
1

1

Sources: TSR, Katz, Boriello, Vahid, Perkowski

CSE140: Components and Design Techniques
for Digital Systems

Tajana Simunic Rosing

2

Sources: TSR, Katz, Boriello, Vahid, Perkowski

Announcements

• HW#5 due, HW#6 assigned – due on MONDAY!!!!
• Midterm on Tuesday, 11/7 at class time

– Everything up to and including chap 8, app. A,B,C
• Today:

– FSM optimization
• State minimization using Implicant method
• State assignment
• FSM partitioning

2

Sources: TSR, Katz, Boriello, Vahid, Perkowski

State tables

State minimization

State assignment

Combinational logic optimization

netlist

identify and remove equivalent states

assign unique binary code to each state

use unassigned state-codes as don’t care

FSM Optimization Flow Chart

4

Sources: TSR, Katz, Boriello, Vahid, Perkowski

Successive partitioning algorithm
for state minimization

• Goal
– identify and combine states that have equivalent behavior

• Algorithm sketch
1. place all states in one set
2. initially partition set based on the output behavior
3. successively partition the resulting subsets based on next state

transitions
4. repeat (3) until no further partitioning is possible

• states left in the same set are equivalent

• Polynomial time procedure

3

5

Sources: TSR, Katz, Boriello, Vahid, Perkowski

Input Next State Output
Sequence Present State X=0 X=1 X=0 X=1

Reset S0 S1 S2 0 0
0 S1 S3 S4 0 0
1 S2 S5 S6 0 0
00 S3 S0 S0 0 0
01 S4 S0 S0 1 0
10 S5 S0 S0 0 0
11 S6 S0 S0 1 0

Method of successive partitions

6

Sources: TSR, Katz, Boriello, Vahid, Perkowski

Minimized FSM
Input Next State Output
Sequence Present State X=0 X=1 X=0 X=1

Reset S0 S1 S2 0 0
0 S1 S3 S4 0 0
1 S2 S5 S6 0 0
00 S3 S0 S0 0 0
01 S4 S0 S0 1 0
10 S5 S0 S0 0 0
11 S6 S0 S0 1 0

(S0) (S1 S2) (S3 S5) (S4 S6)

4

7

Sources: TSR, Katz, Boriello, Vahid, Perkowski

Implication chart method: Basic Concepts

10–032–36

–1–––2––5

100–516–4

––10––663

–––0–––42

111–243–1

dcbadcba
x

S

Compatiblity:
Si, Sj are compatible if for each input they have consistent outputs,
and their successors are the same or compatible.

Conditionally compatible :
Si, Sj are conditionally compatible if their outputs and
next states are consistent for some pairs of successors

(Si, Sj) ≠ (Sk, Sl)

8

Sources: TSR, Katz, Boriello, Vahid, Perkowski

Implication chart method: Triangular table definition

4321

5

4

3

2

We fill the cells of triangular table as follows:

v – if pair of states is compatible,

v

x – if pair of states in incompatible,

x

(i,j) – pair (pair of successors), if the pair is
conditionally compatible.

(i,j)

5

9

Sources: TSR, Katz, Boriello, Vahid, Perkowski

Triangular table – example

10–032–36

–1–––2––5

100–516–4

––10––663

–––0–––42

111–243–1

dcbadcba

54321

6

5

4

3

2

10

Sources: TSR, Katz, Boriello, Vahid, Perkowski

Triangular table - example

54321

×1,2; 3,5∨3,4×6

×∨∨2,45

×∨×4

4,63,63

∨2

To get compatible states iteratively cross out all incompatibles

6

11

Sources: TSR, Katz, Boriello, Vahid, Perkowski

Calculating Maximal classes of Compatibility

1,2
1,3
1,5
2,3
2,4
2,5
3,5
3,6
4,6

Compatible pairs: (1,2); (1,3); (1,5); (2,3); (2,4); (2,5); (3,5); (3,6); (4,6)

12

Sources: TSR, Katz, Boriello, Vahid, Perkowski

Minimization Algorithm

1) Find all pairs of compatible states,

2) Calculate maximal sets of compatible
states (MCC),

3) Select sets that satisfy the so-called Covering
condition (a) and closure condition (b):

a) Each state must be in at least one class;

b) For each input symbol all next states of each class
must be included into one class.

