
SMAS: A PROGRAM FOR THE CONCURRENT STATE REDUCTION AND STATE
ASSIGNMENT OF FINITE STATE MACHINES

M.J. Avedillo J.M. Quintana J.L. Huertas

Dept. of Design of Analog Circuits, Centro Nacional de Microelectrhica, Sevilla, SPAIN

ABSTRACT
In this paper we describe a state assignment
algorithm for PLA-based machines which produces
an assignment of non necessarily distinct, and
eventually incompletely specified codes. In this new
approach, state reduction and state assignment are
concurrently dealt with, and a restricted state
splitting technique is explored. The algorithm is
particularly appropriate for machines with compa-
tibility relations among its states because the
potentials of state merging are exploited during the
state assignment step. The input to SMAS, the pro-
gramme implementing the algorithm, is a symbolic
cover of the FSM. The output is a boolean represen-
tation of both next state and output functions suit-
able to be minimized with ESPRESSO [Bray841.
The machines in the MCNC[Lisa89] benchmark set
are used to test the new algorithm and to compare
it with a well known state assignment program.

1 INTRODUCTION
One main task in logic system synthesis is the

design of Finite Sequential Machines (FSMs). This
process includes state reduction, state assignment
and logic minimization. Classically, the two first
steps have received an independent treatment.
Afterwards, in more recent references on automatic
FSM design systems, i t has been stated that the
classical assumptions of structural design methods
are no longer valid for modern technologies
[Lee84]. Lee recommends not to seek a FSM with
the minimum number of states. Rude11 [Rude851
does not include state minimization within FSM
synthesis, but he points out the need of a more gen-
eral transformation of the FSM aimed a t obtaining
an equivalent machine that is easier to build.

In [Lee841 i t is suggested to replace the stages of
state minimization and state assignment with one
stage of joint minimization and state assignment.
In this paper, a novel approach to the concurrent
s ta te minimization and s ta te assignment i s
described. It is also explored a restricted state
splitting technique. The need of state splitting for
optimal state assignment has been pointed out in
[Hart621, [DevaSOI.

I 1 HA'I'IONAI, OFTHE NEW A P P R O A C H
Let us briefly show how the goals of state

reduction and state splitting are achieved by a
coding process which allows a single code to be
ussig:rit*d to a g r o u p of states a n d the use of
incompletely specified codes.

Assigning a single code to a group of states is
equivalent to the transformation of the FSM de-
scription by the substitution of a group of states with
one single state (state reduction) and the assignment
of this internal state in the new description. From
classical state reduction theory we know that, in
order to specify the same external behavior than
original machine, the states which are merged into
one state must be compatible and closure constraints
must be satisfied [Unger691, fGrass683. These
conditions are used as constraints in our encoding
process. This is, the state reduction is achieved during
the assignment process.

Assigning a n incompletely specified code
[Koha78] (group of codes) to a single s ta te is
equivalent to the transformation of the FSM symbolic
description consisting in the substitution of a sin le

assignment of this new description..There are two
reasons to allow incompletely specified codes:
1.- It is important to cope with the concurrent state

reduction and state assignment of incom letely
specified sequential machines. In general, For this
kind of FSMs, a closed set of compatibles covering
a state table (solution to the classic state reduction
phase) is not disjoint. But a non disjoint gathering
of states cannot be achieved via state assignment
if incompletely specified codes are not allowed.
Thus, concurrent state reduction and state assign-
ment will fail to reach a part of the space of
solutions so, precluding the possibility of finding
some efficient ones.

