
Abstract Machines Peter Hines - York University

Random Thoughts

on

Abstract Machines

Peter Hines

University of York (2006)

http://www-users.cs.york.ac.uk/∼phines/AbstractMachine.ps

Bellairs Research, March 2006 Slide: 1

Abstract Machines Peter Hines - York University

Motivation ?

We want a ‘model of computation’ that is :

• physically motivated – the important point!

• as abstract as possible,

• but concrete enough to calculate with.

• useful — but we can’t have everything ...

We do not care about :

• computing as calculating a result, rather than

as a physical process.

• the program / data distinction.

Ideally :

• we recover familiar concepts or useful tools.

• we can generalise or restrict to other settings

– reversible, asynchronous, quantum, &c.

Bellairs Research, March 2006 Slide: 2

Abstract Machines Peter Hines - York University

Physically, what is a computer ?

i.e. how abstract can we go ?

An Abstract Computing Machine is:

1. A set X of configurations.

2. An evolution rule R that takes

configurations to next configurations.

and that’s all ...

(For the moment) we also require

The ‘evolution rule’ R is :

(i) Deterministic

(ii) Possibly partial

(iii) Fixed — it does not change over time!

If we want time-dependence, we need to build in a clock, by

modifying both the configuration set X and the evolution rule R.

Bellairs Research, March 2006 Slide: 3

Abstract Machines Peter Hines - York University

Notation

For an Abstract Computing Machine M = (X,R),

write ”The next configuration of x is y” as either

• R(x) = y (functional notation)

• x � y (relational notation)

Mathematically : an ACM is trivial

— is is just a partial function acting on a set.

• Also known as a deterministic, unlabelled, state transition

system

• However, we study it from a different perspective :

• . . . as first a physical and then a computing system.

Bellairs Research, March 2006 Slide: 4

Abstract Machines Peter Hines - York University

As a Physical System :

Possible problems

1. Partiality
• what does it mean for a configuration to have no next

configuration, under a physical evolution rule ?

2. Irreversibility
• How can physical time-evolution be irreversible ?

Possible solutions

1. Partiality :
• Partial information : The configuration set X is part of

a larger set Y

... but we can only observe the configurations in X.

• A Halting convention : For example, we only consider

evolutions that change configuration — we rule out

x � x � x � x � x � . . .

Alternatively, some subset H ⊆ X is chosen as the halting

subset, and we terminate the experiment when this subset

is entered.

2. Irreversibility

• Classically, this is fine — we can ‘dump information to

the environment’ with no side-effects.

• Quantum-mechanically, this is not the case !

Bellairs Research, March 2006 Slide: 5

Abstract Machines Peter Hines - York University

As a Computational System

Motivating examples Turing Machines, Cellular

automata, the von Neumann architecture, λ-terms

(with fixed reduction strategies), finite state

automata (with specified input string), Procedural

subroutines, &c.

A natural operation

Given the Next relation x � y, consider its transitive closure.

• x � y implies x ; y

• a ; b and b ; c implies a ; c

Call this the Leads To relation x ; z

Important : unlike transition systems, we do not look at the

reflexive transitive closure.

Interpretation

Given a machine M in configuration x, with x ; z, then the

machine M will at some later point be in configuration z.

Unfortunately the ‘leads to’ relation contains strictly less

information about a computation than the ‘next’ relation.

Bellairs Research, March 2006 Slide: 6

Abstract Machines Peter Hines - York University

A trivial example

Wherever cycles may occur, the ‘leads to’ relation loses information

about causal ordering (i.e. “p then q then r ...”)

Consider two distinct machines M1 and M2 with configuration set

X = {a , b , c}

a �1 b �1 c �1 a

a �2 c �2 b �2 a

��
� ‘Next’ relations for M1 , M2

The ‘leads to’ relation is the same, universal, relation for M1 and

M2. We can only recover information about ordering when there are

no cycles!

Bellairs Research, March 2006 Slide: 7

Abstract Machines Peter Hines - York University

Cycle-free machines

An Abstract Computing Machine M = (X, �) is cycle-free when :

”There does not exist a configuration x such that x ; x”

For finite configuration sets, this is equivalent to nilpotency :

RN = 0 for some N ∈ N

For infinite configuration sets, this is undecidable.

Advantages of cycle-free machines

• Termination (in the finite case) is guaranteed — the computer

never gets stuck in an infinite loop.

• We can recover causal ordering and the Next relation from the

‘Leads to’ relation.

• the ; relation is a strict partial order

– Irreflexive : x 6 ;x for any x ∈ X.

– Transitive : x ; y and y ; z implies x ; z.

– Antisymmetric : x ; y implies x 6= y and y 6 ;x.

• Hence, configurations form a Directed Acyclic Graph.

