20) receives two 8-bit
characters and places the result to 16-bit accumulator:

(Mano 1993)

shifts AC 8-bits
to the left using the
SH4 subroutine (see
earlier example).

fills bits 0-7 of
AC (bits 8-15
remain intact)

� The third example (Table 6-21) lists a program for storing
characters from the input device (e.g. keyboard) to
computer’s memory: program can be used as a loader
program when a symbolic program is inputted to
computer’s memory prior the usage of an assembler.

(Mano 1993)

� The fourth example (Table 6-22) describes a program that
compares two memory words: the program can be utilized,
for example, when implementing assembler program’s
second-pass table lookup procedures.

(Mano 1993)

� The interrupt facility is useful in a multiprogram
environment when two or more programs reside in memory
at the same time: computer can perform useful
computations while waiting a request (interrupt) from an
external device.

� The program that is currently being executed is referred to
as the running program.

� The function of the interrupt facility is to take care of the
data transfer of a program while another program is being
executed (which must include ION if interrupt(s) is used).

� The interrupt service routine must include instructions to
perform following tasks:

1. Save contents of processor registers: the service routine must
not disturb the running (interrupted) program.

2. Check which interrupt flag is set: this identifies the interrupt that
occurred.

3. Service the device whose interrupt flag was set: the sequence
by which the flags are checked dictates the priority assigned to
each device.

4. Restore the contents of processor registers.
5. Turn the interrupt facility on to enable further interrupts.
6. Return to the running program.

� E.g. in Table 6-23.

(Mano 1993)

(clears FGO)

(=> PC=1)

