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ABSTRACT 
This paper presents a unified synthesis method for dealing 

with generalized asynchronous circuits which comprise 
specifications of both Asynchronous Finite State Machines 
(AFSMs) and Signal Transition Graphs (STGs). By comparing 
the similarities and differences of two different synthesis 
methods, we describe algorithms and techniques underlying our 
CAD system for automating the design of the generalized 
asynchronous circuits based on the well-developed synthesis 
procedures of Huffman-modeled asynchronous circuits. 
Experimental results show that the developed system, 
implemented in C, can handle concurrence and sequencing of 
STGs and fundamental mode operation of AFSMs at the same 
time, therefore, it allows for a more natural and compact 
specification of asynchronous behavior. 

1. INTRODUCTION 

Asynchronous sequential logic circuits (ASLCs) have 
received considerable attention in recent years due to their 
potential for higher speed, lower average power dissipation and 
as clock skew problems in clocked sequential circuits continue to 
persist. Traditional techniques for synthesis and analysis of 
asynchronous circuits [ 11 have not been very successful because 
of the complex processes for ensuring the critical race-free state 
assignment and hazard-free operation. Recently, the synthesis of 
asynchronous circuits from signal transition graphs (STGs) has 
become an active research area since its first introduced by Chu 
[2]. From this event-based specification, it is suitable for 
synthesizing asynchronous control circuits. However, the 
verification and rectiiication for a realizable STG are non-trivial 
tasks [3,4,51. 

Up to date, signscant advances have been made in 
automating the design and synthesis of asynchronous circuits. 
However, the existing techniques use different models to 
synthesize ASLCs separately [5] .  On the other hand, from the 
analysis of STG-modeled ASLCs and Huffman-modeled ASLCs, 
which is also referred to as asynchronous finite state machines 
(AFSMs), it can be shown that these two different synthesis 
procedures are not totally independent [6,7]. By combining both 
approaches, a synthesis procedure for the generalized 
asynchronous circuits which comprise both data inputs and 
control signals becomes achievable. Therefore, it allows for a 
more natural and compact specification of asynchronous 
behavior. Based on the similarities and differences of two 
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different synthesis methods, in this paper we present algorithms 
and techniques underlying our CAD system, implemented in C, 
for automating the design of generalized asynchronous circuits 
based on the well-developed synthesis procedures of Huffman- 
modeled AFSMs from high-level specifications. 

This paper is organized as follows: Section 2 defines the 
terminology and describes previous results related to this work. 
Sechon 3 gives an overview of the developed system. Section 4 
presents the details of our algorithms and techniques for the 
generation of the concurrent flow table, the encoding of 
introduced internal signals and critical race-free state assignment. 
Section 5 gives some experimental results. Section 6 gives our 
conclusions. 

2. STG- AND HUFFMAN-MODELED ASLC 

2.1 Definition and Terminology 
A Huffman-modeled ASLC, also referred to as an AFSM, is 

generally described by a 5-tuple (S,I,O,G,o), where S, I, 0, b and 
o represent a set of intemal states, inputs, outputs, next-state 
function, and output function, respectively. It is generally defined 
in terms of afrow table in which each column of the flow table 
represents an input state and each row represents an intemal state. 
And, it is assumed that circuits are operated in the fundamental 
mode operation, i.e., the input cannot change until the circuit 
stabilizes with only one input allowed to change at a time. 
Moreover, critical races are eliminated by using state assignment 
techniques. Among existing algorithms, the totally sequential 
state assignment 181, which is also referred to as a unit-distance 
code (UDC) state assignment, and the single transition time 
(STT) state assignment are commonly employed 191. 