7

13

Sources: TSR, Katz, Boriello, Vahid, Perkowski

Covering Condition - example

10–032–36

–1–––2––5

100–516–4

––10––663

–––0–––42

111–243–1

dcbadcba

MCC = {{1,2,3,5}, {3,6}, { 2,4}, {4,6}}

14

Sources: TSR, Katz, Boriello, Vahid, Perkowski

Closure condition - example

10–032–36

–1–––2––5

100–516–4

––10––663

–––0–––42

111–243–1

dcbadcba
For selected classes
{1,2,3,5},{4,6}} we calculate their
successors

8

15

Sources: TSR, Katz, Boriello, Vahid, Perkowski

Condition of covering and closure – second try

10–032–36

–1–––2––5

100–516–4

––10––663

–––0–––42

111–243–1

dcbadcba
MCC = {{1,2,3,5}, {3,6}, { 2,4}, {4,6}}

16

Sources: TSR, Katz, Boriello, Vahid, Perkowski

Another example

1–––8

0–8–7

–1–76

–1–35

0–5–4

0–4–3

11132

00621

1010

7654321

8

7

6

5

4

3

2

9

17

Sources: TSR, Katz, Boriello, Vahid, Perkowski

Maximal compatibility class

7654321

8

7

6

5

4

3

2

37

46

56

68

45

48 58

v v v

v v

v

v v

v v

37

1,3
1,7
2,5
2,8
3,4
3,5
3,6
4,5
4,6
4,7
5,7
5,8
6,7
6,8

Compatibles: MCC:

18

Sources: TSR, Katz, Boriello, Vahid, Perkowski

Testing successor states

1–––8

0–8–7

–1–76

–1–35

0–5–4

0–4–3

11132

00621

1010

2,5,8
3,4,5
3,4,6
4,5,7
4,6,7
1,3
1,7
6,8

MCC:

Table of successors

10

19

Sources: TSR, Katz, Boriello, Vahid, Perkowski

Covering and closure – final state selection

1–––8

0–8–7

–1–76

–1–35

0–5–4

0–4–3

11132

00621

1010

–6846585845451δ(1,Si)

72273733δ(0,Si)

6,81,71,34,6,74,5,73,4,63,4,52,5,8

20

Sources: TSR, Katz, Boriello, Vahid, Perkowski

X Q1 Q0 Q1
+ Q0

+

0 0 0 0 0
0 0 1 0 0
0 1 1 0 0
1 0 0 0 1
1 0 1 1 1
1 1 1 1 1
– 1 0 0 0

Q1
+ = X (Q1 xor Q0)

Q0
+ = X Q1’ Q0’

Minimizing states may not yield best circuit
• Example: edge detector - outputs 1 when last two input

changes from 0 to 1

00
[0]

11
[0]

01
[1]X’

X’

X’

X

X

X

11

21

Sources: TSR, Katz, Boriello, Vahid, Perkowski

Edge detector – ad hoc solution
• "Ad hoc" solution - not minimal but cheap and fast

00
[0]

10
[0]

01
[1]

X’ X

X’

X

X

X11
[0]

X’

X’

22

Sources: TSR, Katz, Boriello, Vahid, Perkowski

Minimizing incompletely specified FSMs
• Equivalence of states

– transitive when machine is fully specified
– not transitive when don't cares are present

12

Sources: TSR, Katz, Boriello, Vahid, Perkowski

State tables

State minimization

State assignment

Combinational logic optimization

netlist

identify and remove equivalent states

assign unique binary code to each state

use unassigned state-codes as don’t care

FSM Optimization Flow Chart

24

Sources: TSR, Katz, Boriello, Vahid, Perkowski

State assignment strategies
• Choose bit vectors to assign to each “symbolic” state

– huge number even for small values of state bits and states
• intractable for state machines of any size
• heuristics are necessary for practical solutions – no guarantee of optimality

– optimize some metric for the combinational logic
• size (amount of logic and number of FFs)
• speed (depth of logic and fanout)
• dependencies (decomposition)

• Possible strategies
– sequential – just number states as they appear in the state table
– random – pick random codes
– one-hot – use as many state bits as there are states
– output – use outputs to help encode states
– heuristic – rules of thumb that seem to work in most cases

