
A CAD SYSTEM FOR AUTOMATIC SYNTHESIS OF
GENERALIZED ASYNCHRONOUS CIRCUITS

Ming-Der Shieh, Jyh-Ming Horng, Ming-Hwa Sheu and Yu-Chin Hsu

Department of Electronic Engineering
National Yunlin Institute of Technology

Touliu, Y d i n , Taiwan, R.O.C.
E-mail: shiehm@cad.el. yunkch.edu.tw

ABSTRACT
This paper presents a unified synthesis method for dealing

with generalized asynchronous circuits which comprise
specifications of both Asynchronous Finite State Machines
(AFSMs) and Signal Transition Graphs (STGs). By comparing
the similarities and differences of two different synthesis
methods, we describe algorithms and techniques underlying our
CAD system for automating the design of the generalized
asynchronous circuits based on the well-developed synthesis
procedures of Huffman-modeled asynchronous circuits.
Experimental results show that the developed system,
implemented in C, can handle concurrence and sequencing of
STGs and fundamental mode operation of AFSMs at the same
time, therefore, it allows for a more natural and compact
specification of asynchronous behavior.

1. INTRODUCTION

Asynchronous sequential logic circuits (ASLCs) have
received considerable attention in recent years due to their
potential for higher speed, lower average power dissipation and
as clock skew problems in clocked sequential circuits continue to
persist. Traditional techniques for synthesis and analysis of
asynchronous circuits [11 have not been very successful because
of the complex processes for ensuring the critical race-free state
assignment and hazard-free operation. Recently, the synthesis of
asynchronous circuits from signal transition graphs (STGs) has
become an active research area since its first introduced by Chu
[2]. From this event-based specification, it is suitable for
synthesizing asynchronous control circuits. However, the
verification and rectiiication for a realizable STG are non-trivial
tasks [3,4,51.

Up to date, signscant advances have been made in
automating the design and synthesis of asynchronous circuits.
However, the existing techniques use different models to
synthesize ASLCs separately [5] . On the other hand, from the
analysis of STG-modeled ASLCs and Huffman-modeled ASLCs,
which is also referred to as asynchronous finite state machines
(AFSMs), it can be shown that these two different synthesis
procedures are not totally independent [6,7]. By combining both
approaches, a synthesis procedure for the generalized
asynchronous circuits which comprise both data inputs and
control signals becomes achievable. Therefore, it allows for a
more natural and compact specification of asynchronous
behavior. Based on the similarities and differences of two

0-7803-3073-0/96/$5 .OO '1996 IEEE 818

different synthesis methods, in this paper we present algorithms
and techniques underlying our CAD system, implemented in C,
for automating the design of generalized asynchronous circuits
based on the well-developed synthesis procedures of Huffman-
modeled AFSMs from high-level specifications.

This paper is organized as follows: Section 2 defines the
terminology and describes previous results related to this work.
Sechon 3 gives an overview of the developed system. Section 4
presents the details of our algorithms and techniques for the
generation of the concurrent flow table, the encoding of
introduced internal signals and critical race-free state assignment.
Section 5 gives some experimental results. Section 6 gives our
conclusions.

2. STG- AND HUFFMAN-MODELED ASLC

2.1 Definition and Terminology
A Huffman-modeled ASLC, also referred to as an AFSM, is

generally described by a 5-tuple (S,I,O,G,o), where S, I, 0, b and
o represent a set of intemal states, inputs, outputs, next-state
function, and output function, respectively. It is generally defined
in terms of afrow table in which each column of the flow table
represents an input state and each row represents an intemal state.
And, it is assumed that circuits are operated in the fundamental
mode operation, i.e., the input cannot change until the circuit
stabilizes with only one input allowed to change at a time.
Moreover, critical races are eliminated by using state assignment
techniques. Among existing algorithms, the totally sequential
state assignment 181, which is also referred to as a unit-distance
code (UDC) state assignment, and the single transition time
(STT) state assignment are commonly employed 191.