The STG-modeled ASLCs can be viewed as interpreted free- 
choice Petri-nets 12-51, where transitions in nets are interpreted as 
the value changes on inputloutput signals of a specitied circuit, 
and places in nets are specified by causal relations. A place can 
be marked with one or more tokens, meaning that the 
corresponding condition holds in the circuit. The causal relations 
joining pairs of transitions represent how the circuit and its 
environment can react to signal transitions. A realizable STG 
[2,3] must first satisfy the conditions of liveness, safeness and 
unique state coding (USC). Since a state in the state graph is a 
bit-vector, if two distinct state si, sj have the same bit-vector 
assignment, a violation of the unique state coding (USC) property 
results. If, further, there is a transition t of a non-input signal 
enabled in q, but not in sj (or vice versa), then a violahon of the 
CSC property results. 



2.2 Comparisons between AFSMs and STGs 
The STG without input/output concurrency can be viewed as 

a Moore-type AFSM with a unity function, i.e., the output 
variables are the same as state variables [61. In addition, the 
signal transition graph is equivalent to the flow table with 
concurrency, referred to as a concurrent flow table (CFI'). Table I 
concludes the results: 

STGs AFSMs 

Input Concurrency Multiple Input Change 
Output Concurrency STT State Assignment 
Sequential Output Change UDC State Assignment 

Input/Output Concurrencj Fundamental Mode 
Signal Protocol Fundamental Mode 
GraDhic Soecification Flow Table 

Table I: Coi 

hilarities 

ifferences 

Consider the four-phase handshaking circuit in Figure l(a). 
Figure l(b) show the equivalent CFT, and an alternative 
representation of this CFT is represented in Figure l(c), where 
the symbols 2 and 3 are used to represent the 1-to4 and 0-to-1 
transitions, respectively. In this paper, we are concentrated on the 
Moore AFSMs. Mealy AFSMs can also be directly translated 
into Moore AFSMs. And, we use the 'state' to refer to either states 
in AFSMs or total states in STGs, depending on the context. 
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(c) I - - I  - -  pup2121  Figure 1: An Example 

3. OVERVIEW OF THE DEVELOPED SYSTEM 

Figure 2 shows an overview of the developed system. It 
provides the high-level description of a circuit's specification. 
The simplified description consists of input specification, output 
specification and functional specification. The functional 
specification is a collection of if-then rules used in the expert 
system. And, the general form of a rule is ' i f  condition(s) then 
action(s)'. The conditions, referred to as the production rules, are 
used to determine what kinds of actions should be taken when the 
conditions are satisfied. For a deterministic circuit's behavior, 
three properties must be satisfied: (1) Each rule should be unique; 
(2) Rules should not conflict each other; and (3) One rule should 

not cover another rules. If any of the properties is violated, it is 
treated as the specification mistakes. Note that both input and 
output signals can be used as the triggering signals in the 
production rules. Four symbols 0,1,2, and 3 are used to represent 
the static 0, static 1,O-to-1 transition, and 1-to-0 transition of the 
signals, respectively, to incorporate both AFSM and STG 
specifications. If the condition in a production rule consists of 
either symbol 2 or symbol 3, it is treated as the STG behavior. 
Otherwise, it is interpreted as fundamental mode AFSM 
specifications, which can be also viewed as the free-choice input 
condition in STG specifications. 

The synthesis procedures in this system are shown in Figure 
2. Techniques used in each step will be discussed in next section. 

High-level descriptions I 
t 

AFSM or STG 
specifications 

Converter 
mimmization 

2- utput grou 

I Partitioning assignment 1 
t 

No 

minimization 

outputs - Concurrent flow table h 1 Excitation table I Output files for sis I 
Figure 2: System overview 

4. SYNTHESIS OF THE GENERALIZED ASLC 

4.1 Generation of the CFI' 
The generating strategy of a CFT is to control state transitions 

in he current CFT entry and generate the next CFT entry. It can 
be accomplished by determining which production rules should 
be fired by matching each pattern in the condition part of function 
specification with current state. If the firing condition is satisfied, 
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then the CFT generator looks for its corresponding next-state 
entry in the CFT based on the actions taken. More specifically, 
the generation of each entry in the CFT can be achieved under the 
following rules: (1) If the next-state entry does not exist, a new 
entry is created in response to the corresponding actions 
executed, (2) If the next-state entry has already existed and the 
actions taken can be merged without conflicts, no new entry is 
created; and (3) If the next-state entry has already existed and the 
violation of CSC property is detected, a new entry is created and 
a different group number is appended to eliminate the conflicts. 

