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Abstract - The Tabulation method can he used with a 
computer to simplify Boolean logic functions with up to 6 or 
more variables, especially with a large number of variables. 
For the various applications, their circuits usually are 
complex and we must simplify the circuit design to the hest 
ofour ability. In this paper, we present an algorithm that can 
efficiently simplify a quantum Boolean circuit with an 
arbitrary number of input variables by using the tabulation 
method. I n  terms of the space consumption, we use only one 
auxiliary qubit as the output qubit, and keep all the input 
quhits unchanged. 

Index Terms - Logic minimization, quantum Boolean 
circuit, tabulation method. 

I. INTRODUCTION 

Quantum computing is one of the most rapidly 
expanding research fields recently. Over the last few years, 
several quantum algorithms, such as Shor's quantum 
factoring [I]  and Grover's fast database search algorithm 
[Z] have emerged. They are much faster than their hest 
classical counterparts. To implement a quantum computer, 
we need to construct quantum Boolean circuits [3] which 
consist of quantum gates. Unlike conventional AND-OR- 
NOT-based circuits, quantum Boolean circuits are based 
on NOT, CN, and CCN gates. Although with different 
building blocks, they can still be synthesized by the 
classical AND, XOR, and NOT functions. 

Tabulation method [4] can be used to reduce Boolean 
functions, especially for a large number of variables. The 
concept of tabulation method, however, is very important 
for the following two reasons: 
1) The method can he programmed to be used as a tool 

for quantum Boolean functions minimization. 
2) The method is a promising technique for reducing 

quantum Boolean functions 

11. TABULATION METHOD 

The classic tabulation method consists of two separate 
steps, determining prime implicants and finding a 
minimum set of prime implicants, but OUT algorithm 
doesn't need to apply the second step. We just find the 
term with the maximum number of minterms at every 
cycle partially like the first step of the classical method. 

Definition 1:  Let a minterm m with n variables be 
xlxr..x., wherexi represents the i-th variable andxt=O or 1. 

In the quantum Boolean function, using a tabulation 
method to simplify quantum logic circuits is not easy 
because the XOR functions are substituted for the OR 
functions. It makes a little hit difference between the 
classical and the quantum logic circuits by using the 
tabulation method to simplify logic functions. 

Tabulation method usually starts with a listing of the 
specified minterms and groups the minterms according to 
the number of 1's. The simplified term which contains . 
minterms with the relation of logic minimization can he 
obtained to combine minterms or terms by using the 
theorems or x $ z @ ~ ; = ~ ( ~ @ z )  , where x 
represents a product of literals, y and z are a single 
variable, and (3 notation indicates XOR function. 

Definition 2: Let m, and mz be two minterms with n 
variables. If they differ in exactly one variable, the i-th 
variable, then they can he combined to yield a new term 
xix~...xi.rhj+i...x., where the '*' notation means that the i- 
th variable is eliminated. 

Definition 3: Let m, and m2 be two minterms with n 
variables. If they differ in two variables, the i-th andj-th 
variables, then they can he combined to yield a new term 
xlx ~... xj.l-xj+l...xj.l-x,+l,..x~, where the two '-' notations 
mean that the two corresponding variables are combined 
to form an XOR function. 

For example, two terms x + ~ ; , x ~  and ;,x,x,x, which 
differ in two variables, x ,  and x3,  are combined to form a 
new term X~XJX, 8 x , ) .  

111. COMBINATION RULES 

Now we introduce a set of combination rules to simplify 
a circuit. By applying these rules, we can get a simplified 
quantum Boolean circuit. 

Rule I :  If two terms including minterms differ in the i- 
th variable and are equal in other variables, then they can 
be combined by eliminating the i-th variable to form a 
term. 

In Fig. 1, because two terms differ in only one variable, 
they can be combined by eliminating the variable X I .  This 
simplified term have four minterms 0, 4, 8, and 12. Note 
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that (0,4) O*OO indicates a term with two minterms 0 and 4, 
where (0,4) is the decimal representation of combined 
format of two minterms given in parenthesis and O*OO is 
the binary representation of the term. 

Rule 5:  If two terms differ in only one variable, the i-th 
variable, excluding the variables which are - notations, 
then they can be combined by eliminating the i-th variable. 

The term (8,13,14) I-*- has three minterms given in 
parenthesis and one non-minterm, 1 I ,  as shown in Fig. 5. x. x,  x,  X' 

' I  %nary representation of a term 
Decimal representation of a term 

An example for Combination rule 1. Fig. 1. 

Rule 2: If two terms differ in two variables, the i-th and 
j-th variables, and one of these two variables of a term is * 
and another term also has only one * in the different one 
of the two variables, then they can be combined by 
eliminating the i-th andj-th variables. 

In Fig. 2, the term (0,4,6,8,12,14) ::*O has six 
minterms given in parenthesis and two non-minterms, 2 
and 10. 

(0.4,8.12) ' - ~ ( 0 , 4 . ~ . 8 , 1 2 . 1 4 ) [ ~ r D /  * * 0 0 

(4.6,12,14) 1 7  
Fig. 2. An example for Combination rule 2 

Rule 3: If two terms differ in k variables and these two 
terms have only one * notation in every different variable, 
then they can be combined by eliminating these k 
variables. 

