
2004 4th IEEE Conference on Nanotechnology

Quantum Boolean Circuits Construction Using Tabulation Method
Chin-Yung Lu, Shiou-An Wang, and Sy-Yen Kuo

Department of Electrical Engineering and Graduate Institute of Electronic Engineering
National Taiwan University, Taipei, sykuo@cc.ee.ntu.edu.tw, Taiwan

Abstract - The Tabulation method can he used with a
computer to simplify Boolean logic functions with up to 6 or
more variables, especially with a large number of variables.
For the various applications, their circuits usually are
complex and we must simplify the circuit design to the hest
ofour ability. In this paper, we present an algorithm that can
efficiently simplify a quantum Boolean circuit with an
arbitrary number of input variables by using the tabulation
method. I n terms of the space consumption, we use only one
auxiliary qubit as the output qubit, and keep all the input
quhits unchanged.

Index Terms - Logic minimization, quantum Boolean
circuit, tabulation method.

I. INTRODUCTION

Quantum computing is one of the most rapidly
expanding research fields recently. Over the last few years,
several quantum algorithms, such as Shor's quantum
factoring [I] and Grover's fast database search algorithm
[Z] have emerged. They are much faster than their hest
classical counterparts. To implement a quantum computer,
we need to construct quantum Boolean circuits [3] which
consist of quantum gates. Unlike conventional AND-OR-
NOT-based circuits, quantum Boolean circuits are based
on NOT, CN, and CCN gates. Although with different
building blocks, they can still be synthesized by the
classical AND, XOR, and NOT functions.

Tabulation method [4] can be used to reduce Boolean
functions, especially for a large number of variables. The
concept of tabulation method, however, is very important
for the following two reasons:
1) The method can he programmed to be used as a tool

for quantum Boolean functions minimization.
2) The method is a promising technique for reducing

quantum Boolean functions

11. TABULATION METHOD

The classic tabulation method consists of two separate
steps, determining prime implicants and finding a
minimum set of prime implicants, but OUT algorithm
doesn't need to apply the second step. We just find the
term with the maximum number of minterms at every
cycle partially like the first step of the classical method.

Definition 1: Let a minterm m with n variables be
xlxr..x., wherexi represents the i-th variable andxt=O or 1.

In the quantum Boolean function, using a tabulation
method to simplify quantum logic circuits is not easy
because the XOR functions are substituted for the OR
functions. It makes a little hit difference between the
classical and the quantum logic circuits by using the
tabulation method to simplify logic functions.

Tabulation method usually starts with a listing of the
specified minterms and groups the minterms according to
the number of 1's. The simplified term which contains .
minterms with the relation of logic minimization can he
obtained to combine minterms or terms by using the
theorems or x $ z @ ~ ; = ~ (~ @ z) , where x
represents a product of literals, y and z are a single
variable, and (3 notation indicates XOR function.

Definition 2: Let m, and mz be two minterms with n
variables. If they differ in exactly one variable, the i-th
variable, then they can he combined to yield a new term
xix~...xi.rhj+i...x., where the '*' notation means that the i-
th variable is eliminated.

Definition 3: Let m, and m2 be two minterms with n
variables. If they differ in two variables, the i-th andj-th
variables, then they can he combined to yield a new term
xlx ~... xj.l-xj+l...xj.l-x,+l,..x~, where the two '-' notations
mean that the two corresponding variables are combined
to form an XOR function.

For example, two terms x + ~ ; , x ~ and ;,x,x,x, which
differ in two variables, x , and x3, are combined to form a
new term X~XJX, 8 x ,) .

111. COMBINATION RULES

Now we introduce a set of combination rules to simplify
a circuit. By applying these rules, we can get a simplified
quantum Boolean circuit.

Rule I : If two terms including minterms differ in the i-
th variable and are equal in other variables, then they can
be combined by eliminating the i-th variable to form a
term.

