
AUTOMATIC SYNTHESIS OF BURST-MODE
ASYNCHRONOUS CONTROLLERS

Steven Mark Nowick

Technical Report: CSL-TR-95-686

December 1995

This research was supported by the Semiconductor Research Corporation

under Contracts 91-DJ-205 and 92-DJ-205; and by the Stanford Center

for Integrated Systems, Research Thrust in Synthesis and Veri�cation

of Multi-Module Systems.



AUTOMATIC SYNTHESIS OF BURST-MODE

ASYNCHRONOUS CONTROLLERS

Steven Mark Nowick

Technical Report: CSL-TR-95-686

December 1995

(revised version of PhD dissertation, March 1993)

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, CA 94305-4055

Abstract

Asynchronous design has enjoyed a revival of interest recently, as designers seek to elimi-

nate penalties of traditional synchronous design. In principle, asynchronous methods promise

to avoid overhead due to clock skew, worst-case design assumptions and resynchronization

of asynchronous external inputs. In practice, however, many asynchronous design methods

su�er from a number of problems: unsound algorithms (implementations may have hazards),

harsh restrictions on the range of designs that can be handled (single-input changes only),

incompatibility with existing design styles and ine�ciency in the resulting circuits.

This thesis presents a new locally-clocked design method for the synthesis of asynchronous

controllers. The method has been automated, is proven correct and produces high-performance

implementations which are hazard-free at the gate-level. Implementations allow multiple-

input changes and handle a relatively unconstrained class of behaviors (called \burst-mode"

speci�cations). The method produces state-machine implementations with a minimal or near-

minimal number of states. Implementations can be easily built in such common VLSI design

styles as gate-array, standard cell and full-custom. Realizations typically have the latency of

their combinational logic.

A complete set of state and logic minimization algorithms has been developed and au-

tomated for the synthesis method. The logic minimization algorithm di�ers from existing

algorithms since it generates two-level minimized logic which is also hazard-free.

The synthesis program is used to produce competitive implementations for several pub-

lished designs. In addition, a large real-world controller is designed as a case study: an

asynchronous second-level cache controller for a new RISC processor.

Key Words and Phrases: asynchronous, sequential synthesis, hazards, hazard-free logic,

state machines, cache controller, logic minimization.

i



Copyright c 1995

Steven Mark Nowick



Acknowledgments

Many people have contributed to my enjoyment and education at Stanford.

My adviser, David Dill, has given me superb guidance throughout my graduate

studies. I began working with Dave on the problem of veri�cation of asynchronous

circuits. My work eventually shifted to the problem of designing correct circuits. In

both areas, Dave has been a source of quality insights, patience and encouragement.

He has taught me much of what I know about research, writing and problem-solving.

Working with Dave has made my Stanford experience immensely rewarding.

The other members of my committee | Teresa Meng, Giovanni De Micheli and Al

Davis | have been unusually helpful. Teresa Meng �rst introduced me to many of

the intricacies of asynchronous design. Our discussions prompted me to consider more

deeply the problem of gate-level hazards. Her enthusiasm and insights have bene�ted

me immensely.

Giovanni De Micheli has helped me with several technical issues in hazard-free logic

minimization. He has also given me insight into the relationship between my work and

synchronous synthesis methods. He has been a real source of encouragement, and I have

enjoyed our discussions on future extensions to this work.

Al Davis was originally my project leader at HP Labs for two summers, where I

worked on asynchronous veri�cation for a chip design in his Mayy Parallel Processing

System. Much of my understanding of asynchronous state machine design comes from

our conversations. The work that he and his group have done on asynchronous design

has had a direct impact on this thesis. I have greatly enjoyed working with Al.

This thesis work has bene�ted from the support provided by the Semiconductor

Research Corporation, under Contracts 91-DJ-205 and 92-DJ-205; and by the Stanford

Center for Integrated Systems, Research Thrust in Synthesis and Veri�cation of Multi-

Module Systems.

iii



I would also like to thank Bill Coates and Ken Stevens, of the HP Labs Mayy

Project, for two great summers at HP and many insightful discussions since then.

At Stanford, the past and present members of the asynchronous group have made

life enjoyable. They have also contributed to my understanding of asynchronous design:

Peter Beerel, Mark Dean, Chris Myers, Polly Siegel, Ted Williams and Ken Yun. I have

especially bene�ted from collaborations with Mark and Ken.

Polly Siegel and Bill Coates have given me useful comments on a draft of this thesis.

I have also enjoyed many discussions on asynchronous design with Jeremy Gunawar-

dena and Alan Marshall, who visited Stanford from HP Bristol.

Kurt Keutzer and Rick Rudell of Synopsys organized an informal summer seminar

on asynchronous design in 1991 which raised many important issues in synthesis and

testing. The seminar also helped to develop a sense of community among asynchronous

researchers.

Many others have increased my understanding of asynchronous design: Mark Horowitz

and Ed McCluskey at Stanford; Luciano Lavagno and Cho Moon at Berkeley; Ganesh

Gopalakrishnan, Erik Brunvand, Nick Michell, Luli Josephson and John Hurdle at the

University of Utah; Tam-Anh Chu at Cirrus Logic; Venkatesh Akella at UC Davis; Jo

Ebergen at the University of Waterloo; Alain Martin at Caltech; Steve Burns at the

University of Washington; Mark Yu and P.A. Subrahmanyam at Bell Labs; David Kung

at IBM; Farhad Aghdasi at the University of Bristol; and Stephen Unger at Columbia.

I have also enjoyed knowing several of the non-asynchronous students and researchers

working with Dave Dill at Stanford: Jerry Burch, Andreas Drexler, Alan Hu, Shoshi

Wolf, Howard Wong-Toi and Han Yang.

A number of other friends made life pleasant at Stanford: Marcia Derr, Tom Hen-

zinger, Richard Ho, Andrew Kosoresow, Janet Murdock, Geo� Phipps, Tom Rokicki,

Sam Srinivas and Shoshi Wolf.

I would also like to thank my parents and grandparents.

Finally, I especially want to thank Martha Helfer, for her continued support, love

and friendship. This thesis is dedicated to her.

iv



Contents

Acknowledgments iii

1 Introduction 1

1.1 Why Asynchronous Design? : : : : : : : : : : : : : : : : : : : : : : : : : 1

1.2 Background and Related Work : : : : : : : : : : : : : : : : : : : : : : : : 4

1.2.1 Delays, Circuits and Environments : : : : : : : : : : : : : : : : : 4

1.2.2 The Hierarchy of Asynchronous Circuits : : : : : : : : : : : : : : 5

1.2.3 Asynchronous Datapaths and Processors : : : : : : : : : : : : : : 6

1.2.4 Asynchronous Controllers : : : : : : : : : : : : : : : : : : : : : : 7

1.3 Scope of the Thesis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17

1.4 Contributions of the Thesis : : : : : : : : : : : : : : : : : : : : : : : : : 18

1.5 Overview of the Thesis : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19

2 Combinational Circuits and Hazards 23

2.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 23

2.2 De�nitions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 23

2.3 Background : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25

2.3.1 Circuit and Delay Model : : : : : : : : : : : : : : : : : : : : : : : 25

2.3.2 Multiple-Input Changes : : : : : : : : : : : : : : : : : : : : : : : 25

2.3.3 Function Hazards : : : : : : : : : : : : : : : : : : : : : : : : : : : 27

2.3.4 Logic Hazards : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28

2.3.5 Hazard-Free Covers : : : : : : : : : : : : : : : : : : : : : : : : : : 29

2.4 Previous Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 29

2.5 Conditions for a Hazard-Free Transition : : : : : : : : : : : : : : : : : : 29

v



2.6 Burst-Mode Transitions : : : : : : : : : : : : : : : : : : : : : : : : : : : 35

2.7 Existence of a Hazard-Free Cover : : : : : : : : : : : : : : : : : : : : : : 36

3 Locally-Clocked Asynchronous State Machines 37

3.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 37

3.2 Burst-Mode Speci�cations : : : : : : : : : : : : : : : : : : : : : : : : : : 38

3.3 Locally-Clocked State Machine Implementation : : : : : : : : : : : : : : 42

3.4 Synthesis Method: Overview : : : : : : : : : : : : : : : : : : : : : : : : : 47

3.4.1 Functional Synthesis : : : : : : : : : : : : : : : : : : : : : : : : : 47

3.4.2 Logic and Timing Requirements : : : : : : : : : : : : : : : : : : : 52

3.4.3 Hazard-Free Logic Implementation : : : : : : : : : : : : : : : : : 53

3.4.4 Clock Reset and Timing Implementation : : : : : : : : : : : : : : 54

3.4.5 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 56

3.5 Synthesis Method: Details and Formal Analysis : : : : : : : : : : : : : : 56

3.5.1 Logic Synthesis : : : : : : : : : : : : : : : : : : : : : : : : : : : : 56

3.5.2 Clock Reset Implementation : : : : : : : : : : : : : : : : : : : : : 68

3.5.3 Timing Analysis and Correctness : : : : : : : : : : : : : : : : : : 73

3.6 Generalizations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 83

3.7 Optimizations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 85

3.8 Synthesis Algorithms : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 86

3.8.1 State Minimization : : : : : : : : : : : : : : : : : : : : : : : : : : 86

3.8.2 State Assignment : : : : : : : : : : : : : : : : : : : : : : : : : : : 91

3.9 Detailed Example : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 92

3.10 State Splitting : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 98

3.11 Related Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 100

3.12 Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 103

4 Exact Hazard-Free Two-Level Logic Minimization 107

4.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 107

4.1.1 Two-Level Hazard-Free Logic Minimization Problem : : : : : : : 108

4.1.2 Previous Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : 108

4.2 Hazard-Free Covers : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 109

4.3 Exact Hazard-Free Logic Minimization : : : : : : : : : : : : : : : : : : : 109

vi



4.4 Hazard-Free Minimization Example : : : : : : : : : : : : : : : : : : : : : 114

4.5 Existence of a Solution : : : : : : : : : : : : : : : : : : : : : : : : : : : : 119

4.6 Comparison with Frackowiak's Work : : : : : : : : : : : : : : : : : : : : 120

4.7 Burst-Mode Transitions : : : : : : : : : : : : : : : : : : : : : : : : : : : 124

4.8 Program Implementation : : : : : : : : : : : : : : : : : : : : : : : : : : : 125

4.9 Experimental Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 125

4.10 Hazard-Free Multi-Level Logic : : : : : : : : : : : : : : : : : : : : : : : : 127

4.11 Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 128

5 Design of a High-Performance Cache Controller 129

5.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 129

5.1.1 Background and Previous Work : : : : : : : : : : : : : : : : : : : 130

5.2 STRiP, a Self-Timed RISC Processor : : : : : : : : : : : : : : : : : : : : 131

5.2.1 Basic Structure : : : : : : : : : : : : : : : : : : : : : : : : : : : : 131

5.2.2 Interface and System Overview : : : : : : : : : : : : : : : : : : : 132

5.3 Second-Level Cache: Overview : : : : : : : : : : : : : : : : : : : : : : : : 132

5.3.1 Cache Speci�cation : : : : : : : : : : : : : : : : : : : : : : : : : : 132

5.3.2 Protocol and Signal Timings : : : : : : : : : : : : : : : : : : : : : 133

5.3.3 SRAM Completion Detection : : : : : : : : : : : : : : : : : : : : 137

5.4 Second-Level Cache Controller: Design : : : : : : : : : : : : : : : : : : : 137

5.4.1 Signalling Issues : : : : : : : : : : : : : : : : : : : : : : : : : : : : 137

5.4.2 Timing Issues : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 138

5.4.3 Controller Speci�cation : : : : : : : : : : : : : : : : : : : : : : : : 138

5.4.4 Resulting Implementation and Performance : : : : : : : : : : : : 141

5.5 Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 144

6 Conclusions 145

Bibliography 149

vii



List of Tables

3.1 Algorithm Remove-Isolated-States. : : : : : : : : : : : : : : : : : : : : : : 90

3.2 Reduction in number of state changes after heuristic state minimization. 103

3.3 Comparison of delay and area of published implementations with locally-

clocked implementations. : : : : : : : : : : : : : : : : : : : : : : : : : : : 104

4.1 Step 0: Algorithm Make-Sets. : : : : : : : : : : : : : : : : : : : : : : : : 112

4.2 Step 1: Algorithm PI-to-DHF-PI. : : : : : : : : : : : : : : : : : : : : : 113

4.3 dhf-prime implicant table having no solution. : : : : : : : : : : : : : : : : 121

4.4 Results of Algorithm PI-to-DHF-PI. : : : : : : : : : : : : : : : : : : : 126

4.5 Comparison of Hazard-Free Logic Minimization with espresso-exact. : : : 127

5.1 Area Evaluation of Locally-Clocked Cache Controller. : : : : : : : : : : : 143

5.2 Main elements in Second-Level Cache Critical Logic Path. : : : : : : : : 144

viii



List of Figures

1.1 A hierarchy of asynchronous circuits. : : : : : : : : : : : : : : : : : : : : 6

1.2 Block diagram of Hu�man machine. : : : : : : : : : : : : : : : : : : : : : 13

1.3 An asynchronous ow table. : : : : : : : : : : : : : : : : : : : : : : : : : 13

1.4 Block diagram of self-synchronized state machine. : : : : : : : : : : : : : 16

2.1 Transition cube from A to B. : : : : : : : : : : : : : : : : : : : : : : : : 26

2.2 Boolean function with function hazards. : : : : : : : : : : : : : : : : : : 28

2.3 Required and privileged cubes for two input transitions. : : : : : : : : : : 32

2.4 Hazardous and hazard-free covers for a 1! 1 input transition. : : : : : : 33

2.5 Hazardous and hazard-free covers for a 1! 0 input transition. : : : : : : 34

3.1 Simple example speci�cation. : : : : : : : : : : : : : : : : : : : : : : : : 40

3.2 Speci�cation for HP controller (pe-send-ifc). : : : : : : : : : : : : : : : : 41

3.3 Block diagram of locally-clocked asynchronous state machine. : : : : : : 43

3.4 Detailed block diagram of locally-clocked asynchronous state machine. : : 44

3.5 Simple example implementation: A! B transition (Phase-1) : : : : : : 44

3.6 Simple example implementation: B ! C transition (Phase-1, initial) : : 45

3.7 Simple example implementation: B ! C transition (Phase-2) : : : : : : 45

3.8 Simple example implementation: B ! C transition (Phase-1, �nal) : : : 46

3.9 Primitive ow table for simple example. : : : : : : : : : : : : : : : : : : 48

3.10 Reduced ow table for simple example. : : : : : : : : : : : : : : : : : : : 49

3.11 Encoded ow table for simple example. : : : : : : : : : : : : : : : : : : : 49

3.12 Final Karnaugh maps for simple example. : : : : : : : : : : : : : : : : : 50

3.13 Hazard-free output covers for simple example. : : : : : : : : : : : : : : : 55

3.14 Example burst-mode speci�cation. : : : : : : : : : : : : : : : : : : : : : : 63

ix



3.15 Example primitive ow table. : : : : : : : : : : : : : : : : : : : : : : : : 64

3.16 Fragment of example ow table. : : : : : : : : : : : : : : : : : : : : : : : 65

3.17 Illegal state merging in example ow table. : : : : : : : : : : : : : : : : : 65

3.18 Block diagram of clock with attached reset-logic and output delay. : : : : 69

3.19 Timing diagram for clock operation using clock reset logic. : : : : : : : : 69

3.20 Hazard-free clock operation using clock reset logic. : : : : : : : : : : : : : 70

3.21 Timing parameters for locally-clocked machine. : : : : : : : : : : : : : : 75

3.22 Timing diagram for locally-clocked machine: no state change (phase-1). : 76

3.23 Timing diagram for locally-clocked machine: state change. : : : : : : : : 78

3.24 Sequential timing requirements (A). : : : : : : : : : : : : : : : : : : : : : 79

3.25 Sequential timing requirements (B). : : : : : : : : : : : : : : : : : : : : : 80

3.26 Sequential timing requirements (C). : : : : : : : : : : : : : : : : : : : : : 81

3.27 Sequential timing requirements (D). : : : : : : : : : : : : : : : : : : : : : 82

3.28 Phase-1 input latches in an asynchronous state machine. : : : : : : : : : 84

3.29 State assignment and clock Karnaugh map for HP controller. : : : : : : : 93

3.30 Karnaugh map for output peack. : : : : : : : : : : : : : : : : : : : : : : : 94

3.31 Karnaugh map for output tack. : : : : : : : : : : : : : : : : : : : : : : : 95

3.32 Karnaugh map for output adbld. : : : : : : : : : : : : : : : : : : : : : : : 96

3.33 Karnaugh map for state variables y1 y0. : : : : : : : : : : : : : : : : : : 97

3.34 Burst-mode speci�cation for state-splitting example. : : : : : : : : : : : : 99

3.35 Primitive ow table for state-splitting example. : : : : : : : : : : : : : : 100

3.36 Block diagram of self-synchronized machine of Chuang and Das. : : : : : 101

4.1 Hazard-free minimization example: Step 0. : : : : : : : : : : : : : : : : 116

4.2 Hazard-free minimization example: Step 1. : : : : : : : : : : : : : : : : 118

4.3 Hazard-free minimization example: Step 2. : : : : : : : : : : : : : : : : 119

4.4 Hazard-free minimization example: Step 3. : : : : : : : : : : : : : : : : 120

4.5 Boolean function with no hazard-free cover. : : : : : : : : : : : : : : : : 121

4.6 Comparison with Frackowiak's method. : : : : : : : : : : : : : : : : : : : 123

4.7 Hazard-free minimization of an incompletely-speci�ed Boolean function. : 124

5.1 Processor complex block diagram. : : : : : : : : : : : : : : : : : : : : : : 133

5.2 Second-level cache block diagram and primary interface signals. : : : : : 134

x



5.3 Timing diagram showing generic external read and write cycle signalling. 135

5.4 Top level of the cache-controller �nite-state diagram where mode selection

occurs. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 139

5.5 Cache-read-hit section of cache controller �nite-state diagram. : : : : : : 140

5.6 Cache-write-hit section of cache controller �nite-state diagram. : : : : : : 142

xi



xii



Chapter 1

Introduction

1.1 Why Asynchronous Design?

Most modern digital systems are synchronous. They are organized around a global

clock, and system events are synchronized to the clock. The clock produces ticks at

regular intervals. On each clock tick, data is latched into storage elements and a new

computation begins. Computation must be completed before the next clock tick.

A synchronous paradigm is one of centralized control. Because of the simplicity of

this approach, synchronous designs have dominated the industry for years. However,

as devices become smaller and faster, and hardware systems become more complex and

concurrent, a synchronous approach has become increasingly unwieldy.

Problems with Synchronous Design

There are a number of di�culties with synchronous design.

Clock Skew. In a synchronous system, if the clock is not distributed evenly, clock

skew results and the systemmaymalfunction. Clock skew is an inherent problem in most

synchronous systems. However, in practice, the e�ects of clock skew can be eliminated

in two ways. First, the clock can be slowed down to insure correct operation. That is,

a safety margin is added to each clock cycle to insure that the clock has been broadcast

throughout the system and all components are stable before a new cycle begins. How-

ever, the cost of this approach is a performance loss. Alternatively, clock skew can be

1



CHAPTER 1. INTRODUCTION 2

minimized by use of carefully balanced clock trees. However, the cost of this approach

is an increase in system area.

Asynchronous External Inputs. In a synchronous system, there is a reliability prob-

lem when attempting to synchronize inputs which can arrive at arbitrary times. Such

inputs may cause synchronous storage elements to enter into unde�ned states. This

problem is called metastability [17]. No known method exists to eliminate metastability.

However, the probability of entering a metastable state is signi�cantly reduced by using

a pair of storage elements to \resynchronize" an asynchronous input to the clock [60].

However, such resynchronization results in a performance loss.

Worst-Case Design. Synchronous designs have di�culty taking advantage of data-

dependent processing delays. If a component can process particular inputs or data

quickly, its performance is still bound by the global clock speed. In fact, the speed

of the clock is usually set assuming worst-case conditions for: process, temperature,

voltage and data. As a result, even when the system operates under nominal conditions,

performance is limited by worst-case design assumptions. In practice, the cumulative

\derating" of system performance based on these factors can be signi�cant [30, 100].

Dean [30] indicates that, if such design-for-worst-case could be avoided, many systems

would actually run almost twice as fast on average.

Power Consumption. At a time when designers are increasingly interested in low-

power applications, the distribution of the clock throughout the system is a large source

of power consumption. For example, power consumption of the clock in the recent DEC

Alpha chip is approximately 17 watts. The problem of power consumption will only

grow worse as clock frequency increases and feature size decreases.

Modularity. In a synchronous system, a component cannot be replaced without global

implications. If the new component is slow, the systemmaymalfunction unless the global

clock speed is reduced. If the new component is fast, system performance will not change

unless the clock speed can safely be increased. The contrast to modern object-oriented

software systems is illuminating. In an object-oriented system, a software module can

be replaced without global implications. Such modularity increases the lifetime of a

system, allows rapid development, and simpli�es system organization. Modularity is

an important feature in system design; however it does not �t well with a synchronous

paradigm.



CHAPTER 1. INTRODUCTION 3

Composability. Finally, at a time when designers are interested in constructing large

multi-chip systems, synchronous designs have limited composability: it is di�cult to

combine synchronous subsystems operating at di�erent clock speeds.

An alternative approach is to build asynchronous systems. These are systems which

contain no global clock; instead, they operate under distributed control. Asynchronous

systems promise to avoid many of these problems by eliminating the global clock. How-

ever, in spite of much research over the last 40 years [91], asynchronous designs are

notoriously di�cult to build.

Problems with Asynchronous Design

Most of the problems with asynchronous design center around the phenomenon of haz-

ards, or potential glitches on wires [91]. In a synchronous discipline, glitches are per-

mitted at all times except near the clock edge. Glitches are avoided near the clock edge

by correct tuning of the clock speed. In other words, glitches are allowed throughout

the computation which occurs between clock ticks; a stable result is then latched into

storage elements on the next clock tick.

In an asynchronous discipline, however, there is no global clock. Instead, the system

may respond to input transitions at any time. As a result, any undesired glitch may

cause the system to malfunction. Because of this sensitivity to glitches, asynchronous

designs often su�er from a number of problems.

Correctness. Many existing asynchronous design methods do not guarantee hazard-

free implementations.

Flexibility. Many design methods impose harsh restrictions on the range of behaviors

that can be handled, to insure correct operation. Typically, designs are limited to single-

input change only: once an input changes, no new input change can occur until the

system is stable. This restriction aids in the design of correct circuits, since techniques

to eliminate hazards for single-input changes are better-known and simpler than those

used for more general multiple-input changes [91]. However, the resulting circuits are of

limited use.

Compatibility. Many asynchronous methods are incompatible with existing inter-

faces, such as synchronous interfaces. Instead, they may require the use of particular

protocols, such as four-phase handshaking only (discussed below). This constraint limits



CHAPTER 1. INTRODUCTION 4

the practicality of asynchronous designs for existing interfaces.

Performance. Finally, in practice, many asynchronous designs have poor perfor-

mance. Hazards are often eliminated by slowing down circuits by adding delays. This

strategy guarantees correct operation, but abandons the potential performance bene�ts

of asynchronous design.

In the past, such di�culties have made asynchronous circuits largely unusable in

practical system design. However, there has been substantial progress in overcoming

these obstacles in recent work.

The contribution of this dissertation is a new automated method for designing correct

asynchronous controllers. In particular, this design method addresses each of these

problems: it is correct by construction, allows exible multiple-input changes, allows

compatibility with existing interfaces, and produces high-performance implementations.

Before considering the contribution of this work, it is important to understand the

overall context of asynchronous design and the various design styles which have been

developed.

1.2 Background and Related Work

1.2.1 Delays, Circuits and Environments

Fundamental to a circuit implementation is the notion of delay. Delays are inherent

in any physical circuit; they may also be added explicitly to a circuit using delay ele-

ments. There are two common models of delay: a pure delay model and an inertial delay

model [91, 92]. A pure delay does not alter the waveform of a signal, but delays it in

time. An inertial delay may alter the waveform of a signal. In particular, an \ideal"

inertial delay has a threshold period D; pulses of duration less than D are �ltered out

by the delay.

Delays are also characterized by their timing models. In an unbounded delay model, a

delay can assume an arbitrary �nite value. In a bounded delay model, a delay can assume

any value within a given time interval. In a �xed delay model, a delay is assigned a �xed

value.

Delays can be used to model the behavior of wires and gates in a circuit. Typically,



CHAPTER 1. INTRODUCTION 5

a delay is associated with every wire in a circuit. In a simple-gate, or gate-level, model,

a delay is associated with each gate in the circuit. In a complex-gate model, a single

delay is associated with a network of gates. In this model, the network is assumed to

behave like an individual gate.

A circuit model is de�ned using delay models for the gates and wires. The function-

ality of a gate or component is usually modelled by an instantaneous operator [62].

Equally important is the environmental model, describing how a circuit interacts with

its surroundings. The circuit and its environment form a closed system called a complete

circuit [66]. Using the terminology of Brzozowski and Ebergen, if an environment re-

sponds to circuit outputs without timing constraints, the circuit operates in input/output

mode [13]. Otherwise, environmental timing constraints are assumed; for example: the

environment cannot respond until the circuit is stable; it must supply input transitions

within a �xed time interval; and so on.

1.2.2 The Hierarchy of Asynchronous Circuits

There is a wide spectrum of asynchronous circuits. The simple hierarchy of Figure 1.1 can

be used to distinguish designs based on di�erent models of a circuit and its environment.

A delay-insensitive (DI) circuit is one which functions correctly regardless of gate

and wire delays. That is, an unbounded gate and wire model is assumed. The concept of

a delay-insensitive circuit is based on work of Clark and Molnar on Macromodules [22].

Formalizations have been described by Udding [90] and Dill [32]. Few practical DI

circuits can be built from simple gates [56]; however, useful circuits can be built from

more complex components [33, 44].

A speed-independent (SI) circuit is one which functions correctly regardless of gate

delays; wires are assumed to have negligible or zero-delay. The original formulation of

SI circuits is due to David Muller (see [66]).

A self-timed circuit, as described by Seitz [63], consists of a collection of self-timed

elements. An element is contained in an equipotential region, where wires have negli-

gible or known delays. Typically, elements are designed as SI circuits or using timing

information. However, no timing assumptions are made on communication between

elements.



CHAPTER 1. INTRODUCTION 6

asynchronous

self-timed

delay-
 insensitive

speed-
 independent

Figure 1.1: A hierarchy of asynchronous circuits.

The above circuits all operate in input/output mode: no timing assumptions are

made on communication with the environment. The most general category is asyn-

chronous circuits [91]. These circuits have no global clock, but can make use of timing

assumptions both within a circuit and in its interaction with the environment. Latches

and ipops [60], with set-up and hold times, fall into this category.

1.2.3 Asynchronous Datapaths and Processors

This thesis is concerned with the design of digital controllers. However, since controllers

interact with the datapath, a brief summary of work on asynchronous datapaths and

processors will be useful.

Asynchronous datapaths often use a structure which Sutherland calls amicropipeline [87].