For example, assume that a group number 0 is assigned to the 
initial state from which every entry in CFT is generated. If the 
next entry, say (%, 0), of the current state (Sc,O) resides in Rule 
3, then a new entry (sN,1) is created as the next entry of (Sc,O), 
where the notation (S,G) is denoted as a state S with a group 
number G. It should be noted that the process of state 
minimization is implicitly incorporated in Rule 2. In other words, 
for a current state (Sc,Gl), the CFT generator will try to search 
for a proper next state (SN,G~) to perform the state minimization, 
where either G1=G2 or Gl+Gz. The whole procedure is repeated 
until all the generated entries have been filled with the assigned 
values and no more firing of production rules and actions will 
cause new entries created in the current CFT. 

As mentioned above, the production rules may consists of free 
choice of single-input change, sequential or concurrent changes 
of the input and output signals. In the former case, it is referred to 
as the AFSM behavior, while, the latter case is treated as the STG 
behavior. Therefore, the CFT generator will take the correct 
actions for the activated entry being checked based on the 
production rules. Let U be the set of incompleted entry in the 
ClT and MakeFsm ( ) and MakeStg ( ) be the procedures for 
dealing with the AFSM and STG behavior, respectively. The 
algorithm for generating the CFT can be stated as follows: 
1. Find a reachable initial state for generating the CFT 
2. whileU*$ 

select an entry e E U 
match the current state with the production rules 
if the current status is AFSM behavior then { 

MakeFsm( ) /* firing of the single-input change */ 
update the elements in U} 

Makes@( ) /* concurrent or sequencing change*/ 
update the elements in U} 

else { P the current status is STG behavior */ 

end 

4.2 Partitioning Assignment 
As described in the generation of a CFT, whenever a violation 

of the CSC property is detected, a different group number is 
assigned to its next state to solve this problem. Since the 
introduced group numbers, denoted as GNs, are only symbols for 
eliminating conflicts, therefore, the goal for partitioning 
assignment is to encode GNs such that potential critical races 
introduced may be kept as little as possible. Note that all the 
critical races will be eliminated during the critical race-free state 
assignment discussed later. Procedures to achieve this goal can be 
divided into two main steps. Step 1, since the GNs are generated 
based on local informations, a global adjustment is performed to 
make most of state transitions occurred within the same group, 

i.e., to avoid the change of GNs during a state transition. Thus, 
potential critical races resulted from the change of GNs are not 
likely to occur. The adjustment is achieved by counting the 
number of transitions, defined as the transition counts TCs, 
occurring within different GNs in the CFT and reassign the 
numbers such that the total number of changes within different 
GNs is minimized. Note that some modifications for the existing 
entries may be needed to make the CFT consistent. 

The next step is to encode GNs by using minimum number of 
bits. Before describing the technique for this assignment, we first 
define the adjacent relationship as follows: Two state, si and 9, 
are adjacent if there exists at least a state transition from si to 3 in 
a ClT, or vice versus. However, since we only consider the 
relationship among different GNs, a simplified adjacent diagram 
for the partitioning assignment can be constructed with each node 
representing a discrete GN and each edge is weighted based on 
the TCs derived from the CFT. Then, the encoding process can be 
formulated as mapping the given adjacent diagram into the n- 
cube structure, where n=rlogz ml for m different GNs in a CFT, 
with the criterion that the GNs with larger TCs are arranged to be 
adjacent to each other. For example, Figure 3(a) show a weighted 
adjacent diagram and its corresponding mapped n-cube structure 
is shown in Figure 3(b). 