The STG-modeled ASLCs can be viewed as interpreted free-
choice Petri-nets 12-51, where transitions in nets are interpreted as
the value changes on inputloutput signals of a specitied circuit,
and places in nets are specified by causal relations. A place can
be marked with one or more tokens, meaning that the
corresponding condition holds in the circuit. The causal relations
joining pairs of transitions represent how the circuit and its
environment can react to signal transitions. A realizable STG
[2,3] must first satisfy the conditions of liveness, safeness and
unique state coding (USC). Since a state in the state graph is a
bit-vector, if two distinct state si, sj have the same bit-vector
assignment, a violation of the unique state coding (USC) property
results. If, further, there is a transition t of a non-input signal
enabled in q, but not in sj (or vice versa), then a violahon of the
CSC property results.

2.2 Comparisons between AFSMs and STGs
The STG without input/output concurrency can be viewed as

a Moore-type AFSM with a unity function, i.e., the output
variables are the same as state variables [61. In addition, the
signal transition graph is equivalent to the flow table with
concurrency, referred to as a concurrent flow table (CFI'). Table I
concludes the results:

STGs AFSMs

Input Concurrency Multiple Input Change
Output Concurrency STT State Assignment
Sequential Output Change UDC State Assignment

Input/Output Concurrencj Fundamental Mode
Signal Protocol Fundamental Mode
GraDhic Soecification Flow Table

Table I: Coi

hilarities

ifferences

Consider the four-phase handshaking circuit in Figure l(a).
Figure l(b) show the equivalent CFT, and an alternative
representation of this CFT is represented in Figure l(c), where
the symbols 2 and 3 are used to represent the 1-to4 and 0-to-1
transitions, respectively. In this paper, we are concentrated on the
Moore AFSMs. Mealy AFSMs can also be directly translated
into Moore AFSMs. And, we use the 'state' to refer to either states
in AFSMs or total states in STGs, depending on the context.

2000 23OC 130C 102C

3 4 1 at x 0003 0303 3301 3001

(c) I - - I - - pup2121 Figure 1: An Example

3. OVERVIEW OF THE DEVELOPED SYSTEM

Figure 2 shows an overview of the developed system. It
provides the high-level description of a circuit's specification.
The simplified description consists of input specification, output
specification and functional specification. The functional
specification is a collection of if-then rules used in the expert
system. And, the general form of a rule is ' i f condition(s) then
action(s)'. The conditions, referred to as the production rules, are
used to determine what kinds of actions should be taken when the
conditions are satisfied. For a deterministic circuit's behavior,
three properties must be satisfied: (1) Each rule should be unique;
(2) Rules should not conflict each other; and (3) One rule should

not cover another rules. If any of the properties is violated, it is
treated as the specification mistakes. Note that both input and
output signals can be used as the triggering signals in the
production rules. Four symbols 0,1,2, and 3 are used to represent
the static 0, static 1,O-to-1 transition, and 1-to-0 transition of the
signals, respectively, to incorporate both AFSM and STG
specifications. If the condition in a production rule consists of
either symbol 2 or symbol 3, it is treated as the STG behavior.
Otherwise, it is interpreted as fundamental mode AFSM
specifications, which can be also viewed as the free-choice input
condition in STG specifications.

The synthesis procedures in this system are shown in Figure
2. Techniques used in each step will be discussed in next section.

High-level descriptions I
t

AFSM or STG
specifications

Converter
mimmization

2- utput grou

I Partitioning assignment 1
t

No

minimization

outputs - Concurrent flow table h 1 Excitation table I Output files for sis I
Figure 2: System overview

4. SYNTHESIS OF THE GENERALIZED ASLC

4.1 Generation of the CFI'
The generating strategy of a CFT is to control state transitions

in he current CFT entry and generate the next CFT entry. It can
be accomplished by determining which production rules should
be fired by matching each pattern in the condition part of function
specification with current state. If the firing condition is satisfied,

8 19

then the CFT generator looks for its corresponding next-state
entry in the CFT based on the actions taken. More specifically,
the generation of each entry in the CFT can be achieved under the
following rules: (1) If the next-state entry does not exist, a new
entry is created in response to the corresponding actions
executed, (2) If the next-state entry has already existed and the
actions taken can be merged without conflicts, no new entry is
created; and (3) If the next-state entry has already existed and the
violation of CSC property is detected, a new entry is created and
a different group number is appended to eliminate the conflicts.