A micropipeline consists of alternating computation stages separated by storage ele-

ments and control circuitry. Asynchronous datapaths have been designed for multipli-

cation [70], division [101], DSP [65] and other applications [50] (see references in [100]).

Micropipelines have been generalized to ring [100] and multi-ring structures [85]. Tech-

niques to eliminate overhead between stages have been developed by Dean [31] and



CHAPTER 1. INTRODUCTION 7

Williams [100]. Several of the controller design methods described below are also used

for datapath synthesis.

Asynchronous microprocessors have been designed by Martin et al. [58] and Brun-

vand [11]. Other approaches include Dean's STRiP processor [30], and work by David,

Ginosar and Yoeli [24], Ginosar and Michell [37] and Unger [94].

1.2.4 Asynchronous Controllers

There have been many design styles for asynchronous controllers in the last 30 years or

so. These fall roughly into three categories: (i) translation methods; (ii) Petri-net, or

graph-based, methods; and (iii) asynchronous state machines.

Translation Methods

Translation methods begin with a speci�cation as a program in a high-level language

of concurrency [12, 55, 14, 33, 95, 3]. The program is compiled into an asynchronous

circuit by a series of transformations.

In Martin's method [55, 57], speci�cations are based on Hoare's CSP [42]. A spec-

i�cation describes a set of concurrent processes which communicate on channels. The

description is transformed, through a series of steps, into a collection of gates and com-

ponents which communicate on wires. The synthesis method has been automated by

Burns [16], who has also developed techniques to analyze and improve circuit perfor-

mance [15]. The method has been applied to a number of designs: a distributed mutual

exclusion element [54], a multiply-accumulate unit [70], an asynchronous microproces-

sor [58], and several other controllers [14]. Designs typically assume communication

using a four-phase handshaking protocol. In four-phase handshaking, a request is as-

serted on a request wire; an acknowledgment is asserted in response on an acknowledge

wire. The request and acknowledgment are then deasserted in turn.

The resulting circuits are delay-insensitive, except for one assumption: Martin as-

sumes that, when a wire branches, delays through the di�erent branches are compara-

ble. That is, isochronic forks are assumed. The circuits therefore fall between speed-

independent and delay-insensitive designs in the circuit hierarchy, and are called quasi-

delay-insensitive [15].



CHAPTER 1. INTRODUCTION 8

A similar approach, developed by Brunvand and Sproull [12, 10], uses a variant of

CSP, called occam, to describe a concurrent system. In this method, an occam descrip-

tion is �rst compiled into an unoptimized circuit using syntax-directed translation. The

circuit is then improved using automatic local re�nements similar to peephole optimiza-

tions used in software compilers. Unlike Martin, Brunvand assumes all communication

is through a two-phase handshaking protocol, also called transition-signalling [63, 87].

In this protocol, a request is made by a transition on a request wire; in response, a

transition is made on an acknowledge wire.

Brunvand's control logic is delay-insensitive, but his datapaths are self-timed. In

particular, two wires | a request and acknowledge | are associated with each collection

of data wires. These two wires use transition-signalling to indicate when the data is

valid. Su�cient delays are added to insure that these are slower than the datapath.

This approach is called a bundled data protocol [63, 87].

A di�erent approach has been developed by Ebergen [33] for the design of pure

delay-insensitive circuits. Speci�cations are notated using programs called commands,

which describe sequences of possible events. These commands are written in a language

based on trace theory [78], developed by Rem, Snepscheut and Udding as an outgrowth

of Hoare's CSP. A command is re�ned through decomposition into a delay-insensitive

network of components. As in Brunvand's method, all communication is through a

transition-signalling protocol.

Other methods have been developed by van Berkel [95], who has produced a complete

automatic synthesis system at Philips Laboratories, and Akella and Gopalakrishnan [3,

38], who generalize the communication style of Martin to include shared variables and

broadcast communication.

Translation methods are attractive in several ways: they allow elegant high-level

descriptions of concurrent systems, are amenable to formal veri�cation, and can synthe-

size circuits which have non-deterministic output behavior using arbiters and synchro-

nizers [16, 10]. However, because these approaches rely on local transformations, they

often lack exibility in global optimization, such as state minimization, state assignment

and logic minimization. They also rely on slow, specialized sequential components, such

as C-elements and toggles. Two-phase methods in particular rely heavily on the use

of exclusive-or gates and other slow components such as decision-wait elements. The



CHAPTER 1. INTRODUCTION 9

methods also require interface behavior to �t into �xed protocols (e.g. 2- or 4-phase

handshaking).

Petri-net and Graph-Based Methods

An alternative approach in asynchronous synthesis is to specify behavior using a Petri

net [77]. A Petri-net is a compact graphical notation which can describe both concur-

rency and choice between events. A Petri-net has two types of vertices: places and

transitions. Initially, tokens are assigned to particular places in the net. These tokens

can pass through the net, �ring transitions which they encounter according to certain

�ring rules. The �ring of a transition corresponds to the occurrence of an associated

signal or event. Therefore this simulation, or token game, can describe many di�erent

interleaved sequences of events.

Patil [76] proposed the synthesis of a Petri net as an asynchronous logic array, which

is a direct mapping of the structure of a Petri net into hardware. Since each place and

transition of the original net is mapped to hardware components, the result is quite

ine�cient.

Recent methods have focused on a behavioral implementation of a Petri-net. These

methods typically begin with a constrained class of nets, because of the di�culty of

implementing arbitrary concurrent behavior in hardware. Behaviors described by a net

are determined using a reachability analysis. These behaviors are transformed into a

more explicit representation called a state graph [19]. The state graph indicates the

desired functionality of the implementation, and can be mapped into hardware.

Several simple notations are based on a constrained class of Petri-nets called marked

graphs: Seitz's M-Nets [83], Molnar's I-Nets [67], and Rosenblum and Yakovlev's Sig-

nal Graphs [80]. These nets model concurrency between events, but cannot describe

conditional behavior, such as a choice between inputs.

Chu proposed a more general notation called Signal Transition Graphs [19], or STGs.

These are interpreted free-choice Petri nets allowing both concurrency and a limited form

of choice between inputs. These nets have simple structural properties which can easily

be checked. Chu has developed a synthesis method for speed-independent circuits which

has been applied to a number of designs: an A-to-D controller, a Resource Locking

Module, a distributed mutual exclusion element and several controllers for a routing



CHAPTER 1. INTRODUCTION 10

chip [19, 20]. In general, Chu's STGs cannot be synthesized directly into a circuit

without further modi�cations. Arcs may need to be added to the STG to satisfy a

persistency requirement. These arcs constrain the concurrency of the net. Also, state

variables may need to be added explicitly in the net to avoid state assignment problems.

This requirement is called the complete state coding (CSC) property by Moon et al. [68].

A more restrictive requirement is called the unique state coding (USC) property by

Vanbekbergen [96].

Meng [64, 65] extended this work, developing a complete automated synthesis system.

As in Chu's method, arcs may need to be added to an STG before a circuit can be

synthesized. However, Meng's algorithms add these arcs in such a way as to allow

optimal concurrency in the �nal circuit. The algorithms take advantage of known delays

in the circuit's environment.

An alternative method for adding constraining arcs was developed by Vanbekber-

gen [96]. The method is based on the concept of a lock class, which describes ordering

constraints on signals in a marked graph. Vanbekbergen uses timing information when

adding arcs, to improve area and speed of the resulting circuits.

Other recent methods include the work of: Lin and Lin [51], who avoid the use of an

intermediate state graph during synthesis; and Myers and Meng [69], who use precise

timing constraints to optimize the synthesized circuits. Both methods are based on

marked graphs; in the latter case, they are notated as Event-Rule Systems [15].

These methods have several limitations. First, the syntactic requirements of STGs

are restrictive. Though an STG can describe choice between inputs, this ability is

severely limited by structural requirements on the underlying net. An additional re-

striction is that no signal may have more than one up- and down-transition in a net.

These constraints make STGs impractical in describing most large systems.

Progress has been made in overcoming these STG restrictions through several gener-

alizations: Chu's dummy or epsilon transitions [19]; Moon's don't-care and toggle tran-

sitions [68]; and Yakovlev's use of OR-causality [102]. However, the modelling of input

choice is still often awkward or di�cult using extended STG models.

Second, earlier STG-based methods do not include systematic techniques to add state

variables. This step can be thought of as state minimization and state assignment [60].



CHAPTER 1. INTRODUCTION 11

Progress in this area has been made in recent work by Lavagno et al. [48] and Vanbek-

bergen et al. [97]. In general, though, because of the need for critical race-free codes

(discussed further below), state assignments for STGs may require the use of more state

variables than for synchronous implementations.

Finally, and most importantly, the methods of Chu, Meng and Vanbekbergen ignore

the issue of gate-level hazards. Instead, they use a complex-gate model, which assumes

that combinational logic is built out of large monolithic blocks with no internal delay.

However, in fact, the resulting gate-level network may have hazards. To insure correct

implementations, Chu and Meng both rely on an automatic veri�er by Dill [32].

Some progress has been made in synthesizing hazard-free designs from STGs. Moon

et al. [68] propose heuristics for hazard-elimination for two-level combinational logic.

This method has been successfully applied to a number of small circuits, but in gen-

eral is not guaranteed to succeed. Lavagno describes a promising approach [47, 49] to

synthesizing gate-level hazard-free circuits from STGs. The method requires the use of

added delay elements to eliminate hazards. However, the method does not demonstrate

freedom from dynamic hazards (glitches which can occur when an output is changing

value).

An alternative approach by Beerel and Meng [5] is to synthesize speed-independent

circuits directly from state graphs. This method avoids many of the syntactic require-

ments of STGs. Though the method produces hazard-free gate-level implementations,

the gates may be quite large. Current techniques to decompose these gates into realistic

gate networks may introduce hazards.

Petri-net and graph-based methods have a number of strengths. Speci�cations can

often model �ne-grained concurrency and partially-ordered events in a simple and con-

cise way. Several of the synthesis methods have been e�ective in the design of small,

highly concurrent controllers. Furthermore, progress has been made on problems of

state assignment and in describing input choice. However, the problem of producing

hazard-free gate-level circuits from STGs or state graphs is a major obstacle towards

the practical use of these methods.



CHAPTER 1. INTRODUCTION 12

Asynchronous State Machines

Hu�man Machines.

An alternative approach, adopted in this thesis, is the more traditional asynchronous

state machine. In its simplest form, an asynchronous state machine is a Hu�man ma-

chine (see Figure 1.2), with primary inputs, primary outputs, and fed-back state vari-

ables [91]. State is stored on the feedback loops, which may have attached delay elements.

Other approaches use unclocked latches to store state. These structures are similar to

synchronous state machines [91, 60], but there are no clocked storage elements.

The view of computation in this approach is state-based: in each state, a machine can

receive inputs, generate outputs and move to a next state. Speci�cations can therefore

be described by a ow table or state table [91, 60]. These are symbolic tables describing

the output and next-state behavior of the machine as a function of its inputs and current

state (see Figure 1.3).

Asynchronous synthesis methods typically follow the same general approach used for

synchronous designs [91, 60]. First, state minimization is used to compact a ow table

by merging states. Symbolic states are then assigned binary codes, so that they can be

implemented in digital logic; this step is called state assignment. Finally, Boolean output

and next-state functions are mapped to combinational logic using logic minimization.

A major attraction of state machines is that this synthesis method performs global

optimization. That is, the synthesis method allows freedom to choose among many

possible state reductions, state assignments and logic implementations, which would be

di�cult or impossible to do with local transformations.

There is a bewildering variety of asynchronous state machine design methods and

assumptions. A simple classi�cation scheme is described by Unger [91, 92]. This scheme

describes a hierarchy of designs based on input constraints.

1. single-input change (SIC): Only one input change at a time is permitted. Consec-

utive input changes are separated by a minimal time interval �.

2. multiple-input change (MIC): Several input signals may change within an interval

of length �1 and are treated as \simultaneous signals". No further input changes

may occur until an interval of length �2 has elapsed.



CHAPTER 1. INTRODUCTION 13

Combinational
Logic

i1

i2

o1

o2

s1

s2

Delay
Elements

Figure 1.2: Block diagram of Hu�man machine.

000 001 011 010 110 111 101 100

inputs a b c

-- --

-- -- -- --

-- -- --

A

B

C

D

E

State

-- --

--

--

--

-- --

-- -- -- ---- --

-- -- -- ---- --

A,00 A,00 A,00

B,11

C,01D,10

D,10 E,01

E,01A,00

Next State,
  Outputs X, Y

C,01

B,11

Figure 1.3: An asynchronous ow table.



CHAPTER 1. INTRODUCTION 14

3. unrestricted input change (UIC): Any input may change at any time, provided

that no given input signal changes twice within any period of length �.

A common more restrictive assumption for SIC circuits is that no input change can

occur until a circuit has stabilized. This mode of operation is known as fundamental

mode [91]. This term is sometimes applied to MIC circuits as well.

In designing SIC circuits, a number of problems must be solved. First, when an input

changes, the combinational logic may glitch. In this case, a logic hazard occurs. SIC

logic hazards can always be avoided using special constraints on logic minimization [91].

Second, an input change may cause a state change, from the current state to the next

state. If several state bits change, however, the machine may stabilize in an incorrect

transient state instead of the next state. In this case, a critical race occurs. This problem

can be avoided by using one-hot [91], one-shot [91], Liu [52] or Tracey [89] critical-race

free state codes. In general these codes require extra state bits.

In addition, logic hazards may occur during a state change. One common approach

is to tolerate output hazards. Much of Unger's book [91] is concerned with S-proper or

properly-realizable circuits, for which \output transients" are permitted. Alternatively,

hazards can be avoided by constrained logic minimization [34, 4] or by adding inertial

delays [91].

Finally, an essential hazard can occur if a state change occurs before the machine has

\absorbed" the e�ect of the input change [91]. Essential hazards can always be avoided

by adding delays to the feedback path. In certain cases, they can be removed using

special logic factoring [4].

In summary, SIC asynchronous machine design is well-understood but complex.

Methods usually require added delays, extra state bits and specialized state codes. Some

approaches allow output hazards; others rely on inertial delays.

The generalization to MIC design introduces further complications. Friedman and

Menon [36] describe methods which require delayed inputs or special \delay boxes" for

outputs. Mago [53] presents methods which require delayed inputs. The above methods

use augmented ow tables, careful timing requirements and specialized state codes. The

delaying of inputs, of course, slows down a circuit. Furthermore, as noted above, MIC

designs require that multiple inputs change almost simultaneously. This restriction

severely limits the usefulness of such designs.



CHAPTER 1. INTRODUCTION 15

Unger proposed a further generalization to UIC designs [92]. The method uses inertial

delays whose magnitude depends on the number of machine inputs. In fact, the size of

delay required by this method may be quite large. In addition, it should be noted that

the reliance on inertial delays in this method and others is problematic. Inertial delays

are di�cult to design, slow down a circuit, are sensitive to process variation, produce

slowly rising and falling transitions which are susceptible to noise, and require \recovery

time" [92]. Approaches to construct inertial delays from non-inertial components [91]

include timing constraints between successive glitches. A general use of inertial delays

may in fact be unsound.

An important alternative operating mode, introduced by Davis, �ts between MIC

and UIC mode in Unger's classi�cation. Unlike MIC mode, Davis makes no timing

requirements on inputs during a multiple-input change. Instead, inputs in a multiple-

input change may arrive at arbitrary times. Such operation allows machines to handle

uncorrelated, or concurrent, inputs more easily than in MIC mode. However, unlike the

more general UIC mode, inputs are still grouped together into an input change, and

fundamental mode is observed. This data-driven mode was �rst used by Davis in the

design of the DDM Machine [27]. More recently, Davis, Coates and Stevens have de-

veloped an automated synthesis system at HP Laboratories [26]. The system has been

used to design controllers for an asynchronous Post O�ce chip [29, 86]. The method

produces high-performance implementations; however, it relies on a veri�er [32] to guar-

antee hazard-free designs.

Self-Synchronized Machines.

The di�culty and overhead of hazard-elimination in Hu�man machines has led to

a design style called self-synchronized machines. These are Hu�man machines with an

attached self-synchronization unit, generating an aperiodic strobe which acts like a clock

on internal latches (see Figure 1.4). These designs attempt to combine advantages of

synchronous and asynchronous machines. Self-synchronized designs exist for SIC [41, 88]

and MIC [2, 21, 79] operation.1 The approach of Ladd and Birmingham [46] requires a

single external completion signal, similar to a local clock.

1Rey and Vaucher [79] claim that their designs operate in UIC mode, but Unger disproves this
claim [93].



CHAPTER 1. INTRODUCTION 16

Typically a machine is idle until an input change occurs. Clock circuitry then gen-

erates a pulse which is applied to the ipops. In the SIC designs of Hayes [41], the

clock is generated by an exclusive-or gate network. In the MIC designs of Chuang and

Das [21], it is generated by a combinational logic circuit. An inertial delay is attached

to the clock to eliminate hazards. These designs have advantages similar to synchronous

designs: they are simple, do not require critical-race free state codes and do not require

hazard-free logic for outputs and next-state. In other words, these designs solve many

of the problems of Hu�man machines. The disadvantage of these designs is poor perfor-

mance due to worst-case design, added delays and edge-triggered ipops.

Combinational
Logic

i1

i2

o1

o2

Clock
Local

Storage
Elements

i1

i2

s1

s2

Figure 1.4: Block diagram of self-synchronized state machine.

Mixed-Operation Mode Machines.

The performance problems of self-synchronized machines has led to a hybrid ap-

proach, called mixed-operation mode [103]. This approach attempts to combine the

advantages of Hu�man machines and self-synchronized designs. The machines normally

operate as Hu�man machines, but are self-synchronized as needed to avoid particular



CHAPTER 1. INTRODUCTION 17

problems. The MIC designs of Yenersoy [103] use self-synchronization to avoid critical

races. The SIC designs of Chiang and Radhakrishnan [18] use self-synchronization to

avoid essential hazards. Yenersoy's approach has the disadvantage of large, complex

ipops; it also does not demonstrate freedom from hazards. Chiang and Radhakrish-

nan suggest extensions to MIC operation, but do not address the issue of output hazards.

Summary.

There are two important observations based on the above survey of asynchronous

state machines. First, both SIC and MIC modes are too constrained to be of general

practical use. SIC mode does not allow multiple-input changes; MIC mode is limited

to multiple-input changes which are near-simultaneous. Neither mode can handle con-

current, uncorrelated multiple-input changes. On the other hand, UIC mode seems too

general to implement in a satisfactory way. Of the modes discussed above, the only

manageable but expressive compromise is Davis' data-driven mode. The design style

described in this thesis therefore uses a modi�ed form of data-driven mode.

Second, there are three fundamental parameters in asynchronous state machine de-

sign: correctness, exibility and performance. Attempts to increase exibility of opera-

tion, from SIC towards UIC mode, have resulted in designs which are either hazardous

or have poor performance. It is desirable to optimize all three parameters at once.

1.3 Scope of the Thesis

This thesis describes a new approach to designing asynchronous controllers. To produce

useful results, this work is constrained and focused in a number of ways.

First, it is limited to the design of asynchronous state machines. State machine de-

signs are of interest for several reasons: (a) State machines support global optimization.

(b) A state-based approach is often a natural model of computation. This model com-

plements the alternative models used by translation and Petri-net methods. (c) Some

existing state machine methods { particularly SIC Hu�man methods { demonstrate that

high-performance design is possible. And, �nally, (d) in many ways, existing approaches

have been unsatisfactory for the design of asynchronous state machines.

Second, the thesis is concerned with the synthesis of designs which are hazard-free by



CHAPTER 1. INTRODUCTION 18

construction. This thesis does not consider the use of automatic veri�cation to determine

whether designs are correct.

Third, when considering the correctness of designs, it is crucial for circuits to be

modelled at a realistic level. It is unacceptable, for example, to regard a large combi-

national circuit as a monolithic component with no internal structure. Such a model

ignores the real possibility of hazards resulting from internal delays in combinational

logic networks.

Fourth, the thesis does not consider the use of inertial delays to eliminate hazards.

These delays are di�cult to build, slow and are potentially unrealizable for many appli-

cations.

Finally, the algorithms presented in this thesis are simple. In particular, state and

logic minimization algorithms can easily be improved by incorporating more sophisti-

cated techniques. The philosophy of this thesis has been to solve a fundamental synthesis

problem, present basic practical algorithms, and leave for future work the re�nement and

improvement of these algorithms.

1.4 Contributions of the Thesis

The contribution of this dissertation is a new method for designing asynchronous state

machines. To insure simplicity, designs are self-synchronized. However, the method

avoids the performance problems of earlier self-synchronized designs.

In Section 1.2.4, three parameters of asynchronous design were discussed: correctness,

exibility and performance. The major advance of this thesis is a design style which

optimizes all three parameters: (1) Designs are hazard-free at the gate-level. (2) Designs

allow multiple-input changes where inputs have no timing constraints. The speci�cations

are based on Davis' data-driven mode. Finally, (3) designs have high performance.

Typically, the latency of a machine is comparable to its combinational logic delay. No

asynchronous state machine method in the earlier survey has comparable advantages.

In summary, the main contributions of the thesis are the following:

Burst-mode speci�cations. A new speci�cation style for asynchronous controllers is

introduced. This speci�cation style is a constrained and formalized version of Davis'

data-driven mode, currently in use at HP Labs [25]. The speci�cations are in the form



CHAPTER 1. INTRODUCTION 19

of Mealy machines. Unlike many traditional asynchronous state machine speci�cations,

these impose no timing constraints on inputs within a multiple-input change.

Locally-clocked implementations. A new self-synchronized implementation style is

presented to implement burst-mode speci�cations. There are two guiding goals in this

design style: (1) designs are guaranteed correct by construction; and (2) designs have

high performance (low latency). In practice, there is often a tradeo� in asynchronous

design styles. Those with highest performance su�er from hazards; hazards are elimi-

nated by slowing down the circuit. This dissertation presents a solution to this problem:

a design style which is hazard-free at the gate-level and yet has low latency.

Automated synthesis algorithms. The dissertation presents a complete set of locally-

clocked synthesis algorithms which have been automated. Automation is critical to the

practicality of any modern digital design method.

Hazard-free logic minimization. The logic minimization algorithm that is used is

actually independent of the particular asynchronous sequential design style. In fact, it

is a solution to a general, previously unsolved problem: Given an incompletely-speci�ed

Boolean function and a set of multiple-input changes, �nd a minimal sum-of-products

realization that will have no hazards for the speci�ed input changes, if such a solution

exists.

Large example. Most asynchronous controller synthesis methods focus on the design

of fairly small circuits. For a design method for asynchronous controllers to become

acceptable, it is critical to demonstrate that the synthesis method can scale to realistic

design problems. The locally-clocked method is applied to a large, realistic example: the

design of a high-performance cache controller for a new self-timed RISC architecture.

The controller is signi�cantly more complex than existing examples in the literature. In

addition, the resulting asynchronous cache subsystem is approximately twice as fast as

a comparable synchronous subsystem.

1.5 Overview of the Thesis

The thesis is organized as follows:



CHAPTER 1. INTRODUCTION 20

After giving basic de�nitions, Chapter 2 discusses the problem of hazards in combi-

national logic. Necessary and su�cient conditions are described to insure that combina-

tional logic is hazard-free during a multiple-input change. The conditions only consider

the case of an AND-OR implementation. The underlying combinational circuit model

assumes arbitrary gate and wire delays. The conditions hold regardless of when the indi-

vidual inputs change value. This work appeared in the literature 20 years ago, but some

of it is not widely known. The chapter concludes by indicating that these conditions

cannot always be satis�ed for a given collection of multiple-input changes. That is, a

hazard-free two-level logic implementation is not always guaranteed to exist.

Chapter 3 presents a new automated method for the synthesis of locally-clocked state

machines. The machines are self-synchronized, but have some novel features. First,

the clock is generated selectively: some transitions do not require a clock transition.

Second, unlike many self-synchronized methods, the clock unit does not use inertial

delays to eliminate hazards. Finally, unlike most self-synchronized design styles, these

machines require combinational logic which is hazard-free for given input transitions.

From Chapter 2 it is known that such logic may not exist. A major result of this

chapter is that, by using small constraints during early steps of synthesis, hazard-free

logic can always be produced. In particular, these constraints are added during state

minimization.

Once it is shown that hazard-free logic can be produced, the correct sequential behav-

ior of the machine must be guaranteed. One-sided timing requirements are presented,

which can always be satis�ed by adding delays to the circuit. (Delays are not on the crit-

ical path of operation.) Simple algorithms for state minimization and state assignment

are then discussed. Logic minimization is deferred until the next chapter. An unopti-

mized hazard-free logic implementation can be always be constructed using a primitive

cover.

The machines typically assume a fundamental-mode of operation. However, variants

are proposed which function correctly if the environment responds more quickly. The

chapter includes a design example: a controller from the HP Post O�ce chip [29]. The

method is also applied successfully to several examples from the literature.

Chapter 4 considers the problem of hazard-free logic minimization. The general prob-

lem of hazard-free minimization of two-level logic is considered, where multiple-input



CHAPTER 1. INTRODUCTION 21

changes occur. This problem has not been previously solved. First, the requirements for

a hazard-free cover are formalized. These requirements describe a constrained covering

problem on Karnaugh maps. This problem is solved using a restricted Quine-McCluskey

method [60]. The method has been automated, and is applied to a number of designs.

The overhead of added logic to insure no hazards is shown to be negligible.

In Chapter 5, the synthesis method is applied to a large example: a second-level

cache controller for a new self-timed RISC architecture, called STRiP [30]. This chapter

represents joint work with Mark E. Dean. The design is signi�cantly more complex than

existing state machines in the literature. This chapter demonstrates the ability of the

synthesis method to handle large designs. It also shows that a locally-clocked design

can fully support the memory interface of STRiP. The resulting cache subsystem has a

cache read access which is twice as fast as in a comparable synchronous system.

Chapter 6 presents conclusions, describes recent developments and considers remain-

ing open problems.



CHAPTER 1. INTRODUCTION 22



Chapter 2

Combinational Circuits and

Hazards

2.1 Introduction

This chapter presents a basic model for combinational circuits and discusses the problem

of hazards in combinational logic.

The elimination of all hazards from asynchronous designs is an important and di�cult

problem. Many existing design methods do not guarantee freedom from all hazards;

other methods are limited by harsh restrictions on input behavior (single-input changes

only) or implementation style (the use of large, slow inertial delays) to insure correct

operation. The design of hazard-free combinational logic, in particular, is critical to the

correctness of most asynchronous designs.

The focus of this chapter is on combinational circuits which function correctly as-

suming arbitrary gate and wire delays. Circuits are not considered which depend on

bounded delay assumptions for correct operation, or which use added delay elements to

�x or �lter out glitches.

2.2 De�nitions

The following de�nitions are taken from Rudell [81, 82] with minor modi�cations (see

also [7, 60]). Only single-output functions having binary input and output variables are

23



CHAPTER 2. COMBINATIONAL CIRCUITS AND HAZARDS 24

considered.

De�ne sets P = f0,1g and B = f0,1,*g. A Boolean function, f, of n variables, x1, x2,

: : :, xn, is de�ned as a mapping: f: Pn ! B. The value \*" in B represents a don't-care

value of the function. Each element in the domain Pn of function f is called a minterm

of the function. A minterm is also called an input state of the function. The value of an

input variable xi in mintermm is denoted by mi.