2.-The boolean cover of the machine which i s
supplied to the logic minimizer, can have extra
flexibility in this way, because some next state
entries have been substituted by a group of states.
The minimizer can take advantage by choosing
each time the best state of the group to achieve
minimization. In [Tseng86] i t is reported that
allowing "don't care" bits in a state assignment
often results in a significant reduction of the
combinational component.
Nevertheless, this state splitting is restricted,

because the codes assigned to the set of s ta tes
resulting from the splitting of an original one are
constrained to form a cube.
11.1 C o n c u r r e n t state r e d u c t i o n a n d state
assignment

From previous paragraphs, i t is clear that our
assignment process is equivalent to both the trans-
formation of the symbolic description of the FSM and
to the assignment of this new description. Some con-

state by a group of states (state splitting) and t % e

CH 30064/91/0000 - 1781 $1.00 0 IEEZ

straints need to be imposed to the encoding so that the
behavior of the machine is not changed by the state
reduction achieved concurrently to the assignment.

Let us introduce some definitions in order to for-
mulate the constraints the assignment has to satisfy.
We say two states have compatible assignments if
the intersection of their codes is not empty, (notice
that "don't care" bits are allowed in the codes). For
example, assume the state Si has been given the code
(001-1 and the state S2 the code (0010). Si and S2
have compatible assignments because (001 -) n
(0010) = (0010). Iden t i ca l a s s i g n m e n t s i s a
particular case of compatible assignments.

We say two states have discriminated assign-
ments if the intersection of their codes is empty.

In order to guarantee that an encoding is valid
(the derived logic implements the desired behavior)
the following constraints must be satisfied:

1.- A pair of states with compatible assignments
must be compatible states o r , a pa i r of
incompatible states must be given discrimi-
nated assignments.

2.- For each input sequence, the pairs of states
which are implied by a pair of states with
compatible assignments must have compatible
assignments too or, the pairs of states which
imply a pair of states with discriminated
assignments must be given discriminated
assignments too.

111 THE ALGORITHM
Given a state table describing the external

behavior of a FSM, the state assignment phase tries
to find the binary representation of the internal
states of the machine corresponding to a PLA of
minimal area. In our approach a valid binary
representation is built up by exploring both the
potentials of state merging and state splitting.

Given ns i n t e rna l s t a t e s in the symbolic
description to be assigned, we assume that ns X nb
bits are oing to be assigned to a value from the set
(0, 1, -7, where nb is the number of bits of the
generated codes and so i t is not known until the
algorithm has finished the assignment process. We
start with the number of bits needed to encode a s
many states as there are in the maximal incompatible
of highest cardinality (nbo). Afterwards, the length of
the codes will be incremented by one bit, each time
the actual intermediate assignment cannot be turned
into a valid one with the current number of bits in the
encoding.

Initially the codes of all the states are completely
unspecified, the algorithm assigns bits to 0 or 1 until
the assignment is valid according to conditions 1 and
2. In order to describe how the algorithm works, we
introduce the concept of p a i r of c o m p u l s o r y
discrimination as those pairs of states which cannot
have compatible assignments (incompatible states,
and those pairs which imply a pair with discrimi-
nated assignments, are p a i r s of c o m p u l s o r y
d i sc r imina t ion) . Ini t ia l ly the only pa i r s of
compulsory discrimination are the pairs of incompat-
ible states. Figure 1 shows the main data structures
and a Pidgin-C description of the algorithm.
111.1 Procedure Initialize

The lists DAP, IAP, ITP are initialized to the
empty set. The list of pairs of compulsory discrimi-
na t ion (C U P) is i n i t i a l i z e d t o t h e s e t of

Data Structures

DAP: list ofpairs with discriminated assignments.
CDP: list ofpairs of compulsory discrimination.
IIP: list of pairs implied by pairs of states with

identical assignments.
IAP: list of pairs with identical assignments.