We can induce a partial ordering by

x ≤ y ⇔ x ; y or x = y

– and hope the order-preserving or monotonic functions may

give an interesting theory!

Bellairs Research, March 2006 Slide: 8

Abstract Machines Peter Hines - York University

Why not restrict ourselves ?

Should we take this approach ?

Disadvantages of cycle-free machines

• Cycle-freeness is undecidable in general.

• We rule out most interesting examples (Turing machines, von

Neumann architecture, &c.)

• We lose any hope of compositionality

– Any reasonable notion of ‘plugging one machine into

another’ will allow for the creation of cycles by composing

two cycle-free machines.

• The quantum case (pure states & unitary evolution) is long

gone!

... in any case, cycle-freeness is less about machine evolution, and

more about choice of halting scheme.

An alternative approach

We will work with, and order :

• partial functions on the configuration set,

• rather than configurations themselves.

Q : Why partial functions on configurations ?

A : Simply because the evolution rule R is a partial function.

Bellairs Research, March 2006 Slide: 9

Abstract Machines Peter Hines - York University

More definitions !

Given M = (X, �), a machine evolution is a partial function

η : X → X where

η(x) = y ⇒ x ; y

Interpretation :

When M is in configuration x then at some later point, M will be in

configuration y.

We study the set of all machine evolutions [M], and call this the

machine semantics of M.

What do we know about [M] ?

At least some properties are immediate :

• [M] is a semigroup (by transitivity of ;)

• The semigroup [M] contains a zero element

– (the nowhere-defined function 0X : X → X)

• The semigroup [M] has a partial summation :

– given η, µ with disjoint domains, then

(η + µ)(x)

����
���

η(x) x ∈ dom(η)

µ(x) x ∈ dom(µ)

undefined otherwise

– For category theorists, [M] is enriched over partially additive

monoids.

– In this setting, addition is just ‘putting together bits of a jigsaw’.

In other settings, we must be careful about interpretations!!

Bellairs Research, March 2006 Slide: 10

Abstract Machines Peter Hines - York University

Comparing evolutions

Motivation : ”Evolutions η, µ ∈ [M] are simply ways of looking at

the same machine, at different levels of abstractness.”

An example : Recall motivation from von Neumann computers :

Let M be a desktop P.C., running a JAVA program,

that is compiled into Interpreted Byte Code,

and executed as Intel 68000 machine code

we can look at this in a number of different ways!

R — von Neumann Architecture

Byte Code

JAVA program

Computer as ‘black box’

0X — No information

Bellairs Research, March 2006 Slide: 11

Abstract Machines Peter Hines - York University

Comparing evolutions (cont.)

For η, µ ∈ [M], say η is more primitive than µ when :

• When µ(c) = d, there exists K > 0, with ηK (c) = d.

Write this as µ ≺ η

Interpretation

• µ is a (partial) description of the behaviour of M.

• η is a more complete description of M

– because we can recover µ by restricting or iterating η.”

Important ! K is not a fixed integer:

— Each Virtual Machine instruction does not take the same number

of clock cycles.

— Each Java language command does not take the same number of

Virtual Machine instructions.

— The time a computer takes to terminate depends on the input.

Bellairs Research, March 2006 Slide: 12

Abstract Machines Peter Hines - York University

What do we know about this relation ?

In any Abstract Machine M = (X, R), we know that

• η ≺ η, for all η ∈ [M]

• 0X ≺ η ≺ R.

• When η + µ exists, then η ≺ η + µ.

Q: Is ‘primitiveness’ a partial order ?

A: No ! (or, not yet !)

Counterexample :

In this case,

R ≺ R
2

, R
2 ≺ R

Taking the induced quotient does not help — we will identify

everything!

Bellairs Research, March 2006 Slide: 13

Abstract Machines Peter Hines - York University

What saves us ?

Fact : Even when a machine M = (X, �) contains cycles , it has

cycle-free evolutions.

Cycle-free evolutions are those where :

η
K(x) 6= x ∀x ∈ X, K ∈ N

We define [[M]] ⊆ [M], the cycle-free semantics for M, to be the

set of all cycle-free evolutions :

[[M]] = {η ∈ [M] : η
K(x) 6= x ∀x ∈ X, K ∈ N}

Motivation : We think of these as restrictions of the machine

evolution that actually compute something ... possibly by setting

Starting & Halting criteria

— alternatively, these are the machine evolutions that give a

well-behaved mathematical theory!

Bellairs Research, March 2006 Slide: 14

Abstract Machines Peter Hines - York University

What do we know about cycle-free semantics ?

Let M = (X, R : X → X) be an abstract machine.

When we consider the cycle-free semantics [[M]],

We gain :
• (Reflexivity) : η ≺ η for all η ∈ [[M]].

– Proof : by definition of ≺.

• (Anti-symmetry) : η ≺ µ and µ ≺ η implies η = µ.