The ON-set of a function is the set of minterms for which the function has value

1. The OFF-set is the set of minterms for which the function has value 0. The DC-set

(don't-care set) is the set of minterms for which the function has value \*".

Each variable, xi, has two corresponding literals: an uncomplemented literal, xi, and

a complemented literal, xi. The uncomplemented literal, xi, evaluates to 1 for a given

mintermm if mi = 1, otherwise it evaluates to 0. The complemented literal xi evaluates

to 0 for m if mi = 1, otherwise it evaluates to 1.

A product term is a Boolean product, or AND, of literals. A product term evaluates

to 1 for a minterm, m, if each literal in the product evaluates to 1. In this case, the

product term is said to contain the minterm.

A cube is a set of minterms which can be described by a product term.

A sum-of-products represents a set of products; it is denoted by Boolean sum of

product terms. A sum-of-products is said to contain a minterm if some product in the

set contains the minterm.

A product Y contains a product X (X � Y ) if the cube for X is a subset of the cube

for Y. The intersection of products X and Y is the set of minterms contained in the

intersection of the corresponding cubes.

An implicant of a function is a product term which contains no minterm in the

function's OFF-set. A prime implicant of a function is an implicant contained in no

other implicant of the function. An essential prime implicant is a prime implicant

containing an ON-set minterm contained in no other prime implicant.

A cover of a Boolean function is a sum-of-products which contains all of the minterms

of the ON-set of the function and none of the minterms of the OFF-set. A cover may

also include minterms from the DC-set.

The two-level logic minimization problem is to �nd a minimum-cost cover of a func-

tion.



CHAPTER 2. COMBINATIONAL CIRCUITS AND HAZARDS 25

2.3 Background

2.3.1 Circuit and Delay Model

This chapter considers combinational circuits having arbitrary �nite gate and wire de-

lay [62, 59]. Each wire is modelled as a connection with an attached or \lumped" delay

element, describing the total wire delay. Each gate is modelled as an instantaneous

Boolean operator with a delay element attached to its output wire, describing the total

gate delay. Delays are assumed to have arbitrary �nite values. Since delay elements are

attached only to wires, this model has been called the unbounded wire delay model.

In addition, a pure delay model is assumed (see [6]). That is, unlike the inertial delay

model, it is conservatively assumed that glitches are not �ltered out by delays on gates

and wires.

The above formalism models a combinational circuit where there is no knowledge

about the delays in the individual gates and wires. Since the goal of this chapter is the

design of combinational circuits which are hazard-free regardless of actual delays, this

is an appropriate model. An interesting feature of this model is that input wires have

arbitrary delays. So, even if a \simultaneous" multiple-input change is assumed, the

model allows inputs to be skewed by these delays. That is, the model can be used to

describe a multiple-input change where the inputs change at arbitrary times.

A delay assignment is an assignment of �xed, �nite delay values to every gate and

wire in a circuit.

2.3.2 Multiple-Input Changes

A transition cube (cf. [34, 6, 9]) is a cube with a start point and an end point. Given

input states A and B, the transition cube [A,B] from A to B has start point A and end

point B and contains all minterms that can be reached during a transition from A to

B. More formally, if A and B are described by products, with i-th literals Ai and Bi,

respectively, then the product for [A,B] contains precisely those literals Ai such that

Ai = Bi.

The open transition cube [A,B) from A to B is de�ned as: [A,B] - fBg. In general,

an open transition cube is covered by a set of cubes, which contain all minterms in [A,B]



CHAPTER 2. COMBINATIONAL CIRCUITS AND HAZARDS 26

00 01 11 10

00

01

11

10

a b

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

A

B

Figure 2.1: Transition cube from A to B.

other than B.

A transition cube captures the intuitive notion of a multiple-input change. A transi-

tion cube is characterized by its start point A and end point B, as shown in Figure 2.1.

There are a number of possible \trajectories" from A to B. Each trajectory describes a

di�erent ordering of input changes from A to B. The set of all trajectories describes all

possible orderings of the individual input changes. This set is modelled by the single

transition cube [A,B]. Since the goal is to allow inputs in a multiple-input change to

arrive at arbitrary times, the transition cube describes the set of all paths from A to B

for which the logic must be hazard-free.

A multiple-input change or input transition from input state A to B is therefore for-

mally described by transition cube [A,B]. There are three properties which characterize a

multiple-input change. First, inputs change concurrently, in any order and at any time.

Equivalently, a simultaneous input change can be assumed, since inputs may be skewed

arbitrarily by wire delays (see Section 2.3.1). Second, inputs change monotonically: each

input changes value at most once. And, �nally, the input change occurs in fundamental

mode: once a multiple-input change occurs, no further input changes may occur until

the circuit has stabilized.

An input transition occurs during a transition interval, tI � t � tF , where the input

change begins at time tI and the circuit returns to a steady state at time tF [6].

An input transition from input state A to B for a Boolean function f is a static



CHAPTER 2. COMBINATIONAL CIRCUITS AND HAZARDS 27

transition if f(A) = f(B); it is a dynamic transition if f(A) 6= f(B). Function f is said to have

a 0!0 transition in transition cube [A,B] if f(A) = f(B) = 0. Similar de�nitions apply

for 0!1, 1!1 and 1!0 transitions. This chapter considers only static and dynamic

transitions where f is fully de�ned over the transition cube; that is, for every minterm

X2[A,B], f(X)2f0,1g. In other words, the function is fully de�ned within speci�ed input

transitions, and is otherwise unde�ned.

2.3.3 Function Hazards

A function f which does not change monotonically during an input transition is said to

have a function hazard in the transition. The following de�nitions are from Bredeson

and Hulina [9] (see also [34, 8, 6, 61, 104]).

De�nition. A Boolean function f contains a static function hazard for the input

transition from A to C if and only if:

1. f(A) = f(C), and

2. there exists some input state B 2 [A,C] such that f(A) 6= f(B).

De�nition. A Boolean function f contains a dynamic function hazard for the input

transition from A to D if and only if:

1. f(A) 6= f(D).

2. There exist a pair of input states B and C (A 6= B, C 6= D) such that

(a) B 2 [A,D] and C 2 [B,D] and

(b) f(B) = f(D) and f(A) = f(C).

Example. The function f of Figure 2.2 has a static function hazard for the multiple-

input change from i to k, since f(i)=f(k)=1, f(j)=0, and j2[i,k]. The function has a

dynamic function hazard for the transition from g to j, since f(g)=1, f(j)=0, h2[g,j],

i2[h,j], f(g)=f(i)=1 and f(h)=f(j)=0. The input transition from k to m is free of static

function hazards, and the input transition from n to p is free of dynamic function haz-

ards. 2

It is well known that, if a transition has a function hazard, no implementation of

the function is guaranteed to avoid glitches during the transition, assuming arbitrary



CHAPTER 2. COMBINATIONAL CIRCUITS AND HAZARDS 28

00 01 11 10

00

01

11

10

a b

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

ji

k

g h

m

n

p

Figure 2.2: Boolean function with function hazards.

gate and wire delays [34, 9]. Therefore, in the remainder of this thesis, transitions are

assumed to be free of function hazards except where otherwise indicated (cf. [34, 8, 6]).

2.3.4 Logic Hazards

If f is free of function hazards for a transition from input state A to B, it may still have

hazards due to delays in the actual logic realization [91, 9, 6].

De�nition. A combinational circuit for a function f contains a static logic hazard

for the input transition from minterm A to minterm B if and only if:

1. f(A) = f(B).

2. No static function hazard exists in the transition from A to B.

3. For some delay assignment, the circuit's output is not monotonic during the tran-

sition interval.

De�nition. A combinational circuit for a function f contains a dynamic logic hazard

for the input transition from minterm A to minterm B if and only if:

1. f(A) 6= f(B).

2. No dynamic function hazard exists in the transition from A to B.

3. For some delay assignment, the circuit's output is not monotonic during the tran-

sition interval.



CHAPTER 2. COMBINATIONAL CIRCUITS AND HAZARDS 29

These de�nitions formalize the notion that a logic hazard occurs if, for some par-

ticular gate and wire delays, the combinational circuit output will glitch during the

transition (a pure delay model is of course assumed).

2.3.5 Hazard-Free Covers

A hazard-free cover of a Boolean function f is a cover of f whose AND-OR implementation

is free of logic hazards for a given set of speci�ed input transitions.

2.4 Previous Work

Much of the original work on combinational hazards was limited to the case of single-

input changes. Methods for detecting and eliminating combinational hazards for single-

input changes were developed by Hu�man, McCluskey and Unger and are described in

[91].

Eichelberger [34] considered the case of static function and logic hazards for multiple-

input changes. He indicated that static function hazards cannot be removed; however,

static logic hazards can always be eliminated using a sum-of-products implementation

containing every prime implicant. Others have developed improved algorithms for se-

lective static hazard elimination.

Dynamic combinational function and logic hazards for multiple-input changes were

identi�ed in [91, 9, 6]. Unger [91], Bredeson and Hulina [9], Bredeson [8], Beister [6]

and Frackowiak [35] presented conditions to avoid dynamic logic hazards in two-level

and multi-level circuits during a multiple-input change. They also indicate that these

conditions cannot always be satis�ed.

2.5 Conditions for a Hazard-Free Transition

Necessary and su�cient conditions can now be described to insure that a sum-of-

products implementation is hazard-free for a given input transition. Assume that [A,B]

is the transition cube corresponding to a function-hazard-free transition from input state

A to B for a combinational function f. In the following discussion, assume that C is any

cover of f implemented in AND-OR logic. It is assumed throughout that no product



CHAPTER 2. COMBINATIONAL CIRCUITS AND HAZARDS 30

contains a pair of complementary literals, otherwise additional hazards are possible;

see [91].

The following lemmas present necessary and su�cient conditions to insure that the

AND-OR implementation of f has no logic hazards for the given transition:

Lemma 2.1. If f has a 0! 0 transition in [A,B], then the implementation is free of

logic hazards for the input change from A to B.

Lemma 2.2. If f has a 1! 1 transition in [A,B], then the implementation is free of

logic hazards for the input change from A to B if and only if [A,B] is contained in some

cube of cover C.

The conditions for the 0 ! 1 and 1 ! 0 cases are symmetric. Without loss of

generality, we consider only a dynamic 1! 0 transition, where f(A)=1 and f(B)=0. (A

0! 1 transition from A to B has the same hazards as a 1! 0 transition from B to A.)

Lemma 2.3. If f has a 1 ! 0 transition in [A,B], then the implementation is free

of logic hazards for the input change from A to B if and only if every cube c 2 C

intersecting [A,B] also contains A.

Proof. These results follow immediately from pp. 128-9 in [91] and Theorem 3.4 in

[35]. See also, Theorem 4 in [9], Lemmas 2 and 3 in [8], Theorem 4.5 in [91], and [6]. 2

Lemma 2.2 requires that in a 1 ! 1 transition, some product holds its value at 1

throughout the transition. Lemma 2.3 insures that no product will glitch in the middle

of a 1!0 transition: all products change value monotonically during the transition. In

each case, the implementation will be free of hazards for the given transition.

An immediate consequence of Lemma 2.3 is that if a dynamic transition is free of

logic hazards, then every static sub-transition will be free of logic hazards as well.

Corollary 2.1. If f has a 1 ! 0 transition from input state A to B which is hazard-

free in the implementation, then, for every input state X 2[ A,B) where f(X)=1, the

transition subcube [A,X] is contained in some cube of cover C.

Proof. Since C is a cover of function f, there exists some cube c 2 C which contains

X. Since f is hazard-free in the transition from A to B, then, by Lemma 2.3, cube c

contains A as well; therefore c contains [A,X]. 2



CHAPTER 2. COMBINATIONAL CIRCUITS AND HAZARDS 31

Corollary 2.2. If f has a 1 ! 0 transition from input state A to B which is hazard-

free in the implementation, then for every input state X 2 [A,B) where f(X)=1, the

static 1! 1 transition from input state A to X is free of logic hazards.

Proof. Immediate from Lemma 2.2 and Corollary 2.1. 2

Corollary 2.1 considers the set of transition subcubes of the form [A,X], where input

state X 2 [A,B) and f(X)=1. If a cube in such a set is contained in no other cube in the

set, it is called maximal with respect to the set.

Lemma 2.2 and Corollary 2.1 de�ne the covering requirement for a hazard-free tran-

sition. The cube [A,B] in Lemma 2.2 and the maximal subcubes [A,X] in Corollary 2.1

are called required cubes. These cubes de�ne the ON-set of the function in a transition.

Each required cube must be contained in some cube of cover C to insure a hazard-free

implementation.

Lemma 2.3 constrains the cubes which may be included in a cover C. Each 1 ! 0

transition cube is called a privileged cube, since no cube c in the cover may intersect a

privileged cube unless c contains its start point. If a cube intersects a privileged cube

but does not contain its start point, it illegally intersects the privileged cube and may

not be included in the cover.

Figure 2.3 show the required and privileged cubes for two input transitions. The input

transition from k to m in Figure 2.2 is free of static function hazards. The corresponding

transition cube is a required cube, and is shown in Figure 2.3(a). The input transition

from n to p in Figure 2.2 is free of dynamic function hazards. Each maximal ON-set

subcube of the transition cube is a required cube, as shown in Figure 2.3(a). Each

required cube must be contained in a cube of the cover to avoid hazards, by Lemma 2.2

and Corollary 2.1. In addition, since the transition is dynamic, the entire transition cube,

along with its start point, is a privileged cube, as shown in Figure 2.3(b). By Lemma 2.3,

to avoid a dynamic hazard, no cube in the cover may intersect this privileged cube if it

does not contain its start point, n.



CHAPTER 2. COMBINATIONAL CIRCUITS AND HAZARDS 32

00 01 11 10

00

01

11

10

a b
c d

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

00 01 11 10

00

01

11

10

a b
c d

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

n

p

k

m

n

p

(a) required cubes (b) privileged cube

Figure 2.3: Required and privileged cubes for two input transitions.

Hazard Example

Figures 2.4 and 2.5 illustrate the conditions of Lemmas 2.2 and 2.3 and the two Corol-

laries. Each �gure shows a multiple-input change where inputs a and b both change

from 0 to 1. The transition is described by a state graph, which represents a portion of

a Karnaugh map for the given transition.

Figure 2.4 shows covers for a 1 ! 1 transition. The cover in Figure 2.4(a) is haz-

ardous. The dotted ovals represent products in the cover. These products, M and N,

correspond to AND-gates in the �nal AND-OR implementation. Initially, the M AND-

gate is high and the N AND-gate is low. To see this graphically, note that cube M

contains the start point of the transition, while N does not. To continue the graphical

view, a multiple-input change corresponds to a walk through the graph. In this example,

when input a goes high, the walk never leaves the oval M. That is, AND-gate M remains

high. Similarly, N remains low, since the walk never enters oval M.

When input b goes high, the walk leaves ovalM and enters oval N. That is, during the

transition, theM AND-gate goes low and the N AND-gate goes high. For certain delays,

however, the M AND-gate goes low before the N AND-gate goes high, and the circuit

output glitches (see timing diagram). In this case, the cover violates the condition of

Lemma 2.2.



CHAPTER 2. COMBINATIONAL CIRCUITS AND HAZARDS 33

1

1 1

1

Hazardous:

1

1 1

1

Hazard-Free:

M

N

P

(a) (b)

a+ b+ a+ b+

a

b

M

N

Z

a

b

Z

P

M

N

Z Z

P

b+ a+ b+ a+

Figure 2.4: Hazardous and hazard-free covers for a 1! 1 input transition.

The cover in Figure 2.4(b) is hazard-free. As required by Lemma 2.2, the cover

contains a product, P, which completely contains the transition cube. This product

corresponds to an AND-gate in the implementation which holds its value at 1 throughout

the transition. Therefore, the circuit output will not glitch (see timing diagram).

Figure 2.5 shows covers for a 1 ! 0 transition. The cover in Figure 2.5(a) is haz-

ardous: cubes R and S both illegally intersect the transition.

First, consider the sub-transition where only input a changes; the output must remain

at 1. Therefore, this sub-transition is a 1! 1 transition. However, no single product in

the cover contains this sub-transition cube, so the sub-transition has a static hazard. In

this case, the cover violates the condition of Corollary 2.1. (This case is not described



CHAPTER 2. COMBINATIONAL CIRCUITS AND HAZARDS 34

(a) (b)

a

b

Z

a

b

1

1 1

0

Hazardous:

1

1 1

0

Hazard-Free:
Q

R

S

T U

S

R

Q T

U

Z

Z

Q

R

S

Z

T

U

b+

a+

a+

b+

a+ b+

a+b+

Figure 2.5: Hazardous and hazard-free covers for a 1! 0 input transition.

by a timing diagram.)

Alternatively, consider the case where input b changes �rst. This sub-transition is

free of static hazards, since product Q covers the static sub-transition. However, a

problem remains for the dynamic transition: product R intersects the transition cube

in the middle. This stray product corresponds to an AND-gate in the implementation.

Initially, this AND-gate is low; it may then go high and then eventually it will go low.

During a 1 ! 0 transition, such a glitch on an AND-gate can propagate as a glitch to

the AND-OR circuit output (see timing diagram). In this case, the cover violates the

condition of Lemma 2.3.

The cover in Figure 2.5(b) is hazard-free. Each 1 ! 1 sub-transition is completely



CHAPTER 2. COMBINATIONAL CIRCUITS AND HAZARDS 35

contained in a product of the cover and there are no \stray" cubes which intersect the

transition in the middle (see timing diagram).

2.6 Burst-Mode Transitions

Section 2.5 presented conditions to insure a that a sum-of-products implementation of a

function is hazard-free for an arbitrary function-hazard-free transition. In this section, a

useful special case is considered: burst-mode transitions. The locally-clocked synthesis

method described in Chapter 3 produces combinational functions having burst-mode

transitions only. In a burst-mode transition, a function may change only after every

input in the burst has changed:

De�nition. A burst-mode input transition from input state A to B, for a combina-

tional function f, is an input transition where for every input state C 2 [A,B), f(A) =

f(C).

The following corollary is immediate from the de�nitions of burst-mode transitions

and function hazards:

Corollary 2.3. If a function f has a burst-mode transition from input state A to B,

then f is free of function hazards for the transition.

Lemma 2.3 described the symmetric cases of 1 ! 0 and 0 ! 1 transitions which

were free of function hazards. The symmetry still holds, but the conditions for a 0! 1

transition are now degenerate and can be simpli�ed:

Lemma 2.4. If f has a 0! 1 burst-mode transition in [A,B], then a sum-of-products

implementation is free of logic hazards for the input change from A to B.

Proof. This result follows immediately from Lemma 2.3 and the de�nition of burst-

mode transition. (As with the earlier lemmas, we assume that no product has a pair of

complementary literals, otherwise additional hazards may be possible.) 2

In a burst-mode 0 ! 1 transition from input state A to B, the function f changes

to 1 only after every input has changed, that is, in input state B. In this case, no cube

c in cover C can intersect [A,B] illegally. That is, under a burst-mode restriction, a

0 ! 1 transition can never be illegally intersected: Lemma 2.3 is trivially satis�ed by

any cover.



CHAPTER 2. COMBINATIONAL CIRCUITS AND HAZARDS 36

To conclude, a burst-mode transition is always free of function hazards. Also, condi-

tions to eliminate logic hazards are simpler than the more general conditions described

earlier.

2.7 Existence of a Hazard-Free Cover

Section 2.5 presented conditions to eliminate logic hazards in a given function-hazard-free

multiple-input transition. For each such transition, a sum-of-products implementation

exists which satis�es these conditions [35]. In general, though, it is desirable is to

eliminate logic hazards in a given set of multiple-input transitions.

An important result is that, for certain Boolean functions and sets of input tran-

sitions, no hazard-free cover exists [91, 6]. This fact has important implications for

asynchronous sequential circuit synthesis. Any synthesis method which requires hazard-

free two-level combinational logic must insure that a hazard-free cover exists for the

synthesized Boolean functions. In the synthesis method described in the next chapter,

careful constraints are imposed to insure that hazard-free two-level logic can always be

synthesized.



Chapter 3

Locally-Clocked Asynchronous

State Machines

3.1 Introduction

This chapter describes an automated, correct design methodology for asynchronous

state-machine controllers. The goal of this work is a design style which has much of the

simplicity of a synchronous design, but with the advantages of an asynchronous method.

Our implementations realize asynchronous state-machine speci�cations using standard

combinational logic, level-sensitive latches as storage elements, and a locally-generated

clocking signal that pulses whenever there is a change in state.

This design style allows multiple-input changes, where inputs in an input change may

arrive at arbitrary times. The implementations use a minimal or near-minimal number

of states. The design style also allows arbitrary state encoding and exibility in logic

minimization and gate-level realization, so it can take advantage of systematic CAD

optimization techniques.

A novelty of our approach is that for many transitions, the clock is not used { our im-

plementations can function as combinational logic with essentially zero-overhead penalty.

The machines usually operate in a generalized fundamental mode. With modi�cation,

the machines can operate under a variety of environmental assumptions. The designs

can be implemented easily in such common VLSI styles as gate-array, standard cell and

full-custom. Designs are guaranteed to be free from logic hazards.

37



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 38

The chapter is organized as follows. Burst-mode speci�cations are described in Sec-

tion 3.2. The locally-clocked implementation style is described in Section 3.3. An

overview of the synthesis method appears in Section 3.4. This section is followed by

a detailed formal analysis of the synthesis method in Section 3.5, including a demon-

stration of the correctness of our method. Di�erent environmental assumptions are

considered in Section 3.6, and optimizations are discussed briey in Section 3.7. State

minimization and state assignment algorithms are presented Section 3.8. A real design

example is presented in detail in Section 3.9: an asynchronous �nite-state controller

used in the Post O�ce communications processor chip [86] developed at HP Labora-

tories for the Mayy Parallel Processing System [28, 29]. State-splitting is discussed

in Section 3.10, and related work is considered in Section 3.11. The chapter concludes

with Section 3.12, where results of our synthesis method are compared with published

asynchronous designs.

3.2 Burst-Mode Speci�cations

An asynchronous state machine allowing multiple-input changes is speci�ed by a form

of state diagram, called a burst-mode speci�cation, which is derived and formalized from

the asynchronous speci�cation style currently in use at HP Laboratories [25]. A state

diagram contains a �nite number of states, a number of labelled arcs connecting pairs of

states, and a distinguished start state (initial wire values are either speci�ed or assumed

0).

Arcs are labelled with possible transitions, taking the system from one state to

another. Each transition consists of a non-empty set of input changes (an input burst)

and a set of output changes (an output burst). Note that every input burst must be

non-empty; if no inputs change, the system is stable (we do not allow counters).

In a given state, when all the inputs in some input burst have changed value, the

system generates the corresponding output burst and moves to a new state. Only speci-

�ed input changes may occur, and inputs may arrive in arbitrary order and at arbitrary

times.

There are two further restrictions to speci�cations. First, no input burst in a given

state can be a subset of another, since otherwise the behavior may be ambiguous (cf.



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 39

the more general requirements for delay-insensitive codes in [98]). This restriction is

called the maximal set property. Second, a given state is always entered with the same

set of input values; that is, each state has a unique entry point (this restriction simpli-

�es minimization and helps to guarantee a hazard-free implementation). The maximal

set property is a fundamental property of burst-mode behavior. However, the unique-

entry point property is simply a syntactic constraint on burst-mode state diagrams: if

a state diagram does not satisfy this property, it can be transformed into an equivalent

satisfactory diagram by splitting states.

The maximal set property, the unique entry point property, the requirement that

inputs can always change in arbitrary order, and the requirement of non-empty input

bursts, all distinguish our burst-mode speci�cations from the data-driven speci�cations

developed by Davis et al. [26, 29, 25].

Examples of burst-mode speci�cations are shown in Figures 3.1 and 3.2. Each tran-

sition is labelled with an input burst followed by an output burst. Input and output

bursts are separated by a slash, /. A rising transition is indicated by a \+" and a falling

transition is indicated by a \{". The burst-mode speci�cation in Figure 3.1 describes

a simple controller having 3 inputs (a, b, c) and 2 outputs (x, y). The speci�cation of

Figure 3.2 describes a more complex controller which has been implemented (using a

di�erent design style) for the Post O�ce communication chip developed for the Mayy

Parallel Processing System at HP Laboratories [28, 86]. The machine has 5 inputs

(req-send, treq, rd-iq, adbld-out, ack-pkt) and 3 outputs (tack, peack, adbld).

A more precise de�nition of a burst-mode speci�cation will be useful for later anal-

ysis. Formally, a burst-mode speci�cation is a rooted, labelled, directed graph, G =

(V;E; I;O; v0; in; out), where: V is a �nite set of vertices (or states); E � V � V is the

set of edges (or transitions); I = fx1; : : : ; xmg is the set of inputs; O = fz1; : : : ; zng is

the set of outputs; v0 2 V is the unique root (or start state); and in and out are labelling

functions used to de�ne the unique entry point of each state. In particular, function

in : V ! f0; 1gm de�nes the values of the m inputs and function out : V ! f0; 1gn

de�nes the values of the n outputs at the entry point of each state. The value of input

xi on entering state v is denoted by ini(v), and the value of output zj on entering v is

denoted by outj(v).

Given graph G, two edge-labelling functions, transi and transo, can be derived which



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 40

A

B

C

D

E

a+ b+ / x+ y+

c+ / x-

c- / x+ y-

b- / x- y+

a- / y-

Figure 3.1: Simple example speci�cation.

are useful in specifying the graph. First, for any set S, de�ne the power set P(S) as the

set of all subsets of S [43]. Using this notation, transi : E ! P(I) de�nes the set of

input changes (or input burst) and transo : E ! P(O) de�nes the set of output changes

(or output burst) for each edge in the graph. Intuitively, transi and transo are labelling

functions, which associate a set of input changes and output changes, respectively, with

each edge in G. For convenience, a \+" or \�" can be added to each input and output

in a burst to indicate a rising or falling transition. Given any edge, e = (u; v) 2 E, an

input xi is in the input burst of e precisely if it changes value between u and v. More

formally , xi 2 transi(e) if and only if ini(u) 6= ini(v) (transo is similarly de�ned).

The graph, as de�ned, guarantees the \unique entry point" property for each state

in G. In particular, each state, v, is always entered with input value in(v) and output

value out(v). The remaining burst-mode requirements are imposed by adding \well-

formedness" constraints on the labelling functions, transi and transo. First, to insure

that every input burst in a graph G is non-empty, it is required that, for every edge

e 2 E, transi(e) 6= �. Second, to insure the \maximal set property", it is required

that, for each pair of edges, (u; v); (u;w) 2 E, transi(u; v) � transi(u;w) ! v = w.