In Fig. 1, because two terms differ in only one variable,
they can be combined by eliminating the variable X I . This
simplified term have four minterms 0, 4, 8, and 12. Note

0-7803-8536-5/04/520.00 02004 IEEE 596

that (0,4) O*OO indicates a term with two minterms 0 and 4,
where (0,4) is the decimal representation of combined
format of two minterms given in parenthesis and O*OO is
the binary representation of the term.

Rule 5: If two terms differ in only one variable, the i-th
variable, excluding the variables which are - notations,
then they can be combined by eliminating the i-th variable.

The term (8,13,14) I-*- has three minterms given in
parenthesis and one non-minterm, 1 I , as shown in Fig. 5. x. x, x, X'

' I %nary representation of a term
Decimal representation of a term

An example for Combination rule 1. Fig. 1.

Rule 2: If two terms differ in two variables, the i-th and
j-th variables, and one of these two variables of a term is *
and another term also has only one * in the different one
of the two variables, then they can be combined by
eliminating the i-th andj-th variables.

In Fig. 2, the term (0,4,6,8,12,14) ::*O has six
minterms given in parenthesis and two non-minterms, 2
and 10.

(0.4,8.12) ' - ~ (0 , 4 . ~ . 8 , 1 2 . 1 4) [~ r D / * * 0 0

(4.6,12,14) 1 7
Fig. 2. An example for Combination rule 2

Rule 3: If two terms differ in k variables and these two
terms have only one * notation in every different variable,
then they can be combined by eliminating these k
variables.

The term (0,4,5,8,12) **O* has five minterms given in
parenthesis and three non-mintems, 1,9, and 13, in Fig. 3.

Fig. 3. An example for Combination rule 3.

Rule 4: If two terms differ in only one variable, the i-th
variable, and have - notations in the same variables, then
they can be combined by eliminating the i-th variable.

Its algebraic equivalent is ;,;,(=) @&x2 x,) =

e xi x,) as shown in Fig. 4.

Fig. 4. An example for Combination rule 4.

(8,13,14)-\

Fig. 5. An example for Combination rule 5

IV. ALGONTHM

A. Grouping the minterms:

In order to find the most simplified term with the
maximum number of minterms, all possible pairs of
minterms should be compared and combined. To reduce
the required number of comparisons, the minterms in
binary are sorted into groups according to the number of
1's. Therefore,

F(x,, x2+, x4) =

is grouped as shown in Column 0 of Fig. 6.

in group 1 have one 1, and so on.

B. AND function generation:

(0,4,5,6,8,12,1 4)

In Column 0, the term in group 0 has zero l's, the terms

First we compare every term in group 0 with all of the
terms in group 1 in Column 0 of Fig. 6. Two terms which
differ in only one variable can he combined to eliminate
the different variable by using Rule 1, which yields a new
simplified term. The resulting terms are listed in Column 1.

Because the comparison of group 0 with groups 2 and 3
is unnecessary, we proceed to compare terms in groups 1
and 2. Notation v in Fig. 6 indicates this term has been
selected to combine with others.

Column 0 Column 1

K1 %E ; group 0 (0) 0000 v

(8) 1000 v
(5) 0101 v

4.5 O l O * I 1 4.6 Ol*Ov
(4.12) * I00 v

(12) l l0OV (6,14)*110v
group3 (14)1110v (12,14) I I * O v

group 1 (4) 0100 v

group 2 (6) 0110 v (8,12) 1.00v

Column 2 Column 3
(0,4,6,8.12,14) **-0

- (4.6.12,14) *I80 v .1
f ; = x,

Fig. 6. AND function generation at the first cycle.

597

Then terms in the first group in Column 1 need only be
combined with terms in the second group which have *
notation in the corresponding place by using Rule 1. The
resulting terms are listed in Column 2.

Finally, we find term (0,4,8,12) can be combined with
term (4,6,12,14) by using Rule 2 as shown in Column 3.
Then we need to calculate the number of minterms in this
term.