13

25

Sources: TSR, Katz, Boriello, Vahid, Perkowski

One-hot state assignment
• Simple

– easy to encode
– easy to debug

• Small logic functions
– each state function requires only predecessor state bits as input

• Good for programmable devices
– lots of flip-flops readily available
– simple functions with small support (signals its dependent upon)

• Impractical for large machines
– too many states require too many flip-flops
– decompose FSMs into smaller pieces that can be one-hot

encoded

26

Sources: TSR, Katz, Boriello, Vahid, Perkowski

Heuristics for state assignment
• Encode adjacent states to minimize # of state bit changes

– Use state maps

S2S11
S3S4S00
10110100

S0

S1 S2

S3

S4

0 1

--Total

--S4 - S1

--S3 - S4

--S2 - S3

--S1 - S3

--S0 - S2

--S0 - S1

2nd case1st caseTransition

of bit changes

14

27

Sources: TSR, Katz, Boriello, Vahid, Perkowski

I Q Q+ O
i a c j
i b c k

I Q Q+ O
i a b j
k a c l

I Q Q+ O
i a b j
i c d j

c = i * a + i * b

b = i * a
c = k * a

j = i * a + i * c
b = i * a
d = i * c

i / j i / k

a b

c

a

b c

i / j k / l

b d

i / j
a c

i / j

Heuristics for state assignment
• Goal: maximize groupings of 1s in the next state & output functions

– Helps minimize next state logic
• Guidelines:

1. Adjacent codes to states that share a common next state

2. Adjacent codes to states that share a common ancestor state

3. Adjacent codes to states that have a common output behavior

28

Sources: TSR, Katz, Boriello, Vahid, Perkowski

Output-based encoding
• Reuse outputs as state bits

– why create new functions for state bits when output can serve as well
– fits in nicely with synchronous Mealy implementations

Inputs Present State Next State Outputs
C TL TS ST H F
0 – – HG HG 0 00 10
– 0 – HG HG 0 00 10
1 1 – HG HY 1 00 10
– – 0 HY HY 0 01 10
– – 1 HY FG 1 01 10
1 0 – FG FG 0 10 00
0 – – FG FY 1 10 00
– 1 – FG FY 1 10 00
– – 0 FY FY 0 10 01
– – 1 FY HG 1 10 01

15

29

Sources: TSR, Katz, Boriello, Vahid, Perkowski

Current state assignment approaches
• For tight encodings using close to the minimum

number of state bits
– used in custom chip design

• One-hot encoding
– easy for small state machines
– generates small equations with easy to estimate complexity
– common in FPGAs and other programmable logic

• Output-based encoding
– ad hoc - no tools
– most common approach taken by human designers
– yields small circuits for most FSMs

Sources: TSR, Katz, Boriello, Vahid, Perkowski

State tables

State minimization

State assignment

Combinational logic optimization

netlist

identify and remove equivalent states

assign unique binary code to each state

use unassigned state-codes as don’t care

FSM Optimization Flow Chart

16

31

Sources: TSR, Katz, Boriello, Vahid, Perkowski

State Partitioning
• Helps for large state machines

– E.g. when next state logic is too large to implement in a
programmable logic component

• Introduce idle states to synchronize partitioned FSMs

S2 S5

C3

S3 S4C5C4

SA SB

32

Sources: TSR, Katz, Boriello, Vahid, Perkowski

Partition rules
• Source/destination transformation

• Hold condition for the idle state
• Multiple transitions to same source/destination

S1 S6
C1

S1 S6
C2

S2 S5
C3

S3 S4C5C4

SA SB

17

33

Sources: TSR, Katz, Boriello, Vahid, Perkowski

State Partitioning Example

S0 S5

S1 S4

S2 S3

D

U

SA SB

34

Sources: TSR, Katz, Boriello, Vahid, Perkowski

Summary of FSM Optimization
• State minimization

– straightforward in fully-specified machines
– computationally intractable, in general (with don’t cares)

• State assignment
– many heuristics
– best-of-10-random just as good or better for most machines
– output encoding can be attractive (especially for PAL

implementations)

• State partitioning
– Used for larger state machines for ease of implementation
– Introduce “idle” states at the interface
– Change transition conditions according to the rules of partitioning