Intuitively, this latter requirement insures that the input changes on edge (u; v) are not



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 41

0

1

2

3

4

5

6

7

8

9

10

adbld-out+ /
peack+

rd-iq- /
peack- adbld- tack+

req-send+ treq+ rd-iq+ /
adbld+

adbld-out- treq-
rd-iq+ /

adbld+

adbld-out+ /
peack+

rd-iq- /
peack- adbld-

tack-

adbld-out- treq+ ack-pkt+ /
peack+ tack+

adbld-out- treq+ rd-iq+ /
adbld+

ack-pkt- treq- /
peack- tack-

treq+ /
tack+

treq- /
tack-

ack-pkt- /
peack- tack-

adbld-out-
treq- ack-pkt+ /

peack+
req-send- /

--

INPUTS:

req-send
treq
rd-iq

adbld-out
ack-pkt

OUTPUTS:

tack
peack
adbld

Figure 3.2: Speci�cation for HP controller (pe-send-ifc).



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 42

a subset of the input changes on edge (u;w), and vice-versa.

The following proposition elaborates the notion of the maximal set property; it indi-

cates that the input changes on (u;w) never pass through the input state, in(v), which

terminates the input changes on (u; v). This proposition follows immediately from the

above de�nitions; it will be useful in later proofs.

Proposition 3.1. Let G = (V;E; I;O; v0; in; out) be any burst-mode speci�cation,

and (u; v); (u;w) 2 E be any pair of edges emanating from any state u 2 V , where v

and w are distinct vertices. Then in(v) 62 [in(u); in(w)].

Proof. Recall that a transition cube [in(u); in(w)] has start point in(u), end point

in(w), and contains all minterms that can be \reached" in a multiple-input change

from in(u) to in(w). Since v and w are distinct vertices, then by the maximal set

property, the input changes on (u; v) are not a subset of the input changes on (u;w);

that is, transi(u; v) 6� transi(u;w). Let i 2 I be any input in transi(u; v) which is

not in transi(u;w). By de�nition of transi, the value of i in in(u) is the same as the

value in in(w) but it is di�erent from the value in in(v); that is, in(u)i = in(w)i and

in(u)i 6= in(v)i. Therefore, for each minterm x in the transition cube [in(u); in(w)],

xi = in(u)i (by de�nition of transition cube). Since in(u)i 6= in(v)i, it follows immedi-

ately that in(v) 62 [in(u); in(w)]. 2

Before proceeding to the synthesis of burst-mode speci�cations, it is necessary to

understand the target machine implementation and its operation.

3.3 Locally-Clocked State Machine Implementation

A block diagram of a locally-clocked asynchronous state machine is shown in �gure

3.3. The machine consists of combinational logic, storage elements with clock control,

primary inputs (i1, i2) and outputs (o1, o2), and state variables (s1, s2) which are fed

back as machine inputs.

The local clock, or self-synchronization unit, is used to eliminate a number of possible

hazards; it also controls state changes of the machine. However, unlike synchronous

design, state changes can occur only when a new input burst arrives; there is no �xed

cycle-time. Therefore the clock depends only on the current inputs and state. It is



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 43

Combinational
Logic

i1

i2

o1

o2

Clock
Local

Storage
Elements

i1

i2

s1

s2

Figure 3.3: Block diagram of locally-clocked asynchronous state machine.

generated locally for each module.

Figure 3.4 shows the implementation style in more detail. The clock logic itself is

unlatched; it is inverted to generate a two-phase clock which controls the phase-1 and

phase-2 D-latches. Each output variable has a single phase-1 latch, which passes data

when the clock is low. Dynamic latches can be used for phase-1 (or static latches).

Each state variable has a pair of latches, phase-1 and phase-2, forming an edge-triggered

ipop. Phase-2 latches are static. State variables are latched when the clock goes high.

The operation of the machine is illustrated by an example. Figure 3.5 shows a locally-

clocked implementation for the simple burst-mode speci�cation shown earlier in Figure

3.1. States A and B in the speci�cation have been merged into a single machine state

(q=0); similarly states C, D and E have been merged (q=1). Consider transitions A!B

and B!C.

Initially the circuit is quiescent, and the clock is low; the inputs, outputs and state

variable are low as well, as shown in Figure 3.5. The machine is in phase-1. The phase-2

latch in Figure 3.5 is shaded, indicating that it is disabled. The phase-1 latches are

transparent: data passes directly through them. Therefore no hazards are permitted on



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 44

i1
i2

s1

s2

o1

o2

Clock
Local

C/L
i1
i2

Phase-1 
Latches

Phase-2
Latches

CK

Figure 3.4: Detailed block diagram of locally-clocked asynchronous state machine.

a’
q

c

q’

a
b
c’

a
b

q’
c
a
b’q

a

x

y

q

Phase-1
Latches

Phase-2
Latch

Clock

a

b

c

Figure 3.5: Simple example implementation: A! B transition (Phase-1)



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 45

a’
q

c

q’

a
b
c’

a
b

q’
c
a
b’q

a

x

y

q

Phase-1
Latches

Phase-2
Latch

Clock

a

b

c

Figure 3.6: Simple example implementation: B ! C transition (Phase-1, initial)

a’
q

c

q’

a
b
c’

a
b

q’
c
a
b’q

a

x

y

q

Phase-1
Latches

Phase-2
Latch

Clock

a

b

c

Figure 3.7: Simple example implementation: B ! C transition (Phase-2)



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 46

a’
q

c

q’

a
b
c’

a
b

q’
c
a
b’q

a

x

y

q

Phase-1
Latches

Phase-2
Latch

Clock

a

b

c

Figure 3.8: Simple example implementation: B ! C transition (Phase-1, �nal)

the outputs during phase-1: as inputs a and b go high for the A!B transition, outputs x

and y must remain low until the input burst is complete. At this point, both outputs go

high monotonically. Since there is no state change for this transition, the clock remains

low and the machine is ready to receive new inputs.

In the next transition, B!C, input c goes high, as shown in Figure 3.6. The output

latches are still transparent, so outputs cannot change until the input burst is complete.

Once input c goes high, output x goes low monotonically. At this point, a state change

occurs (see Figure 3.7): the state logic generates the correct next state (q=1), the clock

goes high, the next state is latched on the rising edge of the clock and the phase-1

latches are disabled. (Note that outputs have already passed through the latches before

the clock goes high.) The machine is in phase-2. No further changes pass through the

phase-1 latches. Therefore, the output and state logic are permitted to glitch during

phase-2. Once the output and state logic stabilizes in the new state, the clock logic

is reset (see Figure 3.8), enabling the phase-1 latches and completing the cycle; the

machine returns to phase-1.

Note that a clock pulse is generated only for transitions where the state changes,



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 47

such as B!C. Remaining transitions are unclocked even if output changes occur, such

as A!B (unlike [21, 79]).1 There are two bene�ts to our selective clocking approach:

the clock implementation tends to be simpler, and some of the transitions will have no

clock-cycle overhead.

Throughout most of this chapter we assume that outputs can change at the same

time that the state changes, and no new inputs arrive until a clock cycle is complete

and all logic is stable. That is, we assume a generalized fundamental mode of machine

operation, where multiple-input changes are permitted [91]. In this case, the local clock

never delays an output change, and there is no clock-cycle overhead (though it is still

desirable to minimize clock area). However, we later consider cases where new inputs

may arrive quickly, and it is necessary to delay either input or output changes to insure

correct machine operation (see Section 3.6). In such cases, the cycle time of the local

clock has direct e�ect on overall performance, and the bene�ts of selective clocking

become more important.

3.4 Synthesis Method: Overview

Now that the implementation style has been explained, the synthesis method can be

presented in a top-down fashion, using the simple speci�cation of Figure 3.1 as an

illustration. This section is an overview of the synthesis of locally-clocked state machines.

Later sections formalize the method described below.

3.4.1 Functional Synthesis

The �rst step in state-machine synthesis is to generate and reduce a ow table for the

speci�cation, assign state codes, and generate Boolean functions for the clock and each

output and state variable. Questions of logic and timing implementation are deferred

to later sections. The synthesis method at this stage is based on standard sequential

synthesis techniques [60].

1The implementation essentially has a 2-phase clock which remains in phase-1 except when a state
change is required.



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 48

The burst-mode speci�cation is �rst transformed into an unminimized ow table, in-

dicating output and next-state values. Each state in the original speci�cation is mapped

to a unique row in the table, having a unique, stable entry point (or input vector where

the state is entered). An input burst begins at the entry point of some state; it termi-

nates in an unstable entry which leads directly to a new stable state. If only single-input

changes occur, the ow table is called a primitive ow table [91]. The term \primitive"

indicates that the table is unminimized. In burst-mode speci�cations, however, multiple-

input changes can occur, and so the table is called a generalized primitive ow table. 2

The generalized primitive ow table for the speci�cation of Figure 3.1 is shown in Fig-

ure 3.9. Input bursts are indicated by horizontal arrows and state changes by vertical

arrows. All reachable entries in the primitive ow table must have speci�ed output and

next-state values; remaining entries are don't-cares.

000 001 011 010 110 111 101 100

inputs a b c

-- --

-- -- -- --

-- -- --

A

B

C

D

E

State

-- --

--

--

--

-- --

-- -- -- ---- --

-- -- -- ---- --

A,00 A,00 A,00B,11

C,01B,11

C,01D,10

D,10 E,01

E,01A,00

Next State,
  Outputs X, Y

Figure 3.9: Primitive ow table for simple example.

The ow table is reduced by merging states. The resulting minimized ow table is

shown in Figure 3.10. States A and B of the primitive table are merged into state AB,

and states C, D and E are merged into state CDE.

2Using the terminology decribed in Unger [91], the ow tables considered in this section are single-

output change (SOC) tables in standard form.



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 49

000 001 011 010 110 111 101 100

Next State,
 Outputs X Y

state

AB

CDE

AB,00 −− −− AB,00 AB,11 CDE,01 −− AB,00

AB,00 −− −− −− CDE,10 CDE,01 −− CDE,01

*(A) (B)

(C)(D) (E)

*Specification states are indicated
  where they are entered.

inputs a b c

Figure 3.10: Reduced ow table for simple example.

Next, merged states are assigned arbitrary unique state codes. Since the reduced

table has two states, only one Boolean state variable, q, is required. In the encoded ow

table of Figure 3.11, state AB is assigned the Boolean code q = 0, and state CDE is

assigned the code q = 1.3

000 001 011 010 110 111 101 100

Next State Q,
 Outputs X Y

state
q

0

1

0,00 −− −− 0,00 0,11 1,01 −− 0,00

0,00 −− −− −− 1,10 1,01 −− 1,01

inputs a b c

Figure 3.11: Encoded ow table for simple example.

The �nal ow table is generated by augmenting the table with unassigned state

codes, and �lling in these added entries with don't-care values. In the given example,

this step is not necessary since every possible state code for state variable q has already

been assigned. Finally, next-state and and output functions are generated for each state

variable and output, respectively. The clock function is generated as well. Since the im-

plementation uses only D-latches, these functions are also \excitation functions" [60] for

the D-latches. The Boolean functions for the given example are shown in the Karnaugh

3The state assignments used in this chapter are called single-transition time (STT) assignments [91],
since an unstable state leads directly to a stable state without \multi-stepping" .



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 50

maps of Figure 3.12.

000 001 011 010 110 111 101 100

0

1

inputs a b c

state q

(a)  Output Function

00 -- -- 00 11 01 -- 00

00 -- -- -- 10 01 -- 01

(A)* (B)

(D) (C) (E)

Outputs X Y

inputs a b cNext-State Q

000 001 011 010 110 111 101 100

1

state q

-- -- --

(D) (C) (E)

0 -- -- --

(B)

-- -- -- --

-- -- -- --

  1

  0

(A)

(b) Next-state Function

*Specification states are indicated
     when they are entered.

inputs a b c

000 001 011 010 110 111 101 100

1

state q

-- -- --

(D) (C) (E)

0 -- -- --

(B)

--

  1

(A)

1

0 0 0 0

00 0

Clock

(c) Clock Function

Figure 3.12: Final Karnaugh maps for simple example.

In generating Karnaugh maps from the �nal ow table, don't-cares are added in

di�erent ways for the outputs, next-state and clock. These don't-cares reect the actual

structure and operation of the locally-clockedmachine (see Figure 3.4). For the following

discussion, recall that in phase-1, the machine receives an input burst, which corresponds

to a horizontal (or row) transition in the ow table. In phase-2, the machine changes

state, which corresponds to a vertical (or column) transition in the ow table.

� Outputs. Each output variable has a single attached latch. In phase-1, the output



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 51

latches are transparent, so every Karnaugh map entry that can be reached during

an input burst must be speci�ed. In phase-2, the output latches are disabled, so

every Karnaugh map entry that can be reached in the middle of a state change

(i.e. transient state) is unspeci�ed (i.e. is a don't-care). That is, outputs are only

speci�ed during phase-1.

� Next-State. Each next-state variable has a pair of latches forming an edge-

triggered ipop. These ipops are clocked only when a state change occurs.

Therefore, the next-state function is speci�ed only at the end point of an input

burst, and only if the input burst results in a state change. All remaining Karnaugh

map entries in phase-1 (where the next-state is stable) and all transient entries in

phase-2 (after the clock edge) are unspeci�ed (i.e., don't-cares). That is, only

unstable ow table entries are speci�ed for the next-state function.

� Local Clock. The local clock is unlatched. The clock is low during an input

burst in phase-1. If the input burst results in a state change, the clock is driven

high at the end of the input burst, and then is driven low by the state change. If

there is no state change, the clock remains low. Since the clock is never disabled,

every Karnaugh map entry that can be reached during a phase-1 input burst must

be speci�ed. However, every Karnaugh map entry that can be reached during a

state change (i.e. transient state) will be unspeci�ed (i.e. is a don't-care). That

is, we shall ignore the correct phase-2 speci�cation of the clock: the clock is only

speci�ed during phase-1! Since the clock is never disabled, these transient states

may produce incorrect clock values if function hazards exist. This problem is

addressed in the next subsection.

The transformation of a ow table into Karnaugh maps is illustrated in Figures 3.11

and 3.12. Every output function entry that is reachable during the input bursts of

transitions A!B and B!C is speci�ed in the Karnaugh map of Figure 3.12(a). In

contrast, the next-state function has only a single speci�ed entry for these transitions

(Figure 3.12(b)). This entry (abcq=1110) is the point where the next state is latched by

the local clock for transition B!C. This entry corresponds to an unstable state in the

ow table. Note that entry abcq=1100, representing the completion of transition A!B,

is unspeci�ed, since the machine does not change state during this transition.



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 52

Each clock function entry which can be reached during the A!B transition is 0,

since this transition does not require a state change (see Figure 3.12(c)). In contrast,

the B!C transition does require a state change. For this transition, every stable (i.e.,

non-�nal) entry is 0 (in this case, only abcq=1100), and the transition terminates in

a single 1 entry (abcq=1110) where the state change begins. Once the state change is

completed, the machine returns to a stable state (abcq=1111), and the clock logic is reset

to 0.

3.4.2 Logic and Timing Requirements

Given the above functions for the clock, outputs and state variables, correct logic and

timing requirements can now be added for their implementation. It is assumed that the

machine is in a stable state, no new input burst has begun and all internal logic is stable.

Any speci�ed input burst may occur, with inputs changing at arbitrary times.

Requirement 1. (Phase-1) The clock and output logic must be free of

hazards for every permitted input burst in every state.

During phase-1, the phase-1 latches are transparent; therefore, every output must be

free of glitches. Since the local clock is unlatched, it must be glitch-free as well.

Requirement 2. (Phase 1 ! 2, Phase 2 ! 1) The minimum propagation

delay through clock logic is greater than the maximum propagation delay

through the logic for every output and state variable.

This requirement is a simple one-sided timing constraint to insure correct operation of

the local clock.

Requirement 3. (Phase-2) Once the clock is set, it must be reset without

hazards.

During phase-2, output logic is permitted to glitch since the phase-1 latches are disabled.

However, the local clock is unlatched, so it must be glitch-free.

Requirement 4. (Phase-2) The delay between the enabling of the phase-

2 latches and the disabling of the phase-1 latches must be less than the

minimum delay in the feedback path.



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 53

This �nal requirement prevents race conditions through the phase-1 latches during phase-

2. This requirement is needed because the machine generates a two-phase clock from a

single clock source. As a result, the clock may have overlapping phases. In particular,

in the transition from phase-1 to phase-2, the phase-2 latches may be enabled before

the phase-1 latches have been disabled. To guarantee correct operation in this case,

Requirement 4 insures su�cient delay on the feedback path to avoid races through the

phase-1 latches.4

These requirements divide the implementation problem into two parts. Requirement

1 is concerned with the implementation of hazard-free combinational logic for the outputs

and clock. It insures correct operation of the state machine in phase-1. Requirements

2 through 4, and other minor requirements discussed later, are concerned with the

resetting of the clock and with timing constraints. These requirements guarantee the

correct sequential operation of the machine in phase-2 and in the transitions between

phase-1 and phase-2.

3.4.3 Hazard-Free Logic Implementation

A simple implementation style is presented below to satisfy Requirement 1. In this

solution, the local clock and each output are implemented using AND-OR logic. Multi-

level logic realizations and realizations which use other logic families (NAND, NOR, etc.)

can be derived from these implementations using techniques discussed in chapter 4.

To satisfy Requirement 1, the outputs and clock must be free of hazards during each

speci�ed input burst. In an input burst, there are four possible transitions for any output

| 0 ! 0; 0 ! 1; 1 ! 1; 1 ! 0 | and two possible transitions for the local clock |

0! 0; 0! 1. These transitions are guaranteed free of function hazards by the synthesis

method (see Section 3.5.1). In fact, each transition is a \burst-mode transition": the

function can change value only at the end point of the transition. Conditions to insure

hazard-free logic for burst-mode transitions were described in Section 2.6. We review

these conditions below.

4Alternatively, a two-phase non-overlapping clock could be used. This approach would simplify the
timing requirements of the machine, but could result in a longer cycle time.



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 54

An AND-OR realization is hazard-free for all burst-mode 0 ! 0 and 0 ! 1 transi-

tions. For each 1! 1 transition, it is su�cient to have at least one product term which

covers (remains 1 during) the transition cube (\required cube"). For the remaining

transition type, 1 ! 0, there must be some product covering each required cube (i.e.,

maximal ON-set subcube) of the input transition. In addition, no product may intersect

the transition cube unless it also intersects its start point.

The clock trivially satis�es these conditions, since it has only 0 ! 0 and 0 ! 1

transitions during input bursts. That is, any sum-of-products realization of the local

clock is permitted. Note that we are only concerned here with the operation of the clock

during phase-1. We address the phase-2 operation of the clock in Section 3.4.4, where

we discuss Requirement 3.

For the outputs to satisfy these conditions, we require products to cover certain

cubes in the output functions and forbid certain other products. Covers which satisfy

these conditions for the given example are shown in Figure 3.13. (Required cubes which

contain more than one minterm are shown as well.)

As indicated earlier, there are cases where these conditions are unsatis�able: given

a Boolean function, it is not always possible to synthesize a hazard-free cover for a

particular set of input transitions. In particular, products covering required cubes in

1 ! 1 or 1 ! 0 transitions may illegally intersect other 1 ! 0 transitions. However,

it can be shown that these conditions are always satis�able for the output functions if

there is no state minimization. That is, it is always possible to synthesize a burst-mode

speci�cation by restricting state minimization. We therefore add safe constraints on state

merging to insure that the conditions can always be satis�ed. (Cases where minimized

tables cannot be covered correctly seem rare for small- and medium-sized speci�cations.)

3.4.4 Clock Reset and Timing Implementation

Requirements 2, 3 and 4 and other minor requirements are considered in Sections 3.5.2

and 3.5.3. Requirements 2 and 4 are simple one-sided timing constraints. They can

always be satis�ed by adding appropriate delay to the clock output and feedback path,

if necessary.

Finally, to insure that the clock is hazard-free when it resets (Requirement 3) we



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 55

0

1

state q

Output X

1

state q

0

Output Y

000 001 011 010 110 111 101 100

inputs a b c

-- -- --

-- -- -- --

(A)* (B)

(D) (C) (E)

*Specification states are indicated
     when they are entered.

0

0 1

1

0

0

0

0

0

(a) Cover for Output X.

inputs a b c

000 001 011 010 110 111 101 100

-- -- --

(D) (C) (E)

-- -- --

(B)

--

  1

(A)

0 0 0

0

1

0 1 1

(b) Cover for Output Y.

Note:  required cubes are indicated by solid lines, and cover is 
          indicated by broken lines.

Figure 3.13: Hazard-free output covers for simple example.



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 56

forcibly reset the clock. To do this, circuitry is added: each feedback line is ANDed with

the inverted clock to generate a new, resettable feedback input to the clock. With appro-

priate timing, this circuitry guarantees that the clock always resets without hazards.

3.4.5 Summary

To summarize the synthesis method, Karnaugh maps are constructed for the clock, state

variables and outputs for a given burst-mode speci�cation. There are no additional

restrictions on state variables, so any implementation of the state variables is permitted.

Any sum-of-products implementation of the clock is permitted, provided reset circuitry

and correct delays are added. Any sum-of-products implementation of the outputs is

correct, if all of the hazard-free covering conditions are met. (Additional minor timing

requirements must be met as well.) These requirements can always be satis�ed and are

su�cient to insure a correct locally-clocked implementation.

3.5 Synthesis Method: Details and Formal Analy-

sis

The synthesis method described in the previous section can now be formalized. Su�cient

conditions are presented to insure a correct implementation, and it is shown that these

conditions can always be satis�ed. This section also includes details on the elimination

of logic hazards, design of the clock reset logic, and sequential timing requirements.

The �rst subsection 3.5.1 formalizes the logic synthesis method described in Sec-

tion 3.4. The goal of logic synthesis is the implementation of combinational logic for

outputs, state variables and local clock which is correct for every transition in phase-1.

The transformation of combinational behavior into correct sequential (phase-2) behavior

is determined by the clock reset, the use of storage elements and the implementation of

timing requirements, and will be discussed in Sections 3.5.2 and 3.5.3.

3.5.1 Logic Synthesis

There are �ve basic steps to state machine synthesis:



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 57

1. Generate a primitive ow table

2. State minimization

3. State assignment

4. Generate Boolean functions

5. Logic minimization

Steps 1{4 involve the functional synthesis of the outputs, state variables and local clock.

Step 5 concerns the hazard-free logic implementation of these functions.

Functional Synthesis

The main result of this section is that, given any speci�ed transition in a burst-mode

speci�cation, the �nal synthesized state, output and clock functions implement the de-

sired behavior, and, moreover, the outputs and clock are free of function hazards.

For the following, recall that set P = f0; 1g and B = f0; 1; �g, as de�ned in Chapter 2,

where \*" represents a don't-care, or unde�ned, value.

A ow table, F , is a sextuple, F = (S; I;O; s0; f; n), where: S is a �nite set of states;

I = fx1; : : : ; xmg is the set of inputs (i.e., binary input variables); O = fz1; : : : ; zng

is the set of outputs (i.e., binary output variables); s0 2 S is the unique start state;

f : S � Pm ! Bn is the output function; and n : S � Pm ! S [ f�g is the next-state

function. The value of an output zj in state s and input value x 2 Pm is denoted by

fj(s; x). Given a state s 2 S and input value x 2 Pm, functions f and n are said to be

unde�ned at (s; x) if fj(s; x) = � for every j 2 [1::n] and if n(s; x) = �.

Each pair (s; x) 2 S � Pm is called a total state. A total state describes the input

and current state of a state machine. Given ow table F and total state (s; x) such

that n(s; x) is de�ned, (s; x) is a stable state if n(s; x) = s and it is an unstable state if

n(s; x) 6= s.

A ow table F 0 = (S0; I; O; s0

0; f
0; n0) is a reduced ow table of F if there exists a

mapping, h : S ! S0, such that s0

0
= h(s0), and for every state s 2 S and input value

x 2 Pm:

1. fj(s; x) = f 0

j
(h(s); x), whenever fj(s; x) is de�ned; and



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 58

2. h(n(s; x)) = n0(h(s); x), whenever n(s; x) is de�ned.

Two distinct states, s; t 2 S, are said to be merged by mapping h if and only if h

maps both to the same state of F 0, that is, h(s) = h(t). Condition 1 insures that the

output behavior of every state s 2 S is preserved after state merger. Condition 2 insures

that the next-state behavior of every state s 2 S after merger is \consistent" with the

behavior before merging. (The above de�nition considers only mappings which produce

partitions of the original states. State splitting is considered in a later section.)

A k-variable state assignment for a ow table F = (S; I;O; s0; f; n) is an isomorphism

g : S $ H, where H � P k is the set of assigned (Boolean) state codes, for some positive

integer k. Flow table F 0 = (H; I;O; s0

0; f
0; n0) is an encoded ow table for ow table

F under state assignment g if F 0 is a reduced ow table for F under g. Functions

f 0 and n0 are (partial) combinational functions of k state variables and m inputs, and

are represented by the output table and transition table, respectively, of F 0 under state

assignment g.

The set of states of an encoded ow table can be augmented to include unassigned

state codes. Flow table F 0 = (A; I;O; s0; f
0; n0) is called the augmented (encoded) ow

table of encoded ow table F = (H; I;O; s0; f; n), if A � P k, and for every state s 2 A

and input value x 2 Pm:

f 0

j
(s; x) =

8<
:

fj(s; x) if s 2 H,

�; otherwise;

and

n0(s; x) =

8<
:

n(s; x) if s 2 H,

�; otherwise.

f 0 is called the output function and n0 is called the (Boolean) next-state or transition

function. (Functions f 0 and n0 are represented as Karnaugh maps.) The injective identity

function Z : H ! A de�nes a mapping from states of F to equivalent states of F 0.

For the next de�nition, recall that the transition cube [x; y] from input state x to

input state y contains all input states that can be reached in a transition from x to y.

Also, recall that the open transition cube [x; y) is equivalent to [x; y]� fyg.



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 59

Given a burst-mode speci�cation G = (V;E; I;O; v0; in; out), a ow table F =

(V; I;O; v0; f; n) is called a primitive ow table for G if the following holds for every

edge (u; v) 2 E:

1. f(u; x) = out(u), for every x 2 [in(u); in(v));

2. f(u; v) = out(v);

3. n(u; x)) = u, for every x 2 [in(u); in(v));

4. n(u; in(v)) = v.

(Functions f and n are otherwise unde�ned.) These conditions simply insure that the

primitive ow table is \�lled in" as described in Section 3.4.1.

Lemma 3.1. There exists a primitive ow table for every burst-mode speci�cation

G = (V;E; I;O; v0; in; out).

Proof. The only reason that G might not have a primitive ow table is if f and n,

as de�ned in Conditions 1{4, were not functions. This could occur only if f or n were

assigned two di�erent values for the same input and state. In such a case, G must have

two distinct edges, (u; v) and (u;w), where in(w) 2 [in(u); in(v)]. However, as shown in

Proposition 3.1 in Section 3.2, the \maximal set property" of burst-mode speci�cations

insures that this will never occur. 2

The functional synthesis method of Section 3.4.1 can now be formalized. Let G =

(V;E; I;O; v0; in; out) be any burst-mode speci�cation, F = (V; I;O; v0; f; n) be the

primitive ow table for G, F 0 = (S0; I; O; s0

0; f
0; n0) be any reduced ow table for F under

mapping h : V ! S0, F 00 = (H; I;O; s00

0; f
00; n00) be any encoded ow table for F 0 under k-

variable state assignment g : S0 $ H, where H � P k, and let F 000 = (A; I;O; s00

0
; f 000; n000)

be the augmented ow table for F 00, where A � P k. F 000 is called a synthesized ow

table for G. Flow tables F , F 0, F 00 and F 000 represent the results of Steps 1, 2, 3 and 4,

respectively, of the synthesis method.