The term (0,4,5,8,12) **O* has five minterms given in 
parenthesis and three non-mintems, 1,9, and 13, in Fig. 3. 

Fig. 3. An example for Combination rule 3. 

Rule 4: If two terms differ in only one variable, the i-th 
variable, and have - notations in the same variables, then 
they can be combined by eliminating the i-th variable. 

Its algebraic equivalent is ;,;,(=) @&x2 x,) = 

e xi x,) as shown in Fig. 4. 

Fig. 4. An example for Combination rule 4. 

(8,13,14)-\ 

Fig. 5. An example for Combination rule 5 

IV. ALGONTHM 

A. Grouping the minterms: 

In order to find the most simplified term with the 
maximum number of minterms, all possible pairs of 
minterms should be compared and combined. To reduce 
the required number of comparisons, the minterms in 
binary are sorted into groups according to the number of 
1's. Therefore, 

F(x,, x2+, x4) = 

is grouped as shown in Column 0 of Fig. 6. 

in group 1 have one 1, and so on. 

B. AND function generation: 

(0,4,5,6,8,12,1 4) 

In Column 0, the term in group 0 has zero l's, the terms 

First we compare every term in group 0 with all of the 
terms in group 1 in Column 0 of Fig. 6. Two terms which 
differ in only one variable can he combined to eliminate 
the different variable by using Rule 1, which yields a new 
simplified term. The resulting terms are listed in Column 1. 

Because the comparison of group 0 with groups 2 and 3 
is unnecessary, we proceed to compare terms in groups 1 
and 2. Notation v in Fig. 6 indicates this term has been 
selected to combine with others. 

Column 0 Column 1 

K1 %E ; group 0 (0) 0000 v 

(8)  1000 v 
(5) 0101 v 

4.5 O l O *  I 1  4.6 Ol*Ov 
(4.12) * I00 v 

(12) l l0OV (6,14)*110v 
group3 (14)1110v (12,14) I I * O v  

group 1 (4) 0100 v 

group 2 (6) 0110 v (8,12) 1.00v 

Column 2 Column 3 
(0,4,6,8.12,14) **-0 

- (4.6.12,14) *I80 v .1 
f ;  = x, 

Fig. 6. AND function generation at the first cycle. 
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Then terms in the first group in Column 1 need only be 
combined with terms in the second group which have * 
notation in the corresponding place by using Rule 1. The 
resulting terms are listed in Column 2. 

Finally, we find term (0,4,8,12) can be combined with 
term (4,6,12,14) by using Rule 2 as shown in Column 3. 
Then we need to calculate the number of minterms in this 
term. 

C. XORfirnction generation: 

In the quantum Boolean circuit, the XOR function is as 
important as the AND function. Thus, we need to 
simultaneously think of the AND and XOR functions in 
the deduction of the expression, then this kind of the 
method can really simplify quantum Boolean circuits. 

Firstly, the minterms must be partitioned into two parts 
which have even and odd number of minterms 
respectively as shown in Column 0 of Fig. 7. Then we can 
find all possible pairs of XOR functions in these two parts 
respectively. Because two terms with a relation of XOR 
function differ in two variables, they can he combined into 
a new term, for example term (0,s) 0-0.. The resulting 
terms are listed in Column 1. 

In Column 1 of Fig. 7, we collect the terms with two - 
notations in the corresponding places together into 
Column 2 by using Rule 4. Then term (0,6,8,14) can be 
combined with term ( 5 )  to yield a new term (0,5,6,8,14). 
Now we can calculate the number of minterms in this term. 

Column 0 Column 1 ................................ 
i group 0 (0) 0000 (0.5) O-O- 

(5)OIOl I (0.610-0 i group2 (6)OI lO;  (0.12)-00 
i i!~?I.l~..nO..nO.i (5.6) 01- 

15.12) -10- 

Column 2 Column 3 
(0.6.8,14) *-0 (0,5.6,8.14) *-* w 

/ = (x4 fB 2 2  e%)  

Fig. 7 .  

D. Algorithm: 

XOR function generation at the first cycle. 

Step 5.  Select the most simplified term from Steps 3 and 4. 
According to the select term, we can get the 
corresponding Boolean function and change the 
minterms in the term into non-minterms and the 
non-minterms into minterms. 

Step 6. If there exist any minterms, then go to Step 2.  
Step 7. Finally, combine all Boolean functions. 

After running Steps 3 and 4 as shown in Fig. 6 and 7, 
we find the term (0,4,6,8,12,14) bas the maximum number 
of mintem, so the first part of the expression is F, =;. 
At the second cycle, we can get another functionF -; - 

2 - iX lX4’  
The remaining minterm is term (5) after the second cycle, 
so we can directly obtain the functionF -yz yx . Finally, 
we combine all the Boolean functions &d;clnk at every 
cycle and the final circuit is shown in Fig. 8. 

Fig. 8. The final circuit 

V. CONCLUSION 

For the quantum Boolean functions, XOR function and 
AND function are equally important to form the 
simplified expressions. Thus, our algorithm is developed 
in accordance with the properties of these two functions. 
In this paper, we have proposed an algorithm that 
transforms an original truth table into a quantum Boolean 
circuit. With our algorithm, we can reduce not only the 
number of quantum gates but also the basic operations of 
the circuit. No other auxiliary qubit or intermediate 
storage is needed. Therefore, it is efficient in terms of both 
space and time. 
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