– Proof : a consequence of cycle-freeness.

• (Transitivity) : η ≺ µ and µ ≺ ζ implies η ≺ ζ.

– Proof : by definition of ≺.

• (Bottom element) : The nowhere-defined arrow 0X is a

bottom element, so 0X ≺ η.

– Proof : Trivial, by definition of 0X .

• (Additivity) : When η + µ is defined and is cycle-free, then

η ≺ η + µ.

– Proof : Trivial, by definition of summation of partial

functions.

– Warning : Even when defined, the sum of two cycle-free

elements might not be cycle-free.

We lose :
• Semigroup structure [[M]] need not be closed under

composition.

– η and µ cycle-free does not imply that ηµ is cycle-free.

– although η ∈ [[M]] implies η2, η3, η4, . . . ∈ [[M]].

• ‘Top’ element [[M]] might not contain R

– The ‘primitive evolution’ need not be cycle-free.

– As a corollary, the partial order ≺ need not have a top

element.

Bellairs Research, March 2006 Slide: 15

Abstract Machines Peter Hines - York University

What these posets look like – the simple case.

The special case where M = (X, R : X → X) is cycle-free.

RN (x) 6= x ∀ x ∈ X N ∈ N

Trivially :

• Every evolution is cycle-free, so [M] = [[M]].

• [M], ≺ is a partially ordered semigroup, enriched over a partial

addition, with top and bottom elements, R and 0X , and

compatibility between the summation and the ordering.

How about Meets and Joins ?

[M], ≺ is closed under finite meets, and arbitrary joins.

Meets : For evolutions η, µ ∈ [M]

• (η ∧ µ)(x) is undefined when either η(x) or µ(x) is undefined.

• Otherwise, there exists unique p, q > 0 with

η(x) = R
p
(x) and µ(x) = R

q
(x)

– In this case, define

(η ∧ µ)(x) = Rlcm(p,q)(x)

Bellairs Research, March 2006 Slide: 16

Abstract Machines Peter Hines - York University

Joins : For evolutions, {ηi}i∈I ⊆ [M]

• ��i∈I ηi� (x) is undefined when ηi(x) is undefined for all i ∈ I.

• Otherwise, consider the subset {ηj}j∈I⊆I of evolutions where

ηj(x) is defined.

–

– There exists unique {pj > 0} with

ηj(x) = R
pj (x)

– We then define ��i∈I ηi� (x) = R
gcd({pj})

(x)

Anything else ?

Distributivity : Finite meets distribute over arbitrary joins.

µ ∧ �� �
i∈I

ηi

�� = �
i∈I

(µ ∧ ηi)

— this follows from the definition of ∧, ∨ and simple properties of

gcd() and lcm()

Relative Pseudocomplements :

• For any element η, µ, the set {ζ : η ∧ µ ≤ ζ} has a least upper

bound, η ⇒ µ.

— this follows from distributivity & cycle-freeness.

We can identify [M], ≺ as a Heyting Algebra

— these play the same rôle for intuitionistic logic that Boolean

algebras play for classical logic.

Bellairs Research, March 2006 Slide: 17

Abstract Machines Peter Hines - York University

What these posets look like – the complicated case!

The general case : M is not cycle-free.

In [[M]], we no longer have :

• A semigroup structure — athough integer powers of evolutions

are well-defined.

• Meets and Joins : η ∧ µ and η ∨ µ need not exist.

• Arbitrary suprema, relative pseudocomplements, &c.

We do still have:

• A partial ordering.

• A bottom element, 0X : X → X.

• Suprema of some sets.

Given a chain of evolutions

C = {. . . ≺ ηi ≺ ηi+1 ≺ ηi+2 ≺ . . . } ⊆ [[M]]

We claim this has a supremum, sup(C) ∈ [[M]]

Consider ηi defined at a configuration x ∈ X.

By definition, ηi+1, ηi+2, . . . are all defined at x.

— Assume that ηj (x) 6= ηj+1(x) :

This interprets as

ηi(x) = η
k1
i+1

(x)

ηi+1(x) = η
k2
i+2

(x)

ηi+2(x) = η
k3
i+3

(x)

.

.

.

Where {k1, k2, k3 . . .} are all greater than 1.

Bellairs Research, March 2006 Slide: 18

Abstract Machines Peter Hines - York University

This gives

ηi(x) = η
N1
i+1

(x) = η
N2
i+2

(x) = η
N3
i+3

(x) = . . .

with

N1 < N2 < N3 < . . .

Can prove formally this contradicts cycle-freeness & the definition of

an evolution !

— a graphical demonstration is more interesting :

ηi ≺ ηi+1 ≺ ηi+2 ≺ . . .

Given discrete evolution and no repeated configurations we

cannot infinitely subdivide a computational path

— Zeno’s paradox does not apply to discrete computation!