The synthesis method de�nes a mapping k � Z � g � h : V ! A from states of the

burst-mode speci�cation G to encoded states of ow table F 000, where Z is the injective

mapping from the encoded states of H to equivalent states in A. For each state u 2 V



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 60

of the speci�cation G, there corresponds a state s = k(u) 2 A of synthesized ow table

F 000. Similarly, for each speci�ed transition (u; v) 2 E of G, there corresponds an input

transition from in(u) to in(v) in state s of F 000.

For the following lemmas, it is assumed that G = (V;E; I;O; v0; in; out) is any burst-

mode speci�cation, F 000 = (A; I;O; s00

0
; f 000; n000) is any synthesized ow table for G, and

k : V ! A is the resulting mapping from states of G to states of F 000.

Lemma 3.2 indicates that the output behavior described by a burst-mode speci�ca-

tion for a transition (u; v) is preserved under functional synthesis. Lemma 3.3 indicates

that the resulting next-state function is stable in a state corresponding to u until the

transition is complete, and then changes to a state corresponding to v.

Lemma 3.2. For each transition (u; v) in G, the corresponding input transition for

f 000 is free of function hazards. In particular, [(s; x); (s; y)] is a burst-mode transition for

function f 000, where s = k(u); x = in(u); y = in(v), and:

� f 000(s;w) = out(u), for every w 2 [x; y); and

� f 000(s; y) = out(v).

Lemma 3.3. For each transition (u; v) in G, the corresponding input transition for

n000 is free of function hazards. In particular, [(s; x); (s; y)] is a burst-mode transition for

function n000, where s = k(u); t = k(v); x = in(u); y = in(v), and:

� n000(s;w) = s, for every w 2 [x; y); and

� n000(s; y) = t.

Proof. These results follow immediately from the de�nitions of burst-mode speci�ca-

tion, primitive ow table, reduced ow table, encoded ow table, synthesized ow table

and corresponding input transition. 2

A useful corollary of Lemma 3.3 is that every input transition begins in a stable

state. This is an immediate consequence of Lemma 3.3 and the requirement on burst-

mode speci�cations, in Section 3.2, that every input burst must be non-empty:

Corollary 3.1. For each transition (u; v) inG, the corresponding input transition for

n000 begins in a stable state. In particular, n000(s; x) = s, where s = k(u) and x = in(u).



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 61

The next-state function n000, characterized in Lemma 3.3 describes the desired next-

state behavior of the locally-clocked machine. However, this behavior will be imple-

mented by the combined use of a local clock, next-state logic and latches. The �nal

part of Step 4 is therefore to transform the next-state function, n000, into the �nal clock

function, clc, and next-state function, nlc, used in locally-clocked synthesis. For every

state s 2 A and input value x 2 Pm:

clc(s; x) =

8>>><
>>>:

� if n000(s; x) = �,

0 if n000(s; x) = s,

1; otherwise;

and

nlc(s; x) =

8>>><
>>>:

� if n000(s; x) = �,

� if n000(s; x) = s,

n000(s; x); otherwise.

Functions clc and nlc formalize the desired behavior of the clock and next-state logic

described in Section 3.4.1. The clock remains at 0 unless a state change is required.

When a state change is required, the clock goes to 1. Because the rising edge of the

local clock controls the next-state latches, the next-state function is only speci�ed when

the clock goes to 1. Corollaries 3.2 and 3.3 are immediate from Lemmas 3.2 and 3.3 and

the above de�nitions.

Corollary 3.2. For each transition (u; v) in G, the corresponding input transition

for the �nal clock function clc is free of function hazards. In particular, [(s; x); (s; y)] is

a burst-mode transition for clc, where s = k(u); t = k(v); x = in(u); y = in(v); and:

� clc(s;w) = 0, for every w 2 [x; y);

� clc(s; y) = 0, if s = t; and

� clc(s; y) = 1, if s 6= t.

Corollary 3.3. For each transition (u; v) inG, the �nal next-state function nlc(s; y) =

t if s 6= t, where s = k(u); t = k(v); and y = in(v).



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 62

Corollary 3.4 is immediate from Corollaries 3.1 and 3.2, and indicates that the clock

is always 0 at the start of an input transition:

Corollary 3.4. For each transition (u; v) in G, the clock function clc(s; x) = 0,

where s = k(u) and x = in(u).

Hazard-Free Logic Implementation

The synthesis method described above is adequate to insure the desired output, clock and

state functions for every input burst that can occur in phase-1, but does not guarantee

that the output logic can be implemented without logic hazards.

This section has three main results. First, using the synthesis method de�ned above,

it is shown that it is not always possible to avoid logic hazards on outputs in a sum-of-

products implementation. Second, using the same synthesis method but with no state

reduction, it is always possible to avoid output logic hazards. And, �nally, su�cient

conditions on state merging are given to insure that output logic hazards can always be

avoided.

The section concludes by discussing the clock implementation. No constraints on

state merging are required to avoid logic hazards in the clock. In fact, it will be shown

that any sum-of-products implementation of the clock function is free of logic hazards

for each speci�ed input burst.

Example. Figure 3.14 is a burst-mode speci�cation having 6 states, 3 inputs (a; b; c)

and 2 outputs (y; z). Initially, abc = 000 and yz = 01. The unminimized, or primitive,

ow table is shown in Figure 3.15. Using the previous de�nitions, a minimum reduced

ow table can be derived having a partition of states: f(AD); (C); (BEF )g.

Figures 3.16 and 3.17 illustrate the problem. Figure 3.16 shows two states, A and

D, of the primitive ow table of Figure 3.15. The input transitions corresponding to

speci�ed transitions A ! B, A ! C and D ! E are also shown. For simplicity, only

output z is shown.

Output z has a 1!0 transition in state A during input burst a+b+, and it has a 1!1

transition in state D during input burst c+. The start point of each input transition is

indicated with an asterisk in Figure 3.16. Each start point is the entry point of a state

in the primitive ow table. The 1!0 transition in state A has two required cubes: one

covers the a+ input change and the other covers the b+ change. The 1 ! 1 transition



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 63

A

B

C

D

E

F

a+ b+ /
   y+ z-

b- c+ /
  z+

c+ /
  z-

a+ c- /
  z+

c+ /
  y+

a- /
  y- c- /

  --

Initial values:
       abc = 000
        yz = 01

Figure 3.14: Example burst-mode speci�cation.

in state D has one required cube, covering the entire transition. To avoid logic hazards,

each required cube must be contained in a product of the cover. In addition, no product

may intersect the 1!0 transition cube unless it also contains the cube's start point.

Before state minimization, the two transitions can be covered with hazard-free logic.

In fact, from Figure 3.16, the required cubes themselves form a hazard-free cover for states

A and D and can be used in the �nal cover, regardless of the �nal state assignment.

However, suppose states A and D are merged, as shown in Figure 3.17. In this case,

no cover exists which satis�es the hazard-free covering conditions, regardless of the �nal

state assignment. In particular, any product which contains the required cube for the

transition of state D will illegally intersect the 1!0 transition of state A. As a result,

every sum-of-products implementation produced from the given state partition will have

a logic hazard for output z for either the 1!0 transition of state A or the 1!1 transition



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 64

000 001 011 010 110 111 101 100

inputs a b c

--

-- -- --

--

A

B

C

D

E

State

-- --

--

--

-- -- -- ---- --

-- ---- -- -- --

A, 01 C, 00 A, 01 B, 10 A. 01

B, 10 B, 10 B, 10E, 11

C, 00 C, 00C, 00 D, 01-- --

D, 01E, 11

E, 11F, 01

F -- -- -- -- -- --F, 01A, 01

Next State,
 Outputs Y Z

Figure 3.15: Example primitive ow table.

of state D. Therefore, states A and D should not have been merged. 2.

In this example, output functions generated from the unminimized ow table had

hazard-free covers. In fact, the next theorem demonstrates that this is always the

case. This result holds regardless of the �nal state assignment. In particular, the set

of required cubes for such an output function always forms a hazard-free cover. The

theorem therefore is a constructive proof of a hazard-free implementation.

Theorem 3.1. Let G be any burst-mode speci�cation, let z be any output variable

of G, let F be an unminimized ow table synthesized from G using an arbitrary state

assignment, and let fz be the output function for z in table F . Then the set of required

cubes for fz is a hazard-free cover.

Proof. From Section 2.5, the set of required cubes forms a cover of function fz. It

must be shown that the the cover is hazard-free for every given transition. Function fz

is free of function hazards for every transition by Lemma 3.2. The cover is free of logic

hazards for each 0 ! 0 transition by Lemma 2.1. It is free of logic hazards for a 1 !

1 transition, by Lemma 2.2, since the required cubes themselves form the cover. It is



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 65

A

State

-- -- --

...... ......

*

C,0A,1 A,1 A,1B,0

000 001 011 010 110 111 101 100

inputs a b cNext State, Output z
Entry
point      Input/Output
(abc/z=):     Burst:

000/1        a+b+ / z-

*Entry point of state.

D -- -- -- D,1E,1-- -- --

...... ......

*
100,1        c+ / --

Figure 3.16: Fragment of example ow table.

D -- -- E,1A C,0A,1 A,1 B,0 AD,1

000 001 011 010 110 111 101 100

inputs a b cNext State, Output z

Figure 3.17: Illegal state merging in example ow table.



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 66

also free of logic hazards for a 0 ! 1 transition, by Lemma 2.4, since only burst-mode

transitions are used. For a 1 ! 0 transition, the condition of Corollary 2.1 is satis�ed:

each required cube of the transition is contained in some cube of the cover, since the

cover consists of the required cubes.

Finally, it must be shown that Lemma 2.3 is satis�ed, so that there are no illegal

intersections. Suppose some product, r, in the cover intersects a 1!0 transition cube, c,

where c corresponds to some transition s! t in the speci�cation. Since r is a required

cube, it must be contained in a transition cube, c0, which also corresponds to a transition

in the speci�cation. By construction, each transition cube is contained within a single

state of the �nal table, F . In fact, since r � c0 intersects transition cube c, c and

c0 belong to the same state in F . Since states have not been merged, c and c0 must

therefore both correspond to the same speci�cation state, s. That is, c0 corresponds to

some transition s ! u in the speci�cation. As a result, transition cubes c and c0 have

the same start point in function fz. Since transition cube c describes a 1! 0 transition,

c0 must describe either a 1 ! 0 or a 1 ! 1 transition. In either case, required cube r

contains the common start point of c and c0, so the intersection of r and c must be legal.

That is, every transition is free of hazards in the cover. 2

The goal of restrictions on state merging is to insure that the conditions for hazard-

free logic continue to be met even after states are merged. It is possible to add simple,

safe constraints on state merging to guarantee that some hazard-free cover exists for

the �nal output functions after state minimization. In particular, we focus on the cover

consisting only of required cubes after state merger. Cubes which are contained in other

cubes are deleted. The resulting cover is a canonical sum-of-products implementation,

which we call a primitive cover. Safe constraints are added to insure that the primitive

cover resulting after state reduction will be hazard-free.

Given a transition � from speci�cation state p to s, de�ne start(�) = in(p) as the

input value at the entry point of state p, and cube(�) = [in(p); in(s)] as the set of all

input values that can occur during � .

Restrictions on State Merging to Satisfy Covering Conditions

Restriction 1. Let p and q be any two speci�ed states, let z be any output, let �1

be any speci�ed transition of state p and let �2 be any speci�ed transition of state q. If



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 67

output z has a 1!0 transition in �1 and a 1!1 transition in �2, where (a) cube(�1) \

cube(�2) 6= �, and (b) start(�1) 62 cube(�2), then p and q cannot be merged.

Restriction 2. If output z has a 1!0 transition in �1 and a 1!0 transition in �2,

where (a) start(�1) 6= start(�2), (b) cube(�1) 6� cube(�2), and (c) cube(�2) 6� cube(�1),

then p and q cannot be merged. 2

The �rst condition insures that the required cube which covers the 1! 1 transition

of z will not illegally intersect cubes used to cover the 1! 0 transition, regardless of the

�nal state merger. By the second condition, if two 1 ! 0 transition subcubes have the

same start point then, after state merger, their required cubes will not intersect illegally.

Also, if a 1! 0 transition subcube is contained in another 1! 0 transition subcube, the

required cubes which are used to cover the enclosing transition will also cover the enclosed

transition correctly and without hazards after state minimization. In all other cases, we

conservatively avoid merger of states. These conditions are incorporated into the state

minimization algorithms described in Section 3.8.1. More sophisticated constraints can

be developed to permit state merger for additional cases.

We conclude by discussing the hazard-free implementation of the clock logic. Unlike

the outputs, there are only two possible transitions of the clock during an input burst

in phase-1: 0! 0 and 0 ! 1. The following lemma indicates that any sum-of-products

implementation of the clock is free of logic hazards.

Lemma 3.4. Let G be any burst-mode speci�cation, let F be any synthesized ow

table for G with clock function clc, and let C be any sum-of-products implementation of

function clc. For each transition (u; v) in G, the corresponding input transition in F is

free of logic hazards for cover C.

Proof. By Corollary 3.2, each speci�ed transition (u; v) corresponds to a burst-

mode 0 ! 0 or 0 ! 1 transition of function clc, which is free of function hazards. By

Lemmas 2.1 and 2.4 of the previous chapter, any sum-of-products implementation is free

of logic hazards for such a burst-mode transition. Therefore, C is free of logic hazards.

2



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 68

3.5.2 Clock Reset Implementation

The previous section discussed the synthesis of combinational logic for the outputs, next-

state and clock having the desired phase-1 behavior. This section is concerned with an

important component of phase-2 behavior: the clock reset structure.

In Section 3.4.2, Requirement 3 states that, once the clock goes high, it must be

reset without hazards. The synthesis method described above makes no attempt to

eliminate hazards in the clock during state changes. This section proposes a simple

solution to avoid such hazards: the use of clock reset circuitry with appropriate timing

requirements.

To understand the problem, consider the role of the clock. Section 3.5.1 insured

that outputs are hazard-free in phase-1. The clock eliminates the remaining hazards.

In phase-2, outputs are permitted to glitch, since the clock disables the output latches.

Since edge-triggered ipops are used for the state, hazard-free state logic is not required.

Because of the simplicity of this approach, arbitrary state assignment is used: there is

no need for critical-race free codes.

Unfortunately, this approach does not eliminate the problem of hazard-free logic.

Instead, the problem has now been pushed from the output and next-state logic into the

clock design itself! In particular, the clock must be hazard-free at all times. Section 3.5.1

insured that the clock is hazard-free during phase-1. However, after state assignment,

the clock may have function or logic hazards during phase-2 . That is, the clock may

glitch during phase-2, allowing incorrect values to pass through the latches.

This problem has a simple solution. Instead of attempting to eliminate function and

logic hazards for the clock during each possible state change, the clock can be regarded

as a form of ring oscillator: once the clock goes high, its output is inverted and fed

back as an input which forcibly resets it. To do this, additional circuitry is added: each

feedback line is ANDed with the inverted clock to generate a new, resettable feedback

input to the clock. The resulting reset structure is shown in Figure 3.18. Using this

structure, it is shown below that the clock can be reset without hazards.

The timing diagram of Figure 3.19 illustrates the resulting hazard-free behavior of the

clock using reset logic. Figure 3.20 illustrates the clock operation in detail. To simplify

the �gure, the inputs and part of the clock logic are omitted. The �gure illustrates a



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 69

Local
Clock

(Comb. Logic)

CK

i1
i2

s1

s1’

s2

s2’

s1-new

s1’-new

s2-new

s2’-new

Output
Delay

Reset Logic

Figure 3.18: Block diagram of clock with attached reset-logic and output delay.

state change from state s1s2 = 10 to s1s2 = 11.

Phase-1 Phase-2 Phase-1

CK

i1

in

s

CK
f

b

a

c

Figure 3.19: Timing diagram for clock operation using clock reset logic.

Initially, in phase-1, the clock output CK is low and the inverted clock CKf is

high, as shown in Figure 3.20(a). For each state variable, si, the reset logic generates

two values: sinew and si0new . These dual-rail state literals are the uncomplemented and

complemented signals, respectively, for state variable si. These signals are used as inputs

to the clock logic, replacing the original state variable.

In phase-1, at some point, an input burst arrives and the clock is driven high (if the



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 70

CK

X

Y

s2’new

s1’new

s1new

s2new

CK
f

Local Clock

s1 = 1

s2 = 0

Reset Logic

CK

X

Y

s2’new

s1’new

s1new

s2new

CK
f

Local Clock

s1 = 1

s2 = 0

Reset Logic

Reset Logic

CK

X

Y

s2’new

s1’new

s1new

s2new

CK
f

s1 = 1

s2 = 1

Local Clock

(a) Phase-1 (initial)

(b) Phase-2

(c) Phase-1 (Final)

Figure 3.20: Hazard-free clock operation using clock reset logic.



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 71

input burst results in a state change). The synthesis method of the previous section

insures that the clock is free of function and logic hazards during such a phase-1 transi-

tion. Since the clock goes high, at least one product, X, will go high. Other products,

such as Y , may remain low. This transition corresponds to transition (a) in Figure 3.19.

Figure 3.20(b) shows the clock in phase-2. This transition corresponds to transition

(b) in the timing diagram of Figure 3.19. After the clock, CK, is driven high, two events

occur in parallel. First, the inverted clock, CKf , is driven low. At the same time, the

clock enables the phase-2 latches, allowing an internal state change from s1s2 = 10 to

s1s2 = 11. To insure correct resetting of the clock, there is a timing constraint: CKf

must go low before the fed-back state variables change value. Under this constraint,

since each AND-gate of the reset logic receives a 0 input (CKf) before the fed-back

state variables change, each state literal is driven low without hazards. Changes in the

feedback variables may arrive later; they will be masked out by the disabled reset logic,

so the state literals will not glitch.

It can easily be seen that, by resetting the state literals, each clock product is driven

or held low without hazards. Consider any product of the clock, such as X or Y . Product

X is high in the current state s1s2 = 10. At the completion of the state change, the

synthesis method insures that the clock function is 0. Therefore, product X must be low

in the destination state s1s2 = 11. Therefore, at least one input to product X must be

a state literal (e.g., s20
new

), otherwise X could not have been reset by the state change.

Alternatively, consider product Y , which is low in the current state. For some other

transition, Y must be driven high.5 Therefore, by similar reasoning, Y must contain

some state literal as well. In summary, every clock product contains at least one state

literal. Since each state literal is driven low, every product is driven or held low in

phase-2. Since no other inputs go high during phase-2, the clock resets without hazards.

Figure 3.20(c) shows the clock after it returns to phase-1. This transition corresponds

to transition (c) in Figure 3.19. Again, two events occur in parallel. First, after the clock

is driven low, the inverted clock, CKf , is driven high. At the same time, the internal state

5If Y is never driven high during an input burst, Y covers only don't-cares of the clock function,
and can be removed from the cover. However, even if Y is included, the clock will still reset correctly.
In this case, Y can only be driven high during a state change. At the start and end points of the state
change, it will be low; it will go high at a transient point. Therefore, Y is set and reset by a state
change, so it must contain a state literal.



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 72

may still be changing. To insure correct operation, there is a second timing constraint:

the state change must be completed before CKf goes high. Each state literal is then

driven to its new value before the reset is enabled again.

It can easily be seen that the clock remains low without hazards. The synthesis

method insures that the clock function is low at the completion of the state change.

Therefore, each clock product must have some literal which is low in this state. If this

literal is a primary input, the product is held low regardless of changes to the state

literals, since a primary input may not change during phase-2; it must therefore have

been low at the end of phase-1. If the low input is a state literal, it will remain low even

after CKf goes high, since the reset logic AND-gate will not go high. Therefore, every

clock product remains low, and so the clock remains low without hazards. In conclusion,

the clock is hazard-free throughout the entire machine cycle.

To insure that the clock reset operates correctly, three timing requirements are neces-

sary. Additional timing requirements to insure correct machine operation are discussed

in the next section. For the following de�nitions, refer to Figure 3.21. Let

� dckcl be the delay of the combinational logic for the clock;

� dckout be any additional delay at the clock output;

� dck2 be the delay of the feedback path of the clock, including reset logic;

� den2 be the delay from the clock output to the phase-2 latches;

� dpcq2 be the propagation delay from clock edge to latch output of the phase-2

latches; and

� df be the delay along the feedback path.

Also, let dck1 � dckcl + dckout be the total input-to-output delay of the clock, including

any added delay on the clock output; and let dF � den2 + dpcq2 + df be the total delay

from a transition of the clock to a change in a fed-back state variable.

First, the clock logic must be stable before it is reset by the inverted clock in phase-2.

This requirement is necessary to avoid glitches when the clock is reset:

CK1. dck1 + dck2 � dckcl.



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 73

The above notation means that, for all possible values of dck1, dck2 and dckcl in a given

implementation, the inequality must always hold.

Next, the inverted clock, CKf , must be driven low in phase-2 before any state changes

reach the clock reset:

CK2. dF � dck2.

Finally, the state change must be completed before CKf is driven high and the

machine returns to phase-1:

CK3. dck1 + dck2 � dF .

To conclude, the above clock reset structure, along with these three timing require-

ments, is su�cient to guarantee the hazard-free operation of the clock.

3.5.3 Timing Analysis and Correctness

Sections 3.5.1 and 3.5.2 were concerned with the synthesis of two critical components of

a locally-clocked machine: (i) combinational logic for the outputs, clock and next-state,

and (ii) the clock reset structure. In this section, we combine these components, analyze

the machine's operation and derive su�cient timing requirements to insure correct se-

quential behavior. These timing requirements are in the form of linear inequalities. The

set of inequalities describes one-sided timing constraints which can always be satis�ed by

adding appropriate delays to the machine. Under a typical fundamental-mode operating

assumption, added delays are not on the critical path and therefore do not a�ect the

latency of the machine.

For the following analysis, refer to Figure 3.21, which illustrates the principal signals

and paths considered in the analysis of a locally-clocked machine. Let

� doscl be the delay of the combinational output and state logic;

� dscl be the delay of the combinational state logic;

� dckcl be the delay of the combinational logic for the clock;

� dckout be any additional delay at the clock output;



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 74

� dck2 be the delay of the feedback path of the clock, including reset logic;

� den1 be the delay from the clock output to the phase-1 latches;

� den2 be the delay from the clock output to the phase-2 latches;

� df be the delay along the feedback path;

� dh1, ds1, and dw1 be the hold time, set-up time and clock width, respectively, for

the phase-1 latches;

� dh2, ds2, and dw2 be the hold time, set-up time and clock width, respectively, for

the phase-2 latches;

� dpcq1 and dpcq2 be the propagation delay from clock edge to latch output of the

phase-1 and phase-2 latches, respectively; and

� dpiq1 and dpiq2 be the propagation delay from input to output of enabled phase-1

and phase-2 latches, respectively.

In addition, two composite paths are de�ned, to simplify the �nal delay requirements:

� dck1 � dckcl + dckout; and

� dF � den2 + dpcq2 + df .

dck1 is the total input-to-output delay of the clock, including any added delay on the

clock output. dF is the total delay from a clock transition to a change in fed-back state

variables.

We now analyze the machine's operation during a single machine cycle. In the

remainder of this section, it is assumed that we are given a burst-mode speci�cation,

G. The output, clock and next-state logic are synthesized as described in Section 3.5.1.

The clock reset logic is designed as described in Section 3.5.2. We consider a single

speci�ed transition (u; v) of G. It is assumed that the machine is initially stable, the

input state is in(u), and the machine is in the state corresponding to speci�cation state

u. By Corollary 3.4 of Section 3.5.1, the clock is initially at 0.

By Lemma 3.3, there are two cases to consider: the speci�ed input burst (i) does

not cause a state change (\stable transition"), or (ii) causes a state change (\unstable

transition").



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 75

Phase−1
Latches

Phase−2
Latches

s1

s2

o1

o2
C/Li1

i2

S1

S2

Sx1

Sx2

O1

O2

R
es

et
 L

og
ic

CK
i1
i2 Local

Clock

(C/L)

s1new

s1’new

s2new

s2’new

Ph1

Ph2

ckcl ckout

ck2

ck1

en1 en2

oscl

f

Figure 3.21: Timing parameters for locally-clocked machine.



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 76

Transition without a State Change.

Figure 3.22 gives a timing diagram for the phase-1 behavior of the machine where no

state change occurs. This scenario occurs when states u and v have been merged into

the same �nal machine state. Inputs i1 and in are the �rst and last inputs, respectively,

to change value in the input burst. Output O is any output signal before it enters its

phase-1 latch, and o is the corresponding phase-1 latch output. State variable S is any

next-state signal before it enters its phase-1 latch, Sx is the corresponding phase-1 latch

output and s is the corresponding phase-2 latch output.

Phase−1

Ph1

Ph2

i1

in

O

o

S

Sx

s

CK

dpiq1

dpiq1

Figure 3.22: Timing diagram for locally-clocked machine: no state change (phase-1).

The functional and logical correctness of the outputs, state variables and clock during

phase-1 are guaranteed in Section 3.5.1. In particular, the output and clock are hazard-

free, and the clock remains at 0. The �nal next-state function is unspeci�ed, so the

next-state logic may change value arbitrarily without a�ecting the internal state. The



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 77

machine remains in phase-1, and no timing requirements are necessary. The machine

state corresponds to speci�cation state v; no state change is required. (It is assumed

throughout that hazard-free phase-1 D-latches are used: when they are transparent,

glitch-free inputs are passed through as glitch-free outputs.)

Transition with a State Change.

Figure 3.23 gives the timing diagram for a machine cycle where the machine changes

state. In this case, a clock transition occurs.

Phase-1 behavior is similar to the previous case. However, in this case, the ma-

chine goes to a new state corresponding to speci�cation state v. Timing requirements

are needed to insure correct sequential behavior. In particular, output and next-state

changes must pass through the phase-1 latches before the latches are disabled. Sim-

ilarly, the next-state must be set-up before the phase-2 latches are enabled. These

requirements were stated informally as Requirement 1. The formal requirements are

described by Equations 3.1 and 3.2. Figure 3.24 illustrates the requirements, and they

are also indicated by numbers 1 and 2 in Figure 3.23.

dck1 + den1 � doscl + ds1; (3:1)

dck1 + den2 � dscl + dpiq1 + ds2: (3:2)

Once the clock goes high, the machine enters phase-2. The next-state is fed back as

input to the machine. Since overlapping clock phases are allowed, the phase-2 latches

may be enabled before the phase-1 latches are disabled. Equation 3.3 insures that the

phase-1 latches are disabled before the fed-back state variables can pass through them.

This requirement was stated informally as Requirement 4. Figure 3.25 illustrates the

requirement, and it is also indicated by numbers 3 in Figure 3.23.

dF + doscl � den1 + dh1: (3:3)

In phase-2, the clock will eventually be reset. This must not occur until the output



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 78

Ph1

Ph2

i1

in

O

o

S

Sx

s

Phase−1 Phase−2 Phase−1

CK

dpcq1

dpiq1

dpiq1

dpcq2

den2

den1 den1

den2

ds1

ds1

dh1

dh1
ds1

ds1

ds2

dh2

1

1

1

2

2

3

3

3

4

4

4

5

5

Figure 3.23: Timing diagram for locally-clocked machine: state change.