C. XORfirnction generation:

In the quantum Boolean circuit, the XOR function is as
important as the AND function. Thus, we need to
simultaneously think of the AND and XOR functions in
the deduction of the expression, then this kind of the
method can really simplify quantum Boolean circuits.

Firstly, the minterms must be partitioned into two parts
which have even and odd number of minterms
respectively as shown in Column 0 of Fig. 7. Then we can
find all possible pairs of XOR functions in these two parts
respectively. Because two terms with a relation of XOR
function differ in two variables, they can he combined into
a new term, for example term (0,s) 0-0.. The resulting
terms are listed in Column 1.

In Column 1 of Fig. 7, we collect the terms with two -
notations in the corresponding places together into
Column 2 by using Rule 4. Then term (0,6,8,14) can be
combined with term (5) to yield a new term (0,5,6,8,14).
Now we can calculate the number of minterms in this term.

Column 0 Column 1
i group 0 (0) 0000 (0.5) O-O-

(5)OIOl I (0.610-0 i group2 (6)OI lO; (0.12)-00
i i!~?I.l~..nO..nO.i (5.6) 01-

15.12) -10-

Column 2 Column 3
(0.6.8,14) *-0 (0,5.6,8.14) *-* w

/ = (x4 fB 2 2 e%)

Fig. 7 .

D. Algorithm:

XOR function generation at the first cycle.

Step 5. Select the most simplified term from Steps 3 and 4.
According to the select term, we can get the
corresponding Boolean function and change the
minterms in the term into non-minterms and the
non-minterms into minterms.

Step 6. If there exist any minterms, then go to Step 2.
Step 7. Finally, combine all Boolean functions.

After running Steps 3 and 4 as shown in Fig. 6 and 7,
we find the term (0,4,6,8,12,14) bas the maximum number
of mintem, so the first part of the expression is F, =;.
At the second cycle, we can get another functionF -; -

2 - iX lX4’
The remaining minterm is term (5) after the second cycle,
so we can directly obtain the functionF -yz yx . Finally,
we combine all the Boolean functions &d;clnk at every
cycle and the final circuit is shown in Fig. 8.

Fig. 8. The final circuit

V. CONCLUSION

For the quantum Boolean functions, XOR function and
AND function are equally important to form the
simplified expressions. Thus, our algorithm is developed
in accordance with the properties of these two functions.
In this paper, we have proposed an algorithm that
transforms an original truth table into a quantum Boolean
circuit. With our algorithm, we can reduce not only the
number of quantum gates but also the basic operations of
the circuit. No other auxiliary qubit or intermediate
storage is needed. Therefore, it is efficient in terms of both
space and time.

REFERENCES

[I] P. Shor, “Algorithms for quantum computation: discrete
logarithms and factoring” Proc. of the 35th Annual IEEE
Sjmposium on the Foundarions of Compuler Science, pp.
124-134, 1994.

Suooose that the original truth table have n variables. [21 L. Grover, “A fast quantum mechanical algorithm for ’. -
database search” Proc. of the 28th Annual ACMsymposium
on the Theoryof Computing, pp. 212-219, 1996.

[31 I-Ming Tsai and Sy-Yen Kuo, a.Quantum Boolean Circuit
Cnnatmction and Lavout under Localitv Constraint” Proc.

The algorithm is described as follows:
Step 1. Calculate the number of minterms. If the number is

over 2’-’, then change min tem into non-mintenns
~~~~ ~ ~~ ................... , ~~ 

,~~ . ~ ~ _ ~ ~  ~~~~~~ ~~ 

and non-&terms into minterms. of :he Is: IEEE Conference on Nanotechnology, pp. I 1  1- 
Step 2. Group the minterms. 
Step 3.  Apply the AND function generation. 
Step 4 .  Apply the XOR function generation. 

~~ 

116,200i. 
[4] Charles H. Roth, Jr, Fundamenrols of Logic Design 3rd ed. 

St. Paul: West Pub. Co. 1985. 

598 