(despite various proposed schemes for hypercomputation ...)

Bellairs Research, March 2006 Slide: 19

Abstract Machines Peter Hines - York University

Completeness of cycle-free semantics

We have seen, for any chain

C = {. . . ≺ ηi ≺ ηi+1 ≺ ηi+2 ≺ . . . } ⊆ [[M]]

and any configuration x ∈ X, there exists some ηM , with

∀ ηj , ∃N > 0, : ηj(x) = η
N
M (x)

Make the obvious definition :

Sup(C)(x) = ηM (x)

(not forgetting M is a function of x).

Small amount of extra work (to prove cycle-freeness , &c.), shows that

this is the least upper bound of this chain.

Finally :

“A partially ordered set P is a DCPO if and only if each chain in P has a

supremum”

— T. Iwamura (1944) , using Axiom of Choice

We can identify [[M]], ≺ as a DCPO

with a bottom element

— can do various things like ‘finding least fixed-points of monotone

functions’, &c.

Bellairs Research, March 2006 Slide: 20

Abstract Machines Peter Hines - York University

Why is this of interest to a category-theorist ??

The ‘particle-style trace’ or ‘trace by iteration’ :

The intuition of ‘eliminating a subspace by iteration’

A partial function F : A] U → B] U may be written as a matrix :

F = �� f11 f12

f21 f22

�� where

��
�

f11 : A → B f12 : U → B

f21 : A → U f22 : U → U

The Particle-style Trace ‘eliminates the shared subobject U’

T r
U �� f11 f12

f21 f22

�� = f11 +

∞�

i=0

f12f
i
22f21 : A → B

Bellairs Research, March 2006 Slide: 21

Abstract Machines Peter Hines - York University

Iterative traces & order theory

Given an abstract machine

M = (X,R ∈ pFun(X,X))

assume X = A] U

Define the restriction of [M] to A ⊆ X as

[M]A = { µ ∈ [M] : dom(µ) = A = im(µ) }

similarly for the cycle-free semantics :

[[M]]A = { µ ∈ [[M]] : dom(µ) = A = im(µ) }

For arbitrary evolutions, T rU
A,A

(ζ) ≺ ζ

(up to the embedding pFun(A, A) ↪→ pFun(X, X)).

For a given cycle-free evolution, η ∈ [[M]], consider

η ↓A = { µ ∈ [[M]]A : µ ≺ η }

Can show (up to an embedding of pFun(A, A) into pFun(X, X))

• Any µ ∈ η ↓A is cycle-free.

• T rU
A,A

(η) is :

1. cycle-free, and a member of η ↓A.

2. the supremum of η ↓A.

Bellairs Research, March 2006 Slide: 22

Abstract Machines Peter Hines - York University

Finding cycle-free evolutions

Good programming practice : every program subroutine has

well-defined entry and exit points — it is ‘bad manners’ to jump into, or

break out of, a subroutine half way through!

Interpretation : Given an abstract machine M = (X, R), we chose

distinct subsets, S, T

—the (Starting and Terminal) subsets of the configuration space :

S, T ⊆ X , S ∩ T = ∅

and consider all evolutions that take elements of S to elements of T :

[M]ST = {η ∈ [M] : dom(η) ⊆ S , im(η) ⊆ T}

Trivially :

• [M]S
T

is a flat semigroup :

– it is closed under composition

– contains the zero arrow

– ηµ = 0 = µη for all η, µ ∈ [M]S
T

• All evolutions in [M]S
T

are cycle-free

– Nilpotency is very easy to prove !

• [M]S
T

has a top element, given by T rS,T (R)

– again, up to some pFun(S, T) ↪→ pFun(X, X).

Interpretation :

We have specified (distinct) starting and halting subsets for the

Abstract Machine M

— we are now treating this as a ‘black box’, that takes inputs to

outputs.

Bellairs Research, March 2006 Slide: 23

Abstract Machines Peter Hines - York University

Further directions :

This is very much (!) work in progress !

‘To Do’ list :

• Learn some domain theory!

• Clarify relationship between trace and partial orders in the

general case.

• Give concrete examples :

– ‘Black Box’ semantics for computer programs,

– Algebraic models for state machines (with feedback)

– Geometry of Interaction -style systems.

• A study of compositionality.

• Apply in other categories :

1. Restriction to partial reversible functions goes through

without a problem

— similar theory for reversible computations.

2. Similarly for Relations

— and hence non-determinism.

3. A ‘particle-style’ trace exists for non-expansive maps on

Hilbert space.

— but preserving unitarity requires a global clock.

Questions :

– What is the correct notion of configuration, cycle-freeness

or termination ?

– What is the corresponding order theory, logic, or

domain theory?

Bellairs Research, March 2006 Slide: 24