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 79

Ph1

Phase−1
Latches

Phase−2
Latches

s1

s2

o1

o2
C/Li1

i2

S1

S2

Sx1

Sx2

O1

O2

R
es

et
 L

og
ic

CK
i1
i2 Local

Clock

(C/L)

s1new

s1’new

s2new

s2’new

Ph2

Figure 3.24: Sequential timing requirements (A).



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 80

Phase−1
Latches

Phase−2
Latches

s1

s2

o1

o2
C/Li1

i2

S1

S2

Sx1

Sx2

O1

O2

R
es

et
 L

og
ic

CK
i1
i2 Local

Clock

(C/L)

s1new

s1’new

s2new

s2’new

Ph1

Ph2

Figure 3.25: Sequential timing requirements (B).



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 81

and next-state logic have stabilized and phase-1 set-up times are satis�ed. This re-

quirement is formalized by Equation 3.4. This was stated informally as Requirement 2.

Figure 3.26 illustrates the requirement, and it is also indicated by numbers 4 in Fig-

ure 3.23.

dck1 + dck2 � dF + doscl + ds1: (3:4)

Phase−1
Latches

Phase−2
Latches

s1

s2

o1

o2
C/Li1

i2

S1

S2

Sx1

Sx2

O1

O2

R
es

et
 L

og
ic

CK
i1
i2 Local

Clock

(C/L)

s1new

s1’new

s2new

s2’new

Ph1

Ph2

Figure 3.26: Sequential timing requirements (C).

Figure 3.27 illustrates an additional timing requirement: in the return to phase-

1, there must be no race through the ipops, even if path den2 is very fast. This

requirement is described by Equation 3.5. It is also indicated by number 5 in Figure 3.23.

This requirement is only necessary because the next-state, S and Sx, is a don't care after



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 82

the feedback cycle, and so we must prevent an incorrect next-state from passing through

the latches. If we modi�ed the next-state function to have a speci�ed correct value at

this point, the requirement would be unnecessary. However, the next-state logic might

be more complicated.

den1 + dpcq1 � den2 + dh2: (3:5)

Phase−1
Latches

Phase−2
Latches

s1

s2

o1

o2
C/Li1

i2

S1

S2

Sx1

Sx2

O1

O2

R
es

et
 L

og
ic

CK
i1
i2 Local

Clock

(C/L)

s1new

s1’new

s2new

s2’new

Ph1

Ph2

Figure 3.27: Sequential timing requirements (D).

In addition, the clock pulse width of the clock pulse must be su�ciently long for the

given latches; that is:

dck1 + dck2 � dw1; dck1 + dck2 � dw2: (3:6)

Finally, we include the timing requirements on the clock described in Section 3.5.2.



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 83

The �rst requirement,CK1., insured that the clock was stable before it was reset:

dck1 + dck2 � dckcl: (3:7)

The next requirement, CK2., insured a correct resetting of the clock: dF � dck2.

The parameter dF has the same meaning as de�ned in this section: dF � den2+dpcq2+df :

dF � dck2: (3:8)

The �nal requirement, CK3., insures that the clock returns to phase-1 correctly:

dck1 + dck2 � dF . However, this requirement does not need to be added, since it is

subsumed by Equation 3.4.

These requirements are one-sided timing constraints on dckout, df , and den1. They

can always be satis�ed by adding appropriate delays to the clock output, feedback path

and phase-1 latch enable lines, if necessary.

In particular, den1 can be increased �rst to satisfy Equation 3.5. Next, df can be

increased to satisfy Equations 3.3 and 3.8. Finally, dck1 can be increased to satisfy the

remaining requirements. There are no circular dependencies, and the result is a solution

to a set of one-sided timing constraints.

Many of these requirements will be satis�ed in practice without added delays. How-

ever, in general, the need for delays depends on the complexity of the implementation,

as well as details of layout and technology mapping. As a rule, though, we anticipate

that Equations 3.3, 3.6, 3.7 and 3.8 will easily be satis�ed.

3.6 Generalizations

We have assumed that no new inputs can arrive until all output changes are generated

and all logic has stabilized after the state change. This is a \generalized fundamental

mode" assumption for a burst-mode implementation.

This assumption can be relaxed to allow new inputs to arrive earlier. In general, if

there is no state change, new input changes may not occur until the combinational logic

is stable. We now consider restrictions on when new inputs may arrive when there is a

state change.



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 84

1. New inputs can arrive as soon as all output changes are generated and the clock has

gone high. This assumption allows inputs to arrive during phase-2. To insure correct

operation during a state change, we add a phase-1 latch to each primary input (see

Figure 3.28).6 When the clock goes high, these latches are disabled and the feedback

cycle begins. At this point, new inputs may safely arrive. When the clock is reset, the

input latches are re-enabled, and the machine can process the new inputs.

i2-new

s1

s2

o1

o2

Clock
Local

C/L

i1
i2

Phase-1 
Latches

Phase-2
Latches

CK

Phase-1
Latches

i1-new

Figure 3.28: Phase-1 input latches in an asynchronous state machine.

2. New inputs can arrive as soon as all output changes are generated. This assump-

tion allows even faster response by the environment. To insure safe operation, outputs

themselves must be changed late: after a state change is completed. For example, if

an input burst from abc = 001 ! 010 results in output burst yz = 01 ! 11 and a

state change from P to Q, the output change is enabled only in input state abc = 010

in destination state Q.7 Such changes are called late output changes, or late outputs.

Output changes which are not late are called early output changes, or early outputs.

6This scheme is feasible only if the latches will not glitch if the inputs are changing just before the
latches are enabled.

7This approach can be used to simplify output logic as well [25].



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 85

3.7 Optimizations

Three optimization techniques are discussed briey.

1. Selective clock reset. The clock can be reset correctly using an alternative \selec-

tive" approach, which does not require reset logic. First, clock products are analyzed

and partitioned into two classes: those which are hazardous during some state transi-

tion, and those which are always hazard-free. Second, to eliminate hazards during clock

reset, each hazardous product is augmented to receive a reset input: the inverted fed-

back clock (in a di�erent context, cf. [103]). This input is similar to the state literals

produced by reset logic: it is used to mask potential glitching during the state change.

The remaining clock products are unmodi�ed; they are hazard-free during every state

transition (appropriate timing assumptions are required). For the synthesis of the spec-

i�cations in Figures 3.1 and 3.2, after analysis, it is determined that every clock product

is hazard-free. Therefore, no fedback clock lines are required.

2. State variable removal. In certain cases, output variables can be substituted for

state variables. An output can replace a state variable if its output-table (or its com-

plement) \covers" the state's transition-table. That is, the output (or its complement)

has the same value as the state variable wherever the state variable is speci�ed. In this

case, the state variable's logic is removed; a phase-2 latch is added to the output, which

now serves as both an output and a state variable.

3. Output latch removal. An output latch is used to prevent hazards during state

changes; if there are no such hazards the latch can be removed. In particular, each

transition \cube" in the output table which corresponds to a state change must satisfy

the same conditions as were satis�ed by all input bursts: (a) the transition must be free

of function hazards; (b) hazard-free logic must be used, that is, the cover for the given

transition must not violate any covering requirement described in chapter 2; and (c) the

output change must be an early change (if it is late, latch removal may cause the output

change to occur earlier than is safe).



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 86

3.8 Synthesis Algorithms

Section 3.5.1 formalized the steps of logic synthesis, but did not describe synthesis algo-

rithms. This section describes algorithms for two steps of synthesis: state minimization

and state assignment. The �nal step | logic minimization | is discussed in the next

chapter. Section 3.5.1 indicated that a primitive cover can always be used as an unop-

timized hazard-free logic implementation. The algorithm in the next chapter is used to

produce a minimized hazard-free logic implementation.

3.8.1 State Minimization

In this section, we present a simple state minimization algorithm which partitions the

states of an initial ow table. Section 3.10 considers the more general case where state

splitting is allowed. Before discussing the algorithm, it will be useful to review some

background (see Unger [91] for further details).

State minimization algorithms usually begin with the notion of a compatibility rela-

tion. Informally, a pair of states is compatible if the two states can be merged in a �nal

ow table. Each compatible pair has an associated set of implied, or dependent, pairs:

if the compatible pair is merged, other state pairs must be merged as well.

Compatible pairs are grouped into larger sets called compatibility classes, or com-

patibles. A compatible describes a set of states which can be merged. If no state can

be added to a compatible without introducing an incompatible pair, the set is called a

maximal compatible. Each compatible has an associated set of implied compatibles, or

dependencies: if the states of the compatible are merged, then the states of these other

compatibles must be merged as well.

A cover is a set of compatibles where every state is contained in some compatible of

the set. A cover is a partition if each state appears in only one of its compatibles. A

cover is consistent, or closed, if each dependency of each of its compatibles is contained

in a compatible of the cover. A minimal cover is a cover containing a minimum number

of compatibles. The goal of state minimization is to �nd a minimal closed cover for a

given ow table.

Grasselli and Luccio developed a general algorithm to produce a minimal closed

cover, which makes use of prime compatibles [40]. Grasselli also developed an algorithm



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 87

to produce minimal closed partitions, using admissible compatibles [39]. Our algorithm

follows a simpler procedure described by Unger [91]; it makes use of maximal compati-

bles. The algorithm can easily be improved by incorporating techniques from the above

algorithms.

The goal of state minimization is usually to minimize the number of states in the

reduced ow table.8 Our algorithm has two additional goals. First, we must insure

that a hazard-free cover exists for each output. Section 3.5.1 demonstrated that, after

arbitrary state reduction, there may exist no hazard-free cover for the outputs. However,

a hazard-free cover is guaranteed to exist if constraints are placed on state merging. We

include such constraints in our algorithm by adding restrictions to the de�nition of

compatibility.

Our second goal is to minimize the �nal number of state changes that can occur. This

goal is an important optimization because an implementation with fewer state changes

has fewer clock pulses; so the local clock logic is often smaller and faster.

As an example, consider a burst-mode speci�cation having a transition from a state s

to t. Recall that, in a locally-clocked implementation, the clock remains low except when

a state change is required. If states s and t are not merged in the �nal implementation,

a state change occurs and the local clock goes high. However, if s and t are merged,

the state is unchanged and the clock remains low. That is, each merger of a pair of

adjacent states of the speci�cation eliminates a state change | and a clock transition |

from the �nal implementation. In practice, the clock logic is often simpler when there

are fewer clock transitions. Our second goal is therefore to merge adjacent speci�cation

states whenever possible.

In the algorithm below, Steps 1 through 3 are designed to minimize the number of

states. Step 1 also includes constraints on state merging to guarantee a hazard-free logic

implementation. Step 4 �nds a partition of the states which has a minimal number of

state changes. Step 5 checks that the �nal partition is closed. Of these, Step 1 uses

standard techniques but has a new de�nition of compatibility; Steps 2, 3 and 5 are

standard; and Step 4 uses a new approach to generating a partition of states. Standard

techniques are described in depth in Unger [91].

8As a rule, a smaller ow table tends to map to a simpler implementation. For a discussion of
exceptions to this rule, see Unger [91] and McCluskey [60].



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 88

Step 1. Determine compatible states. A compatibility relation is de�ned in

two steps. In the �rst step, an initial compatibility relation is de�ned, called output

compatibility. Two states are output incompatible if they have di�erent output values

for some input value; otherwise they are output compatible. More formally, using the

notation of Section 3.5.1, states s and t are output incompatible if fj(s; x) 6= fj(t; x) for

some output function fj and input value x, where fj(s; x) and fj(t; x) are both de�ned.

Output compatibility determines when the output functions of two states are con-

sistent. A �nal relation, called compatibility, determines when the next-state functions

are consistent as well. A recursive de�nition is used: two states are incompatible if they

are output incompatible or if their corresponding next-states are incompatible; other-

wise they are compatible. A compatibility relation is derived from an initial output

compatibility relation using a simple �xpoint computation [91].

In our synthesis method, however, the initial compatibility relation must be modi�ed:

states must be checked both for dynamic-hazard-free (dhf-) compatibility and output

compatibility. Two states are called dhf-incompatible if their merger might result in an

unavoidable hazard in a sum-of-products logic implementation; otherwise they are dhf-

compatible. The restrictions on state merging presented in Section 3.5.1 de�ne when two

states are dhf-incompatible. Because incompatible states are never merged, this relation

insures that the constraints on state merger in Section 3.5.1 will always be satis�ed.

Step 2. Generate all maximal compatibility classes. Next, maximal compat-

ibility classes are built up from compatible pairs, expanding them by adding new states

whenever possible. A simple iterative algorithm to generate all maximal compatibles is

described by Unger [91].

Step 3. Generate minimum (irredundant) covers of maximal compatibles.

To �nd a minimum cover of maximal compatibles, a symbolic algorithm is used, called

Petrick's method [60]. The compatibles which contain a state are represented as a sum;

the symbolic product of all such sums describes all possible covers. A minimum-size

solution can then be selected.

Example. Suppose F is a ow table having three states, (q, r, s), and four maximal

compatibles, (W , X, Y , Z). Also suppose that state q is contained in W and X; state r

is contained in W and Y ; and state s is contained Z. The covering requirement is that

each state must be covered by some compatible. This requirement can be represented



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 89

symbolically using a Boolean sum. (W+X) describes compatibles which cover q; (W+Y )

describes compatibles which cover r; and (Z) describes the compatible which covers s.

The combined covering requirement for all three states is described by a Boolean product

of these sums: (W+X) (W+Y ) (Z). This product can be multiplied out and simpli�ed,

to yield an equivalent Boolean sum: WZ +XY Z. This sum of products describes all

minimal covers satisfying the given requirements. Cover WZ contains two maximal

compatibles, while XY Z contains three. Therefore, WZ is a minimum cover of the

original states. 2

Step 4. Generate a �nal partition of the original states. Given a minimum

cover of compatibles, we generate a state partition by removing states from compatibility

classes until each state belongs to a unique class. A state is assigned if it belongs to

precisely one class, otherwise it is unassigned.

The simple heuristic in Table 3.1 tries to leave adjacent states together in the same

compatible, as states are removed. The algorithm �rst removes states which are not

adjacent to other states in their class. When necessary, it breaks up adjacent pairs by

arbitrarily assigning a state, and reiterates, until a �nal state partition is achieved.

Step 5. Check dependency constraints. In general, a pair of merged states

may require that other pairs of states be merged. Our approach is to record dependency

information, generate a minimal solution, and test that the solution is consistent with

the dependency constraints. This approach su�ces to �nd correct state minimizations

for all the examples of this thesis. (Cases where solutions violate dependency constraints

are rare.)

Example

As discussed in Section 3.5.1, Figure 3.14 is a burst-mode speci�cation having 6 states, 3

inputs (a; b; c) and 2 outputs (y; z). Initially, abc = 000 and yz = 01. The unminimized,

or primitive, ow table was shown in Figure 3.15. We use this example to illustrate the

state minimization algorithms.

In Step 1, �rst ignoring the constraints of \dhf-compatibility" and using a standard

compatibility relation instead, the resulting compatible pairs of states are: f (A D),

(B E), (B F), (D E), (D F), (E F) g. In Step 2, four maximal compatibles are generated:



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 90

Algorithm Remove-Isolated-States (S,C):
/* S = set of states; */
/* C = fX1, : : :, Xng is any closed cover of maximal compatibles; */
UNASSIGNED = S;
ASSIGNED = fg;

while UNASSIGNED 6= fg

repeat

for each state s 2 UNASSIGNED
if s is in exactly one compatible Xi 2 C

ASSIGNED = ASSIGNED [ fsg;
UNASSIGNED = UNASSIGNED � fsg;

else if s belongs to some compatible Xi

where s is not adjacent to any other state in Xi

Xi = Xi � fsg /* remove s from Xi */
until no change;
if UNASSIGNED 6= fg

let t 2 UNASSIGNED be any unassigned state,
and let Xi be any compatible containing t;

ASSIGNED = ASSIGNED [ ftg;
UNASSIGNED = UNASSIGNED � ftg;
for each compatible Xj 2 C, where i 6= j

Xj = Xj � ftg /* remove t from all other compatibles */

return(C) /* return partition C */

Table 3.1: Algorithm Remove-Isolated-States.



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 91

f (A D), (C), (B E F), (D E F) g. In Step 3, a minimal irredundant cover is generated

using Petrick's method: f (A D), (C), (B E F) g. No other cover has cardinality 3. In

Step 4, no further modi�cations are necessary to this cover, since it is already a partition.

In Step 5, all dependencies are satis�ed; therefore the result is a minimum cover.

However, as indicated earlier, states A andD violate the conditions for dhf-compatibility;

they should not have been merged. After incorporating dhf-compatibility into Step 1

above, states A and D are no longer compatible. The �nal list of compatible pairs of

states is: f (B E), (B F), (D E), (D F), (E F) g. The maximal compatibles of Step 2

are then: f (A), (C), (B E F), (D E F) g. By Step 3, a minimal cover now has four

compatibles: f (A), (C), (B E F), (D E F) g. This cover is not a partition: states E and

F each appear in two compatibles. Step 4 attempts to �nd a state which is not adjacent

in the burst-mode speci�cation (Figure 3.14) to other states in that compatible. How-

ever, E and F are adjacent to each other, as well as to B and D. Therefore, the algorithm

arbitrarily assigns one of the states to one of the classes. If E is assigned to (B E F),

the compatibles are then: f (A), (C), (B E F), (D F) g. At this point, only F appears

in two compatibles. In compatible (B E F), F is adjacent to E; in compatible (D F), F

is not adjacent to D. Therefore, F is assigned to compatible (B E F), and the resulting

partition is: f (A), (C), (B E F), (D) g. In Step 5, all dependencies are satis�ed. After

state assignment and generation of Karnaugh maps, each output and clock function is

guaranteed to have a hazard-free sum-of-products realization. 2

3.8.2 State Assignment

Our design style allows the use of unconstrained (i.e. arbitrary) state assignment, as

in a synchronous design. There is no need to use a critical race-free state assignment.

Therefore, state encoding can be performed using standard synchronous tools, such as

nova [99].

However, there is a slight mismatch between nova and our design style. nova at-

tempts to �nd an optimal state encoding, that is, one which leads to a minimal logic

implementation in sum-of-products form. The algorithm uses a symbolic cover to de-

scribe a logic implementation in terms of symbolic states. Our goal, though, is to �nd a

state encoding which leads to a minimal hazard-free logic implementation. As a result,



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 92

the state codes produced by nova may not optimal for our purposes. In the future, it

would be useful to modify nova to consider only hazard-free symbolic covers when it

searches for an optimal state encoding.

3.9 Detailed Example

The synthesis method is now demonstrated on a larger example: a controller that has

been implemented using a di�erent design style for the Post O�ce communication chip

developed at HP Laboratories [86, 28]. The machine has 5 inputs (req-send, treq, rd-iq,

adbld-out, ack-pkt) and 3 outputs (tack, peack, adbld) (see Figure 3.2).

The state diagram is translated into a primitive ow table having 11 states and

14 state transitions. After minimization the �nal ow table has 4 states and 9 state

transitions; remaining transitions occur without a state change. Therefore, 5/14 or

35.7% of the original transitions do not require a clock pulse in the �nal implementation.

The �nal state partition is shown in Figure 3.29(a).

State codes are assigned to the states, as shown in Figure 3.29(a)). Karnaugh maps

are then constructed for the clock, outputs and state variables.

The Karnaugh map for the clock is shown in Figure 3.29(b). (Blank entries in the

map represent don't-care entries.) The clock function may be implemented using an

arbitrary sum-of-products implementation.

Karnaugh maps for the three outputs are shown in Figures 3.30, 3.31 and 3.32.

Required cubes for 1!1 and 1!0 transitions are indicated, as well as �nal hazard-free

covers. (Required cubes are only shown if they contain more than one minterm.)

The next-state function for state variables y1 and y0 is shown in Figure 3.33. Any

arbitrary implementation of the next-state functions is permitted.

The �nal implementation is described in sum-of-products form. To satisfy the timing

requirements, it may be necessary to add appropriate delay to the clock output and

feedback path. To insure that the clock resets correctly, reset logic may be attached

(see Figure 3.18). Alternatively, an optimized solution may be used, as discussed in

Section 3.7: The inverted clock is fed back directly to each hazardous clock product.

For the given example, no clock feedback lines are necessary, since each clock product is

hazard-free for every speci�ed state transition.



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 93

00

01

11

10

State y1 y0

00

01

11

10

State y1 y0

Inputs:   ack-pkt   req-send   treq   rd-iq
adbld-out = 0

adbld-out = 1

(0)
0 0 0 0 0 1 0 0

(1)
1 0 0 0 0

0 0 1 0

0 1

(10) (4) (9)
10

0

(8)

0 0

0
(7)

0

00

00 0 0 0
(6)

1 0 0 1
(2) (5)

0
(3)

0 0 0

1

0000 0001 0011 0010 0110 0111 0101 0100 1100 1101 1111 1110 1010 1011 1001 1000

(0  6)
(1  2  4  5  8  9  10)
(3)
(7)

Merged States: State Encoding
     y1  y0:

0   0
0   1
1   1
1   0

(a)  State Assignment

Sum-of-products implementation:
CK =  y1’ y0 adbld-out rd-iq’   +   y1’ adbld-out’ ack-pkt treq   +   y1 y0 adbld-out’ ackpkt treq’   

+   y0’ adbld-out’ req-send treq rd-iq   +   y0 req-send’   +   y1 adbld-out’ treq’ rd-iq
+   y1 y0’ ack-pkt’ treq’

(b) Clock Karnaugh Map for HP Controller.

*

*Specification states are indicated
    when they are entered.

Figure 3.29: State assignment and clock Karnaugh map for HP controller.



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 94

00

01

11

10

State y1 y0

00

01

11

10

State y1 y0

Inputs:   ack-pkt   req-send   treq   rd-iq
adbld-out = 0

adbld-out = 1

(0)
0 0 0 0 0 0 0

(1)
0 0

(10) (4) (9)
10 (8)

(7)

000 0 0 0
(6)

(2) (5)

(3)

0000 0001 0011 0010 0110 0111 0101 0100 1100 1101 1111 1110 1010 1011 1001 1000

*

*Specification states are indicated
    when they are entered.

0

0

1 0

1 0

1

1

1 1

Note:  only "required cubes" are shown above.

Final sum-of-products implementation:

0 0

0 0 0 0

0 1

0 0 0 0

0

0 0

PEACK =  y1 y0’ ack-pkt   +   y1 y0’ treq   +   y1’ y0 rd-iq adbld-out   +   y1’ adbld-out’ ack-pkt treq
+   y0 adbld-out’ ack-pkt treq’

Figure 3.30: Karnaugh map for output peack.



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 95

00

01

11

10

State y1 y0

00

01

11

10

State y1 y0

Inputs:   ack-pkt   req-send   treq   rd-iq
adbld-out = 0

adbld-out = 1

(0)
0 0 0 0 0 0 0

(1)
0 0

(10) (4) (9)
10 (8)

(7)

000 0 0 0
(6)

1 0
(2) (5)

(3)

0000 0001 0011 0010 0110 0111 0101 0100 1100 1101 1111 1110 1010 1011 1001 1000

*

*Specification states are indicated
    when they are entered.

0

0

1

1

1 1

1 1 1

0

1 0

1 1 1 1 1 1

1

1

1

1

1

Note:  only "required cubes" are shown above.

Final sum-of-products implementation:
TACK =   y1 y0 + y0 treq’ rd-iq   +   y1 ackpkt   +   y1 treq   +   y0 ack-pkt   +   y0 treq rd-iq’

+   adbld-out’ ack-pkt treq

Figure 3.31: Karnaugh map for output tack.



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 96

00

01

11

10

State y1 y0

00

01

11

10

State y1 y0

Inputs:   ack-pkt   req-send   treq   rd-iq
adbld-out = 0

adbld-out = 1

(0)
0 0 0 0 0 0 0

(1)
0

(10) (4) (9)
0 (8)

(7)

000 0 0 0
(6)

(2) (5)

(3)

0000 0001 0011 0010 0110 0111 0101 0100 1100 1101 1111 1110 1010 1011 1001 1000

*

*Specification states are indicated
    when they are entered.

0

1 0

Note:  only "required cubes" are shown above.

Final sum-of-products implementation:

0

0 0 0

0 1

0 0 0 0

0

0 0

1

1 1

1

00 0

0

0

0

0

ADBLD =  y1’ y0 rd-iq   +   y1 adbld-out’ treq’ rd-iq   +   y1’ adbld-out’ req-send treq rd-iq

Figure 3.32: Karnaugh map for output adbld.



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 97

00

01

11

10

State y1 y0

00

01

11

10

State y1 y0

Inputs:   ack-pkt   req-send   treq   rd-iq
adbld-out = 0

adbld-out = 1

(0)

(1)(10) (4) (9)
(8)

(7)

(6)

(2) (5)

(3)

0000 0001 0011 0010 0110 0111 0101 0100 1100 1101 1111 1110 1010 1011 1001 1000

*

*Specification states are indicated
    when they are entered.

Y1 Y0

00

01

01

01

10

01

0011

Final sum-of-products implementations:

Y1 = treq rd-iq
Y0 = y1 + ack-pkt’ treq

Figure 3.33: Karnaugh map for state variables y1 y0.



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 98

3.10 State Splitting

Flow table reduction has only been considered when it results in a partition of states.

In general, though, a state may be mapped to more than one reduced state after ow

table reduction. This case is called \state splitting", and is formalized below.

Let P(X) be the power set of set X, and de�ne P(X)+ � P(X) � �. A ow table

F 0 = (S0; I; O; s0

0
; f 0; n0) is a reduced ow table of F = (S; I;O; s0; f; n) if there exists a

function h : S ! P(S0)+, such that s0

0
2 h(s0), and for every state s 2 S and input value

x 2 f0; 1gm, and for each state s0 2 h(s):

1. f 0

j
(s0; x) = fj(s; x), whenever fj(s; x) is de�ned; and

2. n0(s0; x) 2 h(n(s; x)), whenever n(s; x) is de�ned.

Two distinct states, s; t 2 S, are said to be merged by mapping h if h maps them to the

same state of F 0, that is, h(s)\ h(t) 6= �. State s is split by the mapping into the states

of h(s).

State splitting introduces a subtle problem into the locally-clocked synthesis method.

Example

A burst-mode speci�cation is shown in Figure 3.34 and its primitive ow table is shown

in Figure 3.35. If state splitting is allowed, the minimum reduced ow table requires

4 states: fACD;AE;BDG;Fg; no other reduced 4-state reduced table exists for the

speci�cation.

However, consider the merger of states A and C into the reduced state ACD for

input value abc = 100. State A was stable for this input value, but the reduced state is

unstable and requires a state change to the state AE. That is, for the A! B transition

in reduced state ACD, the clock function at input abc = 100 will go high, enabling a

state change before the speci�ed input burst is complete (abc = 110). As a result, the

clock may glitch and the system may malfunction.

The problem is that standard ow table reduction algorithms do not require that

stable states in the primitive ow table map to stable states in a reduced ow table.