For example, assume that a group number 0 is assigned to the
initial state from which every entry in CFT is generated. If the
next entry, say (%, 0), of the current state (Sc,O) resides in Rule
3, then a new entry (sN,1) is created as the next entry of (Sc,O),
where the notation (S,G) is denoted as a state S with a group
number G. It should be noted that the process of state
minimization is implicitly incorporated in Rule 2. In other words,
for a current state (Sc,Gl), the CFT generator will try to search
for a proper next state (SN,G~) to perform the state minimization,
where either G1=G2 or Gl+Gz. The whole procedure is repeated
until all the generated entries have been filled with the assigned
values and no more firing of production rules and actions will
cause new entries created in the current CFT.

As mentioned above, the production rules may consists of free
choice of single-input change, sequential or concurrent changes
of the input and output signals. In the former case, it is referred to
as the AFSM behavior, while, the latter case is treated as the STG
behavior. Therefore, the CFT generator will take the correct
actions for the activated entry being checked based on the
production rules. Let U be the set of incompleted entry in the
ClT and MakeFsm () and MakeStg () be the procedures for
dealing with the AFSM and STG behavior, respectively. The
algorithm for generating the CFT can be stated as follows:
1. Find a reachable initial state for generating the CFT
2. whileU*$

select an entry e E U
match the current state with the production rules
if the current status is AFSM behavior then {

MakeFsm() /* firing of the single-input change */
update the elements in U}

Makes@() /* concurrent or sequencing change*/
update the elements in U}

else { P the current status is STG behavior */

end

4.2 Partitioning Assignment
As described in the generation of a CFT, whenever a violation

of the CSC property is detected, a different group number is
assigned to its next state to solve this problem. Since the
introduced group numbers, denoted as GNs, are only symbols for
eliminating conflicts, therefore, the goal for partitioning
assignment is to encode GNs such that potential critical races
introduced may be kept as little as possible. Note that all the
critical races will be eliminated during the critical race-free state
assignment discussed later. Procedures to achieve this goal can be
divided into two main steps. Step 1, since the GNs are generated
based on local informations, a global adjustment is performed to
make most of state transitions occurred within the same group,

i.e., to avoid the change of GNs during a state transition. Thus,
potential critical races resulted from the change of GNs are not
likely to occur. The adjustment is achieved by counting the
number of transitions, defined as the transition counts TCs,
occurring within different GNs in the CFT and reassign the
numbers such that the total number of changes within different
GNs is minimized. Note that some modifications for the existing
entries may be needed to make the CFT consistent.

The next step is to encode GNs by using minimum number of
bits. Before describing the technique for this assignment, we first
define the adjacent relationship as follows: Two state, si and 9,
are adjacent if there exists at least a state transition from si to 3 in
a ClT, or vice versus. However, since we only consider the
relationship among different GNs, a simplified adjacent diagram
for the partitioning assignment can be constructed with each node
representing a discrete GN and each edge is weighted based on
the TCs derived from the CFT. Then, the encoding process can be
formulated as mapping the given adjacent diagram into the n-
cube structure, where n=rlogz ml for m different GNs in a CFT,
with the criterion that the GNs with larger TCs are arranged to be
adjacent to each other. For example, Figure 3(a) show a weighted
adjacent diagram and its corresponding mapped n-cube structure
is shown in Figure 3(b).

0

L

Figure 3: An example for partitioning assignment

4.3 Critical-Race-Free State Assignment
When critical races occur in a circuit, the circuits may fail to

get the correct response. As a result, all critical races should be
eliminated after partitioning assignment. Note that a state is now
represented by the combination of input, output and internal
signals after partitioning assignment. By combining the concept
of STT and UDC state assignments, we present a simple but
efficient method to reduce the complexity of critical race
eliminations. First, we restate the definition of a transition pair in
S'IT as follows. A transition pair TPu, denoted as [Si,Sj], consists
of one total state Si and its corresponding next total state Sj after
firing of specified signals. Due to the unequal transmission delays
in a circuit, some intermediate states may be involved during a
concurrent change of signals in TPij. Therefore, the process for
detecting critml races can be stated as follows: Expand all the
TPs so that the implied intermediate states become visible. For
unavoidable conflicts, it implies the existence of critical races.