Main()
{ Kead FSMO;

I ni tiaTTze0;
for (eachparr (si,sj) in CDP)
{ Discriminate(s2,sj);
1

1
Figure 1

pairs of incompatible states. The initial length of the
codes (nbo) is determined. A state (Sinit) is selected to
have nbo bits assigned to 0.
111.2 Procedure Discriminate

Basic ope ra t ion i n t h e process i s t h e
discrimination of the assignments of a pair of states.
Among all the different assignments of bits leading to
the discrimination, the best one according to a cost
function is chosen. The lists DAP, IAP, IIP,CDP are
then updated. for example, for DCP to be updated
pairs which have been discriminated are removed and
those pair implying other pairs just discriminated are
added. The discrimination of some pairs can require
that the code length is incremented as we said before.
In this case the lists IIP, IAP are emptied.
Theorem: When there are no pairs of compulsory
discrimination left, the actual assignment satisfies
conditions 1 and 2 and so it is valid.
Proof: a) Suppose it is not a legal assignment because

there are pairs with compatible assign-
ments which are no compatible states. This
would mean an incompatible pair has not
been discriminated yet and so, the list of
pairs of compulsory discrimination would
not be empty as it is the condition for the
process to finish.

b) Suppose i t is not a legal assignment because
there are pairs which have compatible codes
but they imply pairs with discriminated
assignments. This is not possible because when
discriminating those implied pairs, t he
implying pairs would have been added to the
list of pairs of compulsory discrimination.

111.3 Considerations about order strategies and
cost function

It is worth noting that the straight application of
our algorithm does not guarantee that the length of
the codes is minimum. However, several heuristics
have been developed in order to achieve more efficient
assignments. For example, the order in which pairs of
states are discriminated and the cost function are
critical. Very efficient order strategies have been
introduced so that, in practice, codes longer than
minimum ones are not usually generated. Moreover,
the potential of state merging leads, in some cases, to
assignments with a number of state variables which
is less than the minimum needed to code the number
of states in the initial symbolic description. The cost
function has been designed to force the number of bits
to keep low. A t the same time, it aims a t reducing the

1782

area of final implementations by adding extra
flexibility to next state functions and by taking into
account the fulfillment of the adjacencies derived
from Humphrey's rules.
IV EXPEHIMENTAL RESULTS

The a1 orithm is particularly suited for those
machines for which state merging applies and so a
subset of t h e MCNC machines , those wi th
compatibles or equivalent states, has been used to
test the algorithm. We have also tried many examples
picked out from Switching Circuit Textbooks and
journal papers about minimization (all of them
referenced in [Reus86]). We will focus on two figures
of merits: the area occupied by the combinational
component in the PLA implementation of the FSM
and the time which is required for design.

Tables I and II depict the results for both groups of
machines. The number of primary inputs (ni) ,
primary outputs (no) and states (ns) are shown for
each of t h e m a c h i n e s to which SMAS (C
implementation of the new algorithm) and NOVA
[Vila881 (hybrid algorithm) have been applied. The
number of state variables (nv), the number of-product
terms (tp) after logic minimization and the size ((2ni + 3nv + no)tp) of the PLA implementing the
combinational component for the assignments
obtained with each program are also shown in Tables
I and 11. Times are given in seconds in a SUN
Workstation 31260. A column with the ratio of sizes,
Ar, is included

SizewithSMAS (sizes)

SizewithNOVA (size)
N. From both Tables, we can see that in all the cases

the number of state variables in SMAS' assignments
is less than or equal to the number of state variables
in NOVA'S assignments. Concerning the first group
of machines, SMAS obtains a more efficient
implementation than NOVA does in 16 of the 18
machines we have tried. In particular, let us focus on
the set formed b donfile, modulol2, s l a and s8.
These machines i o not need to be implemented as
FSMs. NOVA is not able of detecting i t and supplies
an assignment for them. This leads to realizations
which are expensive in terms of area. None of the ma-
chines in the second group (Table II) is more efficient-
ly assigned with NOVA than i t is with SMAS.