In the case of state splitting, there can be multiple instances of the same state (e.g.,



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 99

A

B

CD

EF

G

Initial values:
        abc = 000
        z = 0

a+ b+ /
    z +

a- b- /
    z-

a + /
   --

b + /
   z +

a - c + /  
      z +

a + c- /
     z -

c + / --

c - / --

a - b- /  z -

Figure 3.34: Burst-mode speci�cation for state-splitting example.

A) in the reduced table. For the given example, state A in the primitive ow table has

a stable next-state function at input value abc = 100. After state reduction, however,

the corresponding next-state function is unstable: there is a state transition at input

abc = 100 from one reduced state corresponding to A (e.g., ACD) to another state

corresponding to A (e.g., AE).

It is necessary, therefore, to develop algorithms which allow state splitting but insure

that stable states in the primitive ow table are always mapped to stable states after

ow table reduction. Such algorithms have recently been developed by Bill Coates of

HP Laboratories[23].



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 100

000 001 011 010 110 111 101 100

inputs a b c

A

B

C

D

E

State

F

G

Next State,
   Output Z

A,0 A,0 B, 1 A,0

C,0 B,1 B,1 B,1

C,0 D,0 E,0

C,0 D,0

E,0 F,1 G,1 E,0 E,0

F,1 F,1 F,1 E,0

A,0 G,1 G,1 G.1

Figure 3.35: Primitive ow table for state-splitting example.

3.11 Related Work

In this section, the locally-clocked method is compared with a related approach of

Chuang and Das [21].

Chuang and Das propose a self-synchronized state machine illustrated in Figure 3.36.

The machine consists of combinational logic for the outputs, next-state and clock; edge-

triggered ipops; and delay elements. In the �gure, the machine is \unrolled" to

indicate the path of the state variables through the output logic. For simplicity, feedback

loops of the clock and next-state logic are omitted.

The machine is structurally similar to a locally-clocked machine, but there are two

important di�erences. First, an inertial delay is attached to the clock. This delay is

used to �lter out glitches. In the locally-clocked machine, no inertial delay is required.

Second, edge-triggered ipops are used to store outputs. In the locally-clockedmachine,

dynamic transparent latches are used.



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 101

Inertial
 Delay

Delay

Flipflops

Flipflops

C/L

C/L

C/L

Clock

Next-State Logic

i1

i2

s1

s2

i1

i2

s1

s2

S1

S2

s1

s2

O1

O2

o1

o2

i1

i2

Output Logic

Clock Logic

Figure 3.36: Block diagram of self-synchronized machine of Chuang and Das.

The machine operates as follows. Initially, the machine is stable and the clock is

low. At some point, a multiple-input change occurs. However, inputs cannot change at

arbitrary times. Instead, all inputs must change within a �xed window of time, d. That

is, the machine operates in MIC mode, as described in Chapter 1.

If a state change occurs, the clock goes high and the next state is latched in the

edge-triggered ipops. Appropriate delay is added to the clock to insure that the next-

state logic is stable before the state is latched. In particular, an inertial delay is used to

�lter out glitches, since the clock may have hazards. After the state changes, outputs

can change. The clock is further delayed to insure that the output logic is stable before

outputs are latched. The state change is also fed back to the next-state and clock logic,

and the clock is eventually driven low.

There are two important features of the Chuang and Das approach which are incor-

porated into the locally-clocked method. First, Chuang and Das allow arbitrary state

assignment. This feature simpli�es the synthesis method and the resulting implemen-

tations, since critical-race free state codes are not required. Second, they use a clock



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 102

function which is initially low, is driven high by an input change, and is driven low again

by the resulting state change. That is, the clock function \disables itself". A similar

clock function is used in the locally-clocked method.

However, the locally-clockedmethod has several signi�cant advantages. First, Chuang

and Das' machine operates in MIC mode: multiple-input changes must occur within a

�xed time period. In contrast, a locally-clocked machine operates in burst-mode: inputs

within an input burst can change at arbitrary times. The added exibility of burst-mode

is an important feature when operating in a concurrent environment.

Second, Chuang and Das rely on an inertial delay to eliminate glitches in the clock.

As indicated in Chapter 1, inertial delays are di�cult to build, slow down a circuit

and result in slowly-changing transitions which are susceptible to noise. In contrast,

the locally-clocked method does not require inertial delays. Hazards in the clock are

eliminated in phase-1 using hazard-free logic and in phase-2 using simple reset circuitry.

Third, the performance of Chuang and Das' machines is poor. All output changes are

\late": they occur after a state change is complete. Output changes must pass through 2

combinational logic blocks and 2 banks of ipops, and then must wait for a clock pulse.

In the locally-clocked method, output changes pass through only 1 combinational logic

block and 1 bank of dynamic transparent latches. (Dynamic transparent latches typically

have much smaller propagation delay than edge-triggered ipops.) Furthermore, output

changes do not wait for the clock to pulse. Instead, they pass directly through the

phase-1 latches, which are transparent in phase-1. This feature considerably improves

the latency of the machine.9

Finally, the clocking scheme in the locally-clocked method is an improvement over

Chuang and Das' method. Chuang and Das use controlled excitation, where the clock

remains low if there is no state or output change during an MIC transition. If the state

or output changes, a clock pulse is generated to trigger the ipops. The locally-clocked

method uses selective clocking, where a clock pulse is generated only if there is a state

change. If outputs change without a state change, no clock pulse is required. In practice,

many transitions in a locally-clocked implementation are unclocked (see Sections 3.9 and

9There is a bene�t to using output ipops, though. Output functions may be simpler, since they
are speci�ed only when a state change occurs. However, this feature a�ects only one of the two combi-
national logic blocks on the critical path, and does not signi�cantly a�ect total latency.



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 103

Number of State Changes
Before After

Example Minimization Minimization

DME 10 4
DME-OPT 10 4
DME-FAST 10 4
DME-FAST-OPT 10 4
CHU-AD-OPT 4 2
VANBEK-AD-OPT 3 2

Table 3.2: Reduction in number of state changes after heuristic state minimization.

3.12), and the clock implementation is often simpler.

To summarize, Chuang and Das' method is sound, as long as an appropriate inertial

delay can be constructed. However, the method has limited exibility, since it requires

that inputs change within a narrow window of time, d. Latency is poor, since the critical

path is large and output changes can occur only after a clock pulse. Finally, a clock

pulse is required for every output and state change, resulting in a more complex clock

circuit.

3.12 Results

We now describe the results of applying the synthesis procedure to three design problems.

Table 3.2 shows the e�ect of state minimization on the number of clocked transitions

in the state diagram. Table 3.3 compares area and performance of our �nal state ma-

chine implementations with published solutions. In Table 3.3, our implementations are

indicated by upper-case names; published designs are indicated by bold-faced type.

Our designs have not been implemented at the transistor level, so it is di�cult to

make a precise performance comparison. However, a logic-level comparison is possible

using a rough estimate of delays. In particular, it is assumed that all simple gates and

dynamic latches have a delay of 1 unit, and static storage elements have a delay of 2

units.



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 104

Delay* Area

Total #: Total #:
Implementation static static

gates storage gates storage

Distributed Mutex:

Martin Design 12 4 8 4
DME 17 4 14 2
DME-OPT 12 2 10 2
DME-FAST 9 2 14 2
DME-FAST-OPT 6 0 14 2

A-D Controller:

Chu Design 5 2 4 2
CHU-AD-OPT 7 0 8 1

Vanbekbergen

Design #1 5 2 6 2
Design #2 2 3 3 2

VANBEK-AD-OPT 6 0 10 1

*Total delay along critical path of operation.

Table 3.3: Comparison of delay and area of published implementations with locally-
clocked implementations.



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 105

1. Distributed Mutual Exclusion Element. In [54], Martin describes a self-

timed controller for mutual exclusion. Controllers are placed in a ring and grant priv-

ileged access to a resource. We consider the later implementation presented by Burns

[14]. As discussed in Chapter 1, Martin's implementations are quasi-delay-insensitive;

that is, they function correctly assuming arbitrary gate delays.

(a) DME and DME-OPT.Martin's protocol is implemented directly. In implementa-

tion DME, output changes are (conservatively) set to occur late, after a state change is

complete. However, the environment of each controller is largely known, since identical

controllers are attached to each other in a ring. Using reasonable timing assumptions,

selected output changes can be set to occur early in implementation DME-OPT. Using

estimates described above for gate and storage delay, Martin's implementation is 25%

faster than our unoptimized DME implementation. In particular, Martin's design has

a delay of 12 + (4 * 2) = 20 units; our design has a delay of 17 + (4 * 2) = 25 units.

However, our DME-OPT design is 25% faster than his design (16 units vs. 20 units).

(b) DME-FAST and DME-FAST-OPT. A more concurrent DME protocol is used,

allowing multiple outputs to be generated concurrently. All output changes are conser-

vatively set to be late in implementation DME-FAST; selected outputs are generated

early in implementation DME-FAST-OPT. Our DME-FAST design is 54% faster than

his design (13 units vs. 20 units), and our DME-FAST-OPT design is 233% faster than

his design (6 units vs. 20 units). Since the protocol used by the DME-FAST and DME-

FAST-OPT designs is more concurrent than Martin's, this is not a direct comparison.

However, it indicates that locally-clocked designs may have quite good performance.

2. A-to-D Controller (Chu). In [19], Chu describes a speci�cation and implemen-

tation of a controller for an A-to-D-converter. Again the environment of the controller

is given: it is the A-to-D datapath which it controls. Using reasonable timing assump-

tions, we designed an optimized implementation, CHU-AD-OPT. Our design is 28%

faster than Chu's implementation (7 units vs. 9 units).

3. A-to-D Controller (Vanbekbergen). In [96], Vanbekbergen speci�es an A-to-

D controller with a more concurrent protocol than Chu's and two implementations. His

speci�cation includes \weighted arcs"; arc weights describe delays in the environment

before new inputs arrive. Using these weights and reasonable timing assumptions, we

designed an optimized implementation, VANBEK-AD-OPT. Our design is 50% faster



CHAPTER 3. LOCALLY-CLOCKED ASYNCHRONOUS STATE MACHINES 106

than Vanbekbergen's Design #1 (6 units vs. 9 units) and 33% faster than his Design #2

(6 units vs. 8 units).



Chapter 4

Exact Hazard-Free Two-Level

Logic Minimization

4.1 Introduction

The synthesis method of the previous chapter did not provide algorithms to generate

minimum-cost hazard-free combinational logic. However, it insured that a hazard-free

two-level implementation always exists. In this chapter, we present a hazard-free logic

minimization algorithm for locally-clocked state machines.

In fact, the problem that we solve is a more general problem; it is independent of this

application. The contribution of this chapter is a solution to an open problem in logic

synthesis: Given an incompletely-speci�ed Boolean function and a set of multiple-input

changes, produce an exactly minimized two-level implementation which is hazard-free

for every speci�ed multiple-input change, if such a solution exists. Our method uses

a constrained version of the Quine-McCluskey algorithm [60]. The method has been

automated and applied to a number of examples. Results are compared with results of

a comparable non-hazard-free method (espresso-exact [81]). Overhead due to hazard-

elimination is shown to be negligible.

This method solves a combinational synthesis problem which arises in many asyn-

chronous sequential applications. The method has been incorporated into synthesis

programs for two distinct asynchronous design styles: the locally-clocked method and

the 3D method [106].

107



CHAPTER 4. EXACT HAZARD-FREE TWO-LEVEL LOGIC MINIMIZATION 108

4.1.1 Two-Level Hazard-Free Logic Minimization Problem

The two-level hazard-free logic minimization problem can be stated as follows:

Given:

A Boolean function f, and a set, T, of speci�ed function-hazard-free (static

and dynamic) input transitions of f.

Find:

A minimum-cost cover of f whose AND-OR implementation is free of logic

hazards for every input transition t 2T.

4.1.2 Previous Work

No general two-level hazard-free logic minimization method has been proposed for incompletely-

speci�ed functions allowing multiple-input changes.

McCluskey [59] presented an exact hazard-free two-level minimization algorithm lim-

ited to single-input changes.

Several methods have been proposed for the multiple-input change case, but each has

limitations. Bredeson and Hulina [9] presented an algorithm which produces hazard-free

sum-of-products implementations for multiple-input changes. However, their algorithm

uses sequential storage elements to implement combinational functions, where storage

elements must satisfy special timing constraints.

Bredeson [8] later presented an algorithm for hazard-free multi-level implementations

of combinational functions with multiple-input changes requiring no storage elements.

However, the algorithm does not demonstrate optimality, assumes a fully-speci�ed func-

tion, and attempts to eliminate hazards even for unspeci�ed transitions; in practice,

results may be far from optimal. The algorithm also cannot generate certain minimum

two-level solutions (if they include non-prime implicants; to be discussed later).

Closer to our work, Frackowiak [35] presented two exact hazard-free minimization

algorithms for two-level implementations allowing multiple-input changes, assuming a

fully-speci�ed function. Both algorithms eliminate dynamic hazards for speci�ed tran-

sitions. However, the �rst ignores static hazards while the second attempts to eliminate

static hazards even for unspeci�ed transitions. Therefore, results may be either haz-

ardous or suboptimal.



CHAPTER 4. EXACT HAZARD-FREE TWO-LEVEL LOGIC MINIMIZATION 109

4.2 Hazard-Free Covers

As discussed in chapter 2, a hazard-free cover of function f is a cover of f whose AND-

OR implementation is hazard-free for a given set of input transitions. The following

new theorem describes all hazard-free covers for function f for a set of multiple-input

transitions. (It is assumed below that the set of transitions de�ne the function; the

function is unde�ned for all other input states.)

Theorem 4.1: Hazard-Free Covering Theorem. A sum-of-products C is a

hazard-free cover for function f for a speci�ed set of input transitions if and only if:

(a) No cube of C intersects the OFF-set of f;

(b) Each required cube of f is contained in some cube of the cover, C; and

(c) No cube of C intersects any privileged cube illegally.

Proof. The result follows immediately from Lemmas 2.1{2.3, Corollary 2.1, and the

de�nitions of hazard-free cover, required cubes and privileged cubes. Conditions (a)-(c)

insure that the function is covered correctly and hazard-free covering requirements are

met for each speci�ed input transition. 2

Conditions (a) and (c) in Theorem 4.1 determine the implicants which may appear

in a hazard-free cover of a Boolean function f. Condition (b) determines the covering

requirement for these implicants in a hazard-free cover. Therefore, Theorem 4.1 precisely

characterizes the covering problem for hazard-free two-level logic.

In general, the covering conditions of Theorem 4.1 may not be satis�able for an

arbitrary Boolean function and a set of speci�ed input transitions (cf. [91, 6, 35]). This

case occurs if conditions (b) and (c) cannot be satis�ed simultaneously, and is discussed

further in the previous chapter. However, as demonstrated in chapter 3, the locally-

clocked method always generates functions for which a hazard-free cover exists.

4.3 Exact Hazard-Free Logic Minimization

Many exact logic minimization algorithms are based on the Quine-McCluskey algorithm

[81, 60]. The Quine-McCluskey algorithm solves the two-level logic minimization prob-

lem. It makes use of a prime implicant table, which indicates which prime implicants



CHAPTER 4. EXACT HAZARD-FREE TWO-LEVEL LOGIC MINIMIZATION 110

cover each ON-set minterm of a Boolean function. The algorithm has three steps:

1. Generate the prime implicants of a function;

2. Construct a prime implicant table; and

3. Generate a minimum cover of this table.

Our two-level hazard-free logic minimization algorithm is based on a constrained

version of the Quine-McCluskey algorithm. Only certain implicants may be included in

a hazard-free cover, and covering requirements are more restrictive.

We base our approach on the Quine-McCluskey algorithm to demonstrate a simple

solution to the hazard-free minimization problem. There now exist much more e�cient

algorithms than Quine-McCluskey [81, 82]; the hazard-elimination techniques described

here can be applied to these methods as well.

Theorem 4.1(a) and (c) determine the implicants which may appear in a hazard-free

cover of a Boolean function f. A dynamic-hazard-free implicant (or dhf-implicant) is an

implicant which does not intersect any privileged cube of f illegally (cf. DHA-Implikant

[35]). Only dhf-implicants may appear in a hazard-free cover. A dhf-prime

implicant is a dhf-implicant contained in no other dhf-implicant. An essential dhf-prime

implicant is a dhf-prime implicant which contains a required cube contained in no other

dhf-prime implicant.

Interestingly, a prime implicant is not a dhf-prime implicant if it intersects a privi-

leged cube illegally. A dhf-prime implicantmay be a proper subcube of a prime implicant

for the same reason.

Theorem 4.1(b) determines the covering requirement for a hazard-free cover of f:

every required cube of f must be covered, that is, contained in some cube of the

cover.

We assume a standard cost function for covers where every implicant has the same

cost.1 The two-level hazard-free logic minimization problem is therefore to �nd a mini-

mum cost cover of a function using only dhf-prime implicants where every required cube

is covered.

Our hazard-free Quine-McCluskey algorithm has the following steps:

1. Generate the dhf-prime implicants of a function;

1The cost function can be generalized for single-output functions to include literal-count as a sec-
ondary cost (see also discussion in [81], page 14).



CHAPTER 4. EXACT HAZARD-FREE TWO-LEVEL LOGIC MINIMIZATION 111

2. Construct a dhf-prime implicant table; and

3. Generate a minimum cover of this table.

Step 0: Make Sets

Before generating dhf-prime implicants, three sets must be constructed: the req-set, the

o�-set, and the priv-set. The req-set contains the required cubes for the function f; it

also de�nes the ON-set of the function. The o�-set contains cubes precisely covering

the OFF-set minterms. The priv-set is the set of privileged cubes along with their start

points.

The sets are generated by a simple iteration through every speci�ed transition of the

given function, using AlgorithmMake-Sets (see Table 4.1). If the function has a 0! 0

change for a transition, the corresponding transition cube is added to the o�-set. If the

function has a 1! 1 change, the transition cube is added to the req-set.

If the function has a 1 ! 0 transition (or symmetrically, a 0 ! 1 transition), then

the maximal ON-set cubes are added to req-set and the maximal OFF-set cubes are

added to o�-set. In addition, the transition cube and its start point are also added to

the priv-set, since this transition cube must not be intersected illegally. Through most

of this chapter, a 0 ! 1 transition from input state x to y will be considered as a 1! 0

transition from input state y to x, so it has \start point" y.

Step 1: Generate DHF-Prime Implicants

The dhf-prime implicants for function f are generated in two steps. The �rst step gen-

erates the prime implicants of f from the req-set (which de�nes the on-set) and the

o�-set, using standard techniques [81, 82]. The second step transforms these prime im-

plicants into dhf-prime implicants using algorithm PI-to-DHF-PI. This algorithm is

a simpler version of Algorithm B in [35]. The algorithm iteratively re�nes the set of

prime implicants until it generates the set of dhf-prime implicants. In practice, many

prime implicants are also dhf-prime implicants (see Experimental Results). Also, there

are fast existing algorithms to generate the the prime implicants of a function.

Pseudo-code for the algorithm is given in Table 4.2. tmp-set is initialized to the set

of prime implicants. The algorithm iteratively removes each implicant, p, from tmp-set.



CHAPTER 4. EXACT HAZARD-FREE TWO-LEVEL LOGIC MINIMIZATION 112

Algorithm Make-Sets (set T of input transitions):
req-set = fg; o�-set = fg; priv-set = fg;
for each transition t of T
A = start point of t; B = end point of t;
t-cube = [A,B];

case (t)

0! 0 transition:

add t-cube to o�-set;
1! 1 transition:

add t-cube to req-set;
1! 0 (or 0! 1) transition:

add each maximal ON-set subcube to req-set;
add each maximal OFF-set subcube to o�-set;
add t-cube and its start-point A to priv-set;

return (req-set, o�-set, priv-set).

Table 4.1: Step 0: Algorithm Make-Sets.

If p has no illegal intersections with any cube of priv-set, it is a dhf-implicant; it is placed

in dhf-pi-set.

If p illegally intersects some privileged cube c in priv-set, then cube p is \split", or

reduced, in every possible way by a single variable to avoid intersecting c. The reduced

cubes are returned to tmp-set. In general, these reduced cubes may have new illegal

intersections: a reduced cube, p-red, may illegally intersect a priv-set cube, c, even if p

legally intersects c.

The algorithm terminates when tmp-set is empty. The resulting cubes in dhf-pi-set

are all dhf-implicants. In addition, it is easily proved that the algorithm generates all

dhf-prime implicants. Subcubes of other cubes in dhf-pi-set are removed; the result is

the set of dhf-prime implicants.

As an optimization, we eliminate implicants that contain no required cube. If a dhf-

implicant contains no required cubes, it can always be removed from a cover to yield a

lower-cost solution. (Note that a dhf-prime implicant may intersect the ON-set and yet

contain no required cube; see Experimental Results, Section 4.9.)



CHAPTER 4. EXACT HAZARD-FREE TWO-LEVEL LOGIC MINIMIZATION 113

Algorithm PI-to-DHF-PI (pi-set, priv-set)
tmp-set = pi-set; dhf-pi-set = fg;

while (not empty (tmp-set))
remove a cube p from tmp-set;
if (p has no illegal intersections with any cube of priv-set)

add p to dhf-pi-set;
else

/* p illegally intersects a priv-set cube; */
/* reduce p to avoid intersection */

c = any cube of priv-set which p intersects illegally;
for (each input variable v which appears as a don't-care

literal in p and as literal v or v0 in c)
p-red = the maximal subcube of p where v is set

to the complement of its value in c;
add p-red to tmp-set;

delete all cubes in dhf-pi-set contained in other cubes;
return (dhf-pi-set).

Table 4.2: Step 1: Algorithm PI-to-DHF-PI.



CHAPTER 4. EXACT HAZARD-FREE TWO-LEVEL LOGIC MINIMIZATION 114

Step 2: Generate DHF-Prime Implicant Table

A dhf-prime implicant table is constructed for the given function. The rows of the table

are labelled with the dhf-prime implicants used to cover the columns. The columns are

labelled with the required cubes which must be covered. The table sets up the two-level

hazard-free logic minimization problem.

Step 3: Generate a Minimum Cover

The dhf-prime implicant table is solved in three steps, using simple standard techniques.

More sophisticated techniques can also be applied [81, 7, 60].

First, essential dhf-prime implicants are extracted using standard techniques.

Second, the ow table is iteratively reduced. Rows and columns of the table may be

removed using row-dominance and column-dominance operations, respectively. These

operations may lead to further opportunities for (secondary) essential dhf-prime impli-

cant removal. The operations are iterated until there is no further change.

Finally, if the table is still non-empty, a covering problem remains (cyclic covering

problem). It is solved using an exhaustive algorithm called Petrick's method. Each

column lists implicants which cover a required cube. The column is translated into a

Boolean sum of rows; the covering problem for the table can be stated as a Boolean

product of these sums. This product is multiplied out to generate all possible solutions.

A minimum solution is then selected.

4.4 Hazard-Free Minimization Example

The Karnaugh map from �gure 2.2 is reproduced in �gure 4.1 (the function is slightly

modi�ed from ex. 3.4 of [35]). Set T = ft1; t2; t3; t4g contains four speci�ed function-

hazard-free input transitions. Each transition ti is described by a transition cube Ci

with start point mi:

t1: m1 = ab0c0d C1 = ac0

t2: m2 = ab0cd0 C2 = ab0c

t3: m3 = a0bc0d0 C3 = a0c0



CHAPTER 4. EXACT HAZARD-FREE TWO-LEVEL LOGIC MINIMIZATION 115

t4: m4 = a0bcd C4 = c

The input transitions are indicated in �gure 4.1(a). The start point of each transition

is described by a dot, and its transition cube is described by a dotted circle.

Step 0: Make Sets

The req-set, o�-set and priv-set are generated using AlgorithmMake-Sets, as illustrated

in �gure 4.1(b).

t1: req-cube-1 = ac0 t4: req-cube-4 = a0c

t2: o�-cube-1 = ab0c req-cube-5 = bcd

t3: req-cube-2 = a0c0d0 o�-cube-3 = acd0

req-cube-3 = a0bc0 o�-cube-4 = ab0c

o�-cube-2 = a0b0c0d priv-cube-2 = c

priv-cube-1 = a0c0 priv-start-2 = a0bcd

priv-start-1 = a0bc0d0

The �nal sets produced by the algorithm are:

req-set = fac0; a0c0d0; a0bc0; a0c; bcdg,

o�-set = fab0c; a0b0c0d; acd0; ab0cg,

priv-set = fha0bc0d0; a0c0i, ha0bcd; cig.

Step 1: Generate DHF-Prime Implicants

First, prime implicants are generated from the req-set and o�-set:

p1 = c0d0 p5 = a0c

p2 = a0b p6 = bd

p3 = bc0 p7 = a0d0

p4 = ac0



CHAPTER 4. EXACT HAZARD-FREE TWO-LEVEL LOGIC MINIMIZATION 116

00 01 11 10

00

01

11

10

a b
c d

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

t1

t2

t3

t4

00 01 11 10

00

01

11

10

a b
c d

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

t1

t2

t3

t4

00 01 11 10

00

01

11

10

a b
c d

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

t1

t2

t3

t4

00 01 11 10

00

01

11

10

a b
c d

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

t1

t2

t3

t4

(c) off-set cubes

(b) req-set cubes

(d) priv-set cubes

(a) Karnaugh map with input transitions

Figure 4.1: Hazard-free minimization example: Step 0.



CHAPTER 4. EXACT HAZARD-FREE TWO-LEVEL LOGIC MINIMIZATION 117

The dhf-prime implicants are now produced using Algorithm PI-to-DHF-PI. The

steps of the algorithm are illustrated in �gure 4.2. Prime implicants p1 through p5 do

not illegally intersect priv-set cubes priv-cube-1 or priv-cube-2. As shown in �gure 4.2(a),

prime implicant p1 intersects priv-cube-1 and contains its start point. p2 intersects both

priv-cube-1 and priv-cube-2 and contains both start points. p4 intersects neither priv-set

cube. Similarly, p3 and p5 have no illegal intersections. These prime implicants are

therefore dhf-prime implicants.

However, prime implicant p6 illegally intersects priv-cube-1, since it intersects the

cube (bd\ a0c0 6= �) but does not contain its start point (a0bc0d0 62 bd; see Figure 4.2(b)).

The algorithm splits p6 into two subcubes: p61 = bcd and p62 = abd (see �gure 4.2(c)).

Cube p61 has no illegal intersections. However, p62 illegally intersects priv-cube-2 (even

though p6 legally intersects priv-cube-2; see Figure 4.2(b)). Cube p62 is again reduced

to p621 = abc0d, which has no illegal intersections (see �gure 4.2(d)).

Similarly, prime implicant p7 illegally intersects priv-cube-2, since a0d0 \ c 6= phi and

a0bcd 62 a0d0 (see Figure 4.2(e)). Cube p7 is reduced to p71 = a0c0d0, which has no illegal

intersections (Figure 4.2(f)).

The resulting set of dhf-implicants is:

fp1; p2; p3; p4; p5; p61; p621; p71g.

After deleting cubes contained in other cubes, the �nal set of dhf-prime implicants

is:

fp1; p2; p3; p4; p5; p61g.