In order to reduce the complexity, we accomplish the task of
critical-race elimination by going through a two-pass process.
Pass 1, if a critical race is detected after the expansion of TP's, an
extra internal variable is added to solve the conflict, i.e., we force
one of the state transition to go through a different plane to skip
the conflicts. In order words, the internal variable is used to

820

distinguish these two different TP’s. By using this concept, we
can guarantee that no more critical races will result from this
modification. Note that the same internal variable can still be
used to eliminate the conflicts among other TP’s. For example, as
shown in Figure 4(a), assume that there exists two TP’s [000,0101
and [100,001]. After the expansion of the TP’s, it can be found
that critical races may occur at the state (WO), which is an
intermediate state in [100,001], Therefore, one extra internal
variable is needed to distinguish these two TP’s. By using this
created internal variable, the modified state transition is
illustrated in Figure 4(b). Therefore, the critical race can be
eliminated. In other words, the state transition for [OOO,OlO] is
resided on plane 0 and the state transition [100,001] is forced to
go through plane 1, where the plane b E {O,l} means that the
value of the internal variable is set to b.

State vair

100 02 p.2
/ O?? \

a 0 1 0

Plane 0

Figure 4 Process for critical-race elimination

After eliminating all the critical races, the second pass can be
used to reduce the number of added internal variables. The
approach is trying to project all the state transitions from plane i
to plane j, where i > j. If it can be achieved, then its
corresponding internal variable can be eliminated. Figure 5
shows the derived state transitions in Figure 4(b).

Figure 5: A result after internal variable reduction

5. EXPERIMENTAL RESULTS
The synthesis procedures discussed in this paper have been

implemented in C on Sun workstation and applied to numerous

practical examples. Experimental results show that it can
efficiently handle STG specification for most of the examples and
reduce the number of internal variables in AFSM example. Some
of the experimental results are shown in Table II.

Table II: Experimenl

Examples

full.g
sbuf-read-ctl.g
n0wick.g
vb24a.g
ebergeng
fsml.hl
fsm.hl
fsm3.hl
fsm4.hl
fsm5.hl

6. CONCLUSIONS

In this paper, a CAD system is developed to simplify the
design of generalized asynchronous circuits. Although some of
the techniques described in paper are heuristic, experimental
results show that the developed system can efficiently handle a
large number of practical examples. In conclusion, the major
contributions of this paper can be summarized as follows: (1)
provide a unified approach for synthesizing generalized ASLCs
which can handle concurrency, free-choice, and sequencing of
STG and fundamental mode AFSM at the same time; (2) provide
a simple but efficient technique for critical-race elimination; and
(3) develop a CAD system for automating the design of
asynchronous circuits.

REFERENCES

Unger, S.H., Asynchronous Sequential Switching
Circuits, wiley interscience, 1969.
Chu, T.A., “Synthesis of self-timed V U 1 circuits from
graph theoretic specifications,” ph.D. dissertation, MIT,
June 1987.
Moon, C.W., Stephan, PR. and Brayton, R.K., “Synthesis
of hazard-free asynchronous circuits from graphical
specifications,” ICCD, pp.322-325, Nov. 1991.
Lin, K.-J. and Lin, C.-S., “On the verification of state-
coding in STGs,” ICCAD, pp.118-122,1992.
Hauck, S . , “Asynchronous design methodologies: An
overview,” Proceedings of the IEEE, vo1.83, no. 1, pp.

Wey, C.-L., Shieh, M.D. and Fisher, P.D., “ASLCScan: A
scan design technique for asynchronous sequential logic
circuits,” ICCD. pp.159-162, 1993.
Lavagno, L., Moon, C.W., Brayton, R.K. and
Sangiovanni-Vicentelli, A.L., “An efficient heuristic
procedure for solving the state assignment problem for
event-based specifications,” IEEE Trans. on Computer-
Aided Design, vol. 14, no. 1, pp. 45-60, Jan. 1995.
Hazeltine, B., “Encoding of asynchronous sequential
circuits,” IEEE Trans. on Computers, pp. 727-729, 1965
Tracey, J.H., “Internal state assignments for
asynchronous sequential machines,” IEEE Trans.
Electronic Computers, EC-15, pp.551-560, Aug. 1966.

69-93, Jan. 1995.

82 1