In Tables El and IV, the arithmetic average of the
ratios of sizes and of the ratios of times (it is defined
similar to the ratios of sizes) between our algorithm
and different algorithms in NOVA are shown. The
default random option that we use, tries as many
random encodings as states in the machine. The
hybrid algorithm from NOVA has been chosen
because it is said to provide the best tradeoff between
area and time. Table El summarizes results for group
1 while Table IV is devoted to group 2. As we can
observe from Table III, area savings up to 50% are
achieved with SMAS versus the hybrid algorithm in
NOVA, the average of time ratios being near to 1.
Even more area and time savings are achieved by
S U S on the second group of machines.

Finally, although this algorithm is not tailored to
the assignment of minimized machines, when SMAS
is applied to the subset of the MCNC benchmark
corresponding to minimized machines, there is only

A r =

an increment of around 11% in area with respect to
the i-hvbrid ontion in NOVA.
CONc'Lusr6Ns

We have developed and programmed an state
assignment algorithm which, concurrently to the
assignment of binary codes i n t h e symbolic
representation, exploits the potentials of s ta te
merging and state splitting when i t is possible.

Up to now, the algorithm is extremely advantage-
ous for the assignment of non minimized machines
because of the power o f state mergin . It achieves
slightly worse results than NOVA f% minimized
machines. Nevertheless, this is a preliminary version
of the work. In our opinion, paying more attention to
the state splittin technique and the tuning of the
cost function willgead to a more efficient assignment
of machines with a minimum number of states. In any
case, the algorithm is original and paves the way to a
newtreatmht of state assignment..
REFERENCES
[Bray841 R. K. Brayton, G.D. Ha tche l , C.

McMullen, and A.L. Sangiovanni ,
"Lopic Minimization Algorithms for

[DevaSOl

[Gras681

[Hart621

[Koha781

Lee841

Lisa891

Reus861

[Rude851

[Tsen861

[Unger691

[Vila881

VL% Synthesis". H i n i h a m , MA,
Kluwer Academic Pub., 1984.
S . Devadas, H. T. Ma, A.R. Newton, A.
Sangiovanni-Vincentelli, "Irredundant
Sequential Machines Via Optimal Logic
Synthesis", IEEE Trans. on CAD, Vol9,
pp 8-17, January 1990.
A. Grasselli and F. Luccio, "Some
covering l,l'roblems i n S w i t c h i n g
Theory", Network and Switching
Theory", Academic Press, 1968.
J. Hartmanis and R.E. Stearns, "Some
Dangers in the State Reduction of
Sequential Machines", Inform. Cont., pp
252-260, Sept. 1962.
Z. Kohavi, "Switching and Fin i te
Automata Theory". New York, MCGraw
Hill, 1978.
E.B. Lee a n d M. A. P e r k o w s k i
"Concurrent Minimization and State
Assignment of Finite State Machines",
Proc. 1984 Intern. Conf. on Syst. Man.
and Cyb. IEEE, Halifax, October 1984.
R. Lisanke, "Introduction of Synthesis
benchmark", Inf. Workshop on Logic
Svnthesis. North Carolina. 1989.

Reusch and W. Merzenich, "Minimal
Coverings for Incompletely Specified
Sequential Machines", Acta Informatiea,

R. Rudell, A. Sangiovanni-Vincentelli,
G. De Micheli, "A Finite-State Machine
Synthesis System" Proceedings o f
ISCAS 1985, pp.647-650, May 1985,
C Tseng, A.M: P rabhu , C. L1, Z.
Mehmood, M.M. Tong, "A Versatile
Finite State Machine Synthesizer",
Proceedings of ISCAS 1986, p p 206-209.
1986.
S. H. Unger, "Asynchronous Sequential
Switching Circuits", Wiley-Interscience,

NO. 22, pp. 663-678,1986.

New Yo&, 1969.
T. Vila,"NOVA", in Octtools User's
Manual , UCB, March , 1988 .

1783

I I I NOVA I SMAS I I

area
time

~

Table I

I I I NOVA I SMAS I I

0.44 0.43
0.08 0.16

Table II

area
time

0.48 0.54
0.12 0.61

Table IIi

random I ratios I hybrid I

1784