Step 2: Generate DHF-Prime Implicant Table

The dhf-prime implicant table for the example is shown in Figure 4.3. The columns

contain the required cubes generated in Step 0; the rows contain the dhf-prime implicants

generated in Step 1.



CHAPTER 4. EXACT HAZARD-FREE TWO-LEVEL LOGIC MINIMIZATION 118

00 01 11 10

00

01

11

10

a b
c d

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

p2

p1 00 01 11 10

00

01

11

10

a b
c d

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

p6

p4

00 01 11 10

00

01

11

10

a b
c d

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

p62

p61

00 01 11 10

00

01

11

10

a b
c d

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

p61

p621

(d) Final reduction of p6 (no illegal intersections)

00 01 11 10

00

01

11

10

a b
c d

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

p7

00 01 11 10

00

01

11

10

a b
c d

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

p71

(e) Prime implicant p7 has illegal intersection (f) Final reduction of p7 (no illegal intersections)

(c) First reduction of p6 (with new illegal intersection)

priv-
 cube-1

priv-
 cube-2

priv-
 cube-1

priv-
 cube-2

priv-
 cube-1

priv-
 cube-2

priv-
 cube-1

priv-
 cube-2

priv-
 cube-1

priv-
 cube-2

priv-
 cube-1

priv-
 cube-2

(b) Prime implicant p6 has illegal intersection

p3

p5

(a) Prime implicants with no illegal intersections

Figure 4.2: Hazard-free minimization example: Step 1.



CHAPTER 4. EXACT HAZARD-FREE TWO-LEVEL LOGIC MINIMIZATION 119

required cubes

dhf-prime implicants ac0 a0c0d0 a0bc0 a0c bcd

p1=c0d0 X
p2=a0b X
p3=bc0 X
p4=ac0 X
p5=a0c X
p61=bcd X

Figure 4.3: Hazard-free minimization example: Step 2.

Step 3: Generate a Minimum Cover

A minimumcover is generated for the dhf-prime implicant table. The essential dhf-prime

implicants are: p1, p4, p5, and p61. Either p2 or p3 can be selected to cover the remaining

uncovered required cube, a0bc0. The function therefore has two minimal hazard-free

covers, each containing 5 products: fp1; p4; p5; p61; p2g and fp1; p4; p5; p61; p3g.

The latter cover is shown in Figure 4.4(a). This cover is irredundant but non-prime,

since it contains dhf-prime implicant p61 which is a proper subcube of prime implicant

p6.

A minimal but hazardous cover is shown in �gure 4.4(b). The cover contains fewer

products than the hazard-free cover, but has a logic hazard: prime implicant p6 illegally

intersects priv-cube-1. As a result, p6 causes a dynamic hazard in the input transition,

t3, corresponding to the privileged cube in Figure 4.4(b).

4.5 Existence of a Solution

For certain Boolean functions and sets of transitions, the hazard-free covering problem

has no solution [91, 6]. In this case, the dhf-prime implicant table will include at least

one required cube which is not covered by any dhf-prime implicant.

Example. We consider the function used in the previous section, but augment its set

T = ft1; t2; t3; t4g of speci�ed input transitions with a new transition:

t5: m5 = abc0d C5 = abd



CHAPTER 4. EXACT HAZARD-FREE TWO-LEVEL LOGIC MINIMIZATION 120

00 01 11 10

00

01

11

10

a b
c d

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

00 01 11 10

00

01

11

10

a b
c d

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

p61

priv-
 cube-1

p6

(a) Minimal hazard-free cover (5 products) (b) Minimal non-hazard-free cover (4 products)

Figure 4.4: Hazard-free minimization example: Step 3.

The input transitions are indicated in the Karnaugh map of Figure 4.5(a). The req-

set now has an additional required cube: req-cube-6 = abd. The o�-set and priv-set are

unchanged from the example of Section 4.4, and the function has the same dhf-prime

implicants as well.

Figure 4.5(b)-(d) illustrates the covering problem. To insure no static hazard for

transition t5, the required cube req-cube-6 must be covered by some product. However,

every product which contains req-cube-6 also illegally intersects a privileged cube, priv-

cube-1 or priv-cube-2. That is, any attempt to eliminate the static hazard in transition

t5 will produce a dynamic hazard in one of the transitions, t3 or t4.

Table 4.3 shows the resulting dhf-prime implicant table. This table has no solution:

no dhf-prime implicant contains required cube abd.

4.6 Comparison with Frackowiak's Work

It is useful to compare our approach with the related work of Frackowiak[35]. Frackowiak

presents two hazard-free minimization algorithms for two-level implementations allowing

multiple-input changes. The algorithms assume that functions are fully-speci�ed.

Both algorithms eliminate dynamic hazards in speci�ed transitions. However, the

�rst method (Algorithm A) ignores static hazards. The second method (unnamed, but



CHAPTER 4. EXACT HAZARD-FREE TWO-LEVEL LOGIC MINIMIZATION 121

00 01 11 10

00

01

11

10

a b
c d

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

priv-
 cube-1

priv-
 cube-2

00 01 11 10

00

01

11

10

a b
c d

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

priv-
 cube-1

priv-
 cube-2

00 01 11 10

00

01

11

10

a b
c d

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

priv-
 cube-1

priv-
 cube-2

req-
 cube-6

00 01 11 10

00

01

11

10

a b
c d

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

t1

t2

t3

t4

t5

(b) To avoid hazards, req-cube-6 must be covered.

(c) and (d):  Every implicant which covers req-cube-6 has an illegal intersection.

(a) Karnaugh map with new input transition, t5.

Figure 4.5: Boolean function with no hazard-free cover.

required cubes

dhf-prime implicants ac0 a0c0d0 a0bc0 a0c bcd abd

p1=c0d0 X
p2=a0b X
p3=bc0 X
p4=ac0 X
p5=a0c X
p61=bcd X

Table 4.3: dhf-prime implicant table having no solution.



CHAPTER 4. EXACT HAZARD-FREE TWO-LEVEL LOGIC MINIMIZATION 122

here called Algorithm A') attempts to eliminate static hazards for every static transi-

tion, even if unspeci�ed. Therefore results may be either hazardous (Algorithm A) or

suboptimal (Algorithm A').

Example. The Karnaugh map of Figure 4.6(a) describes a fully-speci�ed Boolean

function. The function has four speci�ed input transitions. Each transition ti is described

by its transition cube Ci and start point mi:

t1: m1 = a0bc0d0 C1 = a0c0

t2: m2 = a0b0cd0 C2 = c

t3: m3 = a0b0cd0 C3 = a0d0

t4: m4 = ab0c0d0 C4 = ac0

A minimumcover using Frackowiak's AlgorithmA has 4 products (see Figure 4.6(b)).

It is hazard-free for dynamic transitions t2 and t4, but has a static logic hazard for

transition t3.

A minimum hazard-free cover, using our method, is shown in Figure 4.6(c). The

cover has 5 products and is hazard-free for every speci�ed transition.2

Finally, a minimum cover using Frackowiak's Algorithm A' is shown in Figure 4.6(d).

The cover is hazard-free for every speci�ed transition but has 6 products; it is therefore

suboptimal. 2

A �nal distinction between our work and Frackowiak, is that we allow incompletely-

speci�ed functions:

Example. The Karnaugh map of Figure 4.7(a) describes an incompletely-speci�ed

Boolean function. The function has six speci�ed input transitions:

t1: m1 = a0b0c0d C1 = a0c0

t2: m2 = a0b0c0d C2 = b0c0d

t3: m3 = a0b0cd C3 = a0c

t4: m4 = abcd0 C4 = abd0

t5: m5 = abcd C5 = abc

2Interestingly, this solution is prime but redundant, since it contains prime implicant a'd'. In con-
trast, the solution for the previous example (Figure 4.4(a)) was non-prime but irredundant.



CHAPTER 4. EXACT HAZARD-FREE TWO-LEVEL LOGIC MINIMIZATION 123

00 01 11 10

00

01

11

10

c d

1 1 1

1 1

1 0

1 1

t2

t3

t40

01

00

11

t1

00 01 11 10

00

01

11

10

a b
c d

1 1 1

1 1

1 0

1 1

(a) Karnaugh map with input transitions

0

01

00

11

00 01 11 10

00

01

11

10

a b
c d

1 1 1

1 1

1 0

1 1

0

01

00

11

00 01 11 10

00

01

11

10

a b
c d

1 1 1

1 1

1 0

1 1

0

01

00

11

(b) Cover using Frackowiak’s Algorithm A (4 products)

(d) Cover using Frackowiak’s Algorithm A’ (6 products)(c) Minimal hazard-free cover (5 products)

Figure 4.6: Comparison with Frackowiak's method.



CHAPTER 4. EXACT HAZARD-FREE TWO-LEVEL LOGIC MINIMIZATION 124

00 01 11 10

00

01

11

10

c d

1

1

1

1

t2

t3

t4

1

11

t1

(a) Karnaugh map with input transitions

-10

0-

-11

0

t5

t6

00 01 11 10

00

01

11

10

c d

1

1

1

1

1

11

-10

0-

-11

0

(b) Minimal hazard-free cover (4 products)

Figure 4.7: Hazard-free minimization of an incompletely-speci�ed Boolean function.

t6: m6 = abcd0 C6 = acd0

A minimum cover, using our method, is shown in Figure 4.7(b). The cover has 4

products and is hazard-free for every speci�ed input transition. 2

4.7 Burst-Mode Transitions

Section 2.6 introduced burst-mode transitions, which are a constrained class of function-

hazard-free input transitions. In a burst-mode transition, an output value may change

only at the endpoint of the transition, once all inputs have changed.

The requirements for hazard-elimination in burst-mode transitions are simpler than

for arbitrary function-hazard-free transitions. In particular, Lemma 2.4 guarantees that

in a sum-of-products implementation, any 0!1 burst-mode transition is always free of

logic hazards. As a result, there is no need to describe a 0!1 burst-mode transition

using a privileged cube.



CHAPTER 4. EXACT HAZARD-FREE TWO-LEVEL LOGIC MINIMIZATION 125

This simpli�cation can be incorporated into the logic minimization algorithms de-

scribed in this chapter. In particular, algorithm Make-Sets of Section 4.3 can be simpli-

�ed for the case of burst-mode transitions. By Lemma 2.4, only 1 ! 0 transitions are

now considered privileged cubes; remaining transitions are handled as before.

4.8 Program Implementation

We have implemented the logic minimization algorithms of Section 4.3. Our program is

written in Lucid Common Lisp and is run on a DECStation 3100. However, it makes

use of espresso [7, 81] to perform part of its computation: prime implicant generation.

The advantage of this approach is that we can bene�t from highly optimized existing

tools.

The program generates sets for a function (Step 0) and writes the ON-set and OFF-

set into a �le in PLA format. We then use espresso -Dprimes to generate all prime

implicants. The resulting PLA �le is read in by the program, which computes the sets

of dhf-prime implicants (Step 1). The program then constructs a dhf-prime implicant

table and solves it (Steps 2 and 3).

This logic minimization program has been used as the the �nal component in the

locally-clocked synthesis method for asynchronous controllers [72]. It has recently been

incorporated into another synthesis method as well[106]. Both methods produce com-

binational functions which are guaranteed by construction to have hazard-free two-level

implementations.

4.9 Experimental Results

Our hazard-free logic minimization program was run on a set of examples. The largest

example is a cache controller having 20 inputs and 19 outputs (dean-ctrl) [71]. The

program was also run on two SCSI controller designs (oscsi-ctrl and scsi-ctrl) [75].

Table 4.4 describes the results of Algorithm PI-to-DHF-PI. The algorithm transforms

prime implicants into dhf-prime implicants. Prime implicants which contain only don't-

care minterms are not included, since these implicants will never appear in an exact

solution.



CHAPTER 4. EXACT HAZARD-FREE TWO-LEVEL LOGIC MINIMIZATION 126

dhf-
prime prime

implicants implicants
% %

name in/out total illegal total non-prime

dean-ctrl 20/19 1676 4 997 7
oscsci-ctrl 14/5 192 3 140 2
scsi-ctrl 12/5 280 1 190 2
pe-send-ifc 7/3 22 5 20 5
chu-ad-opt 4/3 6 0 4 0
vanbek-opt 4/3 7 0 6 0
dme 5/3 9 0 6 0
dme-opt 5/3 7 0 6 0
dme-fast 5/3 10 0 7 0
dme-fast-opt 5/3 15 0 14 0

Table 4.4: Results of Algorithm PI-to-DHF-PI.

Illegal prime implicants are those which illegally intersect some privileged cube, and

therefore are not dhf-prime implicants. In every case, no more than 5% of the original

prime implicants are illegal and must be further reduced.

After reduction, at most 7% of the dhf-prime implicants are not prime. It is also

interesting that a number of prime implicants are discarded by the algorithm (see dean-

ctrl). These implicants contain ON-set minterms but contain no required cubes. Since

these implicants do not contribute to the hazard-free covering solution, they can be

removed.

Table 4.5 presents the exact hazard-free solutions for the examples. It also gives an

indication of the penalty associated with hazard elimination in our algorithms. In every

case, the overhead for hazard-elimination is no more than a 6% increase in the number

of products as compared with outputs synthesized using espresso-exact [81, 82].

Runtimes were quite reasonable for all examples tested. Even for the cache controller

example, with 20 inputs and 19 outputs, total runtime was 83 seconds.



CHAPTER 4. EXACT HAZARD-FREE TWO-LEVEL LOGIC MINIMIZATION 127

Total
Products

Hazard-
Hazard- % free
free espresso- Over- Run-

name in/out Method exact head time(s)

dean-ctrl 20/19 215 202 6 83
oscsci-ctrl 14/5 59 58 2 9
scsi-ctrl 12/5 60 59 2 11
pe-send-ifc 7/3 15 15 0 1
chu-ad-opt 4/3 4 4 0 1
vanbek-opt 4/3 6 6 0 1
dme 5/3 4 4 0 1
dme-opt 5/3 4 4 0 1
dme-fast 5/3 5 5 0 1
dme-fast-opt 5/3 8 8 0 1

Table 4.5: Comparison of Hazard-Free Logic Minimization with espresso-exact.

4.10 Hazard-Free Multi-Level Logic

This chapter has focused on the synthesis of hazard-free two-level combinational logic.

Two-level solutions are important for PLA implementations. However, for many ap-

plications, two-level realizations are inappropriate. The more general problem to be

solved is to produce hazard-free multi-level logic for a given Boolean function and set of

speci�ed transitions.

Hazard-free multi-level logic can be generated from hazard-free two-level logic us-

ing hazard-non-increasing multi-level logic transformations. Multi-level transformations

which introduce no hazards into a combinational network are described by Unger [91].

Recently, this set of transformations has been signi�cantly extended by Kung [45].

The �nal step in logic synthesis is technology mapping, or the mapping of combi-

national logic to components in a given cell library. Traditional technology mapping

may introduce hazardous behavior into a logic network. Algorithms must be used which

insure that the mapping of the circuit into library cells does not introduce hazards. Such

technology mapping algorithms have been developed by Siegel, et al. [84].



CHAPTER 4. EXACT HAZARD-FREE TWO-LEVEL LOGIC MINIMIZATION 128

4.11 Conclusions

This chapter considers the two-level hazard-free minimization problem for several rea-

sons: the general problem has not previously been solved; minimum two-level solutions

are important for optimal PLA implementations; and these solutions serve as a good

starting point for hazard-non-increasing multi-level logic transformations.

We have described the problem of implementing hazard-free two-level logic as a con-

strained covering problem on Karnaugh maps. We presented an automated algorithm for

solving the two-level hazard-free logic minimization problem and showed its e�ectiveness

on a set of examples.

An important feature of the algorithms is that they involve only localized changes to

existing algorithms. As a result, we can use existing sophisticated algorithms for prime

implicant generation (Step 1) and for table reduction and solution (Step 3).

With the automation of these algorithms, the basic automated locally-clocked syn-

thesis system is complete. The algorithms have been incorporated into another synthesis

system as well [106] and are applicable to a number of sequential synthesis methods.



Chapter 5

Design of a High-Performance

Cache Controller

5.1 Introduction

In this chapter, we present a case study in large-scale, practical asynchronous design:

the design of a high-performance asynchronous cache controller. The work integrates

two distinct approaches in asynchronous system design: the design of controllers and the

design of processor architectures. This chapter represents joint work with Mark E. Dean.

The goal of this chapter is to demonstrate the e�ectiveness of our synthesis method

for the design of real-world systems. Most previous work by us [73, 72, 74] and others

has focused on detailed algorithms for design methods and their application to fairly

small examples. Furthermore, realistic quantitative comparisons between asynchronous

and synchronous designs have been rare. For an asynchronous discipline to be widely

accepted, however, it is critical to demonstrate that (a) large practical designs can be

synthesized which (b) are superior, by some metric, to comparable synchronous designs.

This chapter therefore contains the following new contributions: (1) it demonstrates

the feasibility of the proposed locally-clocked method for the design of a large real-world

controller; (2) it demonstrates in particular how such a controller can fully support the

asynchronous external interface of a new asynchronous RISC architecture; and (3) it

presents a cache controller which is signi�cantly faster than a comparable synchronous

design.

129



CHAPTER 5. DESIGN OF A HIGH-PERFORMANCE CACHE CONTROLLER 130

Our state-machine speci�cation and implementation are substantially more complex

than other recent asynchronous examples (cf. [14, 19, 33, 47, 55, 65, 68, 96]). Our design

has 16 primary inputs, 19 primary outputs, 4 state variables and 245 product terms in a

sum-of-products implementation. The resulting cache performance using our controller

is approximately twice as fast as an equivalent synchronous implementation.

5.1.1 Background and Previous Work

Most modern microprocessors and processor complexes use a global synchronizing clock

to sequence through their operations. Global circuit synchronization simpli�es the de-

sign and interfacing of digital logic structures while minimizing any pipeline sequencing

overhead. But worst-case design constraints limit a synchronous system's ability to take

full advantage of the available silicon performance. Synchronous operation and com-

munication also restrict e�cient data transfer between devices with di�ering processing

rates or access methods. Although synchronous logic structures dominate the digital sys-

tem industry, alternatives must be considered which extract more of the available silicon

performance, and provide simple and e�cient processing-rate-independent interfaces.

Several asynchronous processor designs have been proposed and/or implemented

[24, 30, 58, 94, 11, 37]. Traditional self-timed design styles increase the implementation

complexity and sequencing overhead for most processor-pipeline data structures. The

most implementation-e�cient self-timed sequencing structure for processor pipelines is

dynamic clocking [30]. Dynamic clocking sequences the pipelined functional units in

lock-step, but adjusts each cycle's period to match the present environmental condi-

tions, process parameters and pending pipeline operations. This lock-step operation

allows traditional synchronous logic structures to be used. Because of its e�ciency and

simplicity, we designed our processor complex around the dynamically clocked RISC

processor (STRiP) developed at Stanford University.

In this chapter, we consider an asynchronous cache controller implementation de-

signed to interface with a self-timed processor such as STRiP. Because of the high-

performance and simplicity of locally-clocked state machines, we design a locally-clocked

implementation.

The chapter is organized as follows: Section 5.2 describes the basic STRIP processor



CHAPTER 5. DESIGN OF A HIGH-PERFORMANCE CACHE CONTROLLER 131

architecture and its external interface. Section 5.3 gives an overview of the protocol and

datapath for a second-level cache subsystem for the STRiP architecture. Section 5.4

describes a detailed speci�cation and implementation of the cache controller using the

locally-clocked design method, as well as performance results. Section 5.5 presents con-

clusions.

5.2 STRiP, a Self-Timed RISC Processor

5.2.1 Basic Structure

A processor's throughput is determined by the functional units with the worst-case

operational latency. A synchronous processor's performance is limited by the slowest

pipeline operation and the worst-case temperature, voltage and process. This limitation

holds even if the slowest operation is seldom used and the processor is operated in a

nominal environment. Ideally the global synchronizing clock would adapt, from cycle

to cycle, to the pending pipeline operations and the actual environmental conditions.

By using an adaptive pipeline sequencing method called dynamic clocking, a self-timed

RISC processor called STRiP was developed [30].

Dynamic clocking is a pipeline sequencing method which is best described as a self-

timed, synchronous structure. All pipelined functional units sequence in lock-step via a

global sequencing signal. This signal's period adapts, on a cycle-by-cycle basis, to the

environmental conditions, process parameters, and pending pipeline operations. The

pipeline sequencing signal also stops and waits for operations with indeterminate de-

lays to complete (external memory and I/0 transfers). This operating characteristic

supports a fully asynchronous external interface. The main goal of dynamic clocking

is to provide a sequencing and interface method which uses synchronous logic elements

while providing the interface e�ciency and performance available through self-timing.

Therefore, STRiP is a self-timed processor containing the implementation simplicity of

a synchronous design and the adaptive operation, robust interfaces, and wide operating

range of asynchronous designs.



CHAPTER 5. DESIGN OF A HIGH-PERFORMANCE CACHE CONTROLLER 132

5.2.2 Interface and System Overview

STRiP's Bus Interface Unit (BIU) connects it to the other processor complex and system

devices. It is important that this interface minimize the overhead required for external

data transfers. All external data transfers between the second-level cache(s), system

memory, coprocessors, and main system bus use a fully asynchronous handshaking pro-

tocol. This type of interface allows devices and subsystems of di�erent operating speeds

to communicate easily and e�ciently across a common bus. Often a processor's pro-

cessing and data transfer rate is di�erent from an external memory device's data access

time and transfer rate. A synchronous interface must insert extra delay (a discrete num-

ber of cycles) to synchronize the communication between these two dissimilar devices.

Dynamic clocking eliminates the synchronization overhead and potential metastable con-

ditions common in synchronous interfaces. The basic organization of a single-processor

subsystem is shown in Figure 5.1.

5.3 Second-Level Cache: Overview

5.3.1 Cache Speci�cation

The majority of the processor's external data transfers are to and from the external cache

subsystem. The second-level cache's structural characteristics are based on typical RISC

system organizations. The subsystem typically contains a cache controller, tag RAMs,

and data RAMs. Figure 5.2 gives a block diagram of the second-level cache subsystem

and its primary interface signals. The RAMs used in most high-performance cache

subsystems are SRAMs. Available SRAM densities support second-level cache sizes

between 512KB to 2MB. The signals generated by the cache controller are designed to

support this range of cache memory. The cache is direct-mapped with a copy-back write-

allocate write policy. The line, fetch, and transfer sizes are all 128-bits. The organization

shown in Figure 5.2 assumes that the processor contains the write-back bu�ers for the

second-level cache and controls all request to the main memory subsystem.



CHAPTER 5. DESIGN OF A HIGH-PERFORMANCE CACHE CONTROLLER 133

CopReq_b
CopAck_b

FPAccess_b
Exception_b
Data[0:127]
Addr[0:31]

Read/Write_b

HoldReq_b
HoldAck_b

DBEnable_b
BusReq_b

SnoopCmplt_b

CacheReq_b
CacheAck_b
MemReq_b
MemAck_b

Miss

Data

Data

Addr

Addr/Ctrl

Cmplt

Cmplt

FP Proc.

L2 Cache

SRAM

DRAM

to System
Bus

STRiP Proc.

DRAM/System-Bus Controller

Tags

WBL

Figure 5.1: Processor complex block diagram.

5.3.2 Protocol and Signal Timings

There are several types of transfers which the second-level cache must support or mon-

itor. These include: a cache read request, a cache write request, a main-memory read

request (caused by a second-level cache miss), a main-memory write request (caused

by a second-level cache write-back cycle), a read snoop, a write snoop, and a cache

ush/reset request. The processor generates all requests to the external memory sys-

tem, and it controls and monitors the second-level cache operation during transfers to

and from main memory. Therefore, the processor's BIU generates the requests to sup-

port second-level cache miss and write-back cycles. Snoop cycles are required to support

cache coherency and are generated by the main-memory subsystem. Cache ush/reset



CHAPTER 5. DESIGN OF A HIGH-PERFORMANCE CACHE CONTROLLER 134

Exception_b

Data[96:127]

Data[112:127]

Data[64:95]

Data[32:63]

Data[0:31]

Addr[0:31]
Read/Write_b

CacheReq_b
CacheAck_b
MemReq_b
MemAck_b

Miss

L2 Cache Controller

STRiP Proc.

Tag[0:15]

Cack[0:17]

2

4

4

4

4

Parity RAMs
(optional)

Data RAMs
(32K x 9 or 128K x 9)

WE_b[0:4]
OE_b[0:1]

CS_b
CAddr[0:16]

Tag RAMs
(32K x 9 or
128K x 9)

WBL

Figure 5.2: Second-level cache block diagram and primary interface signals.

cycles are controlled by the processor via an I/O port bit.

As an example of the asynchronous interface protocol and its relationship to the

processor's internal dynamic clock, we describe the signalling for a second-level cache

read- and write-hit transfer. Figure 5.3 illustrates the external signal timing supporting

an external read (caused by a internal cache miss) followed by an external write (caused

by an internal copy-back request).

The numbered transitions in Figure 5.3 are described below.

External Read Hit:



CHAPTER 5. DESIGN OF A HIGH-PERFORMANCE CACHE CONTROLLER 135

internal
processor

clock

Address Bus

Read/Write_b

CacheReq_b

CacheAck_b

Miss

Data Bus

L1 Cache
(miss)

External Read Cycle External Write Cycle

1

2

3

4

5

6

7

8

9

10 11

12

13

read data write data

read addr. write addr.

ø1 ø1 ø1 ø1 ø1 ø1ø1 ø1ø2 ø2 ø2 ø2 ø2 ø2ø2 ø2

Figure 5.3: Timing diagram showing generic external read and write cycle signalling.

1. The processor's BIU drives the miss address onto the Address Bus at the be-

ginning of �1. Read/Write b is also driven high to indicate a read cycle. The

second-level cache controller forwards these addresses to the tag/data RAMs.

2. The BIU drivesCacheReq b active after theAddress Bus and Read/Write b

are valid. [Address Bus and Read/Write b setup to Request active is 0ns

(min.)].

3. CacheReq b causes a second-level cache access. At this point the cache controller

generates the proper chip-select and output-enable signals to the tag/data RAMs.

These RAMs in turn drive the selected tags and data back to the cache controller,

using a completion signal to indicated valid data. The data is forwarded to the

Data Bus, parity/ECC checking occurs, and the tag is compared with the target

address. If the accessed location is present and error-free,Miss is driven inactive.

4. Once theData Bus andMiss are driven, the cache controller drivesCacheAck b

active. [Data Bus and Miss setup to CacheAck b active is 0ns (min.)].



CHAPTER 5. DESIGN OF A HIGH-PERFORMANCE CACHE CONTROLLER 136

5. The processor latches theData Bus into the internal caches and target register on

the rising edge of the internal clock (caused by CacheAck b going active). Miss

is also sampled to determine if the data is valid. On a cache hit the internal pipeline

continues operation, independent of the BIU's external cycling. If a second-level

cache miss occurs (Miss active), the Data Bus is latched by the cache controller

in case a write-back cycle is required.

6. The end of the external read cycle causes the BIU to drive CacheReq b inactive.

7. The cache controller drives the RAM's chip-selects and output-enables inactive.

The tag/data RAMs indicate their deselection by driving their completion signals

inactive. The cache controller drives