0 

L 

Figure 3: An example for partitioning assignment 

4.3 Critical-Race-Free State Assignment 
When critical races occur in a circuit, the circuits may fail to 

get the correct response. As a result, all critical races should be 
eliminated after partitioning assignment. Note that a state is now 
represented by the combination of input, output and internal 
signals after partitioning assignment. By combining the concept 
of STT and UDC state assignments, we present a simple but 
efficient method to reduce the complexity of critical race 
eliminations. First, we restate the definition of a transition pair in 
S'IT as follows. A transition pair TPu, denoted as [Si,Sj], consists 
of one total state Si and its corresponding next total state Sj after 
firing of specified signals. Due to the unequal transmission delays 
in a circuit, some intermediate states may be involved during a 
concurrent change of signals in TPij. Therefore, the process for 
detecting critml races can be stated as follows: Expand all the 
TPs so that the implied intermediate states become visible. For 
unavoidable conflicts, it implies the existence of critical races. 

In order to reduce the complexity, we accomplish the task of 
critical-race elimination by going through a two-pass process. 
Pass 1, if a critical race is detected after the expansion of TP's, an 
extra internal variable is added to solve the conflict, i.e., we force 
one of the state transition to go through a different plane to skip 
the conflicts. In order words, the internal variable is used to 
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distinguish these two different TP’s. By using this concept, we 
can guarantee that no more critical races will result from this 
modification. Note that the same internal variable can still be 
used to eliminate the conflicts among other TP’s. For example, as 
shown in Figure 4(a), assume that there exists two TP’s [000,0101 
and [100,001]. After the expansion of the TP’s, it can be found 
that critical races may occur at the state (WO), which is an 
intermediate state in [100,001], Therefore, one extra internal 
variable is needed to distinguish these two TP’s. By using this 
created internal variable, the modified state transition is 
illustrated in Figure 4(b). Therefore, the critical race can be 
eliminated. In other words, the state transition for [OOO,OlO] is 
resided on plane 0 and the state transition [100,001] is forced to 
go through plane 1, where the plane b E {O,l} means that the 
value of the internal variable is set to b. 

State vair 

100 02 p.2 
/ O?? \ 

a 0 1 0  

Plane 0 

Figure 4 Process for critical-race elimination 

After eliminating all the critical races, the second pass can be 
used to reduce the number of added internal variables. The 
approach is trying to project all the state transitions from plane i 
to plane j, where i > j. If it can be achieved, then its 
corresponding internal variable can be eliminated. Figure 5 
shows the derived state transitions in Figure 4(b). 

Figure 5: A result after internal variable reduction 

5. EXPERIMENTAL RESULTS 
The synthesis procedures discussed in this paper have been 

implemented in C on Sun workstation and applied to numerous 

practical examples. Experimental results show that it can 
efficiently handle STG specification for most of the examples and 
reduce the number of internal variables in AFSM example. Some 
of the experimental results are shown in Table II. 

Table II: Experimenl 

Examples 

full.g 
sbuf-read-ctl.g 
n0wick.g 
vb24a.g 
ebergeng 
fsml.hl 
fsm.hl 
fsm3.hl 
fsm4.hl 
fsm5.hl 

6. CONCLUSIONS 

In this paper, a CAD system is developed to simplify the 
design of generalized asynchronous circuits. Although some of 
the techniques described in paper are heuristic, experimental 
results show that the developed system can efficiently handle a 
large number of practical examples. In conclusion, the major 
contributions of this paper can be summarized as follows: (1) 
provide a unified approach for synthesizing generalized ASLCs 
which can handle concurrency, free-choice, and sequencing of 
STG and fundamental mode AFSM at the same time; (2) provide 
a simple but efficient technique for critical-race elimination; and 
(3) develop a CAD system for automating the design of 
asynchronous circuits. 
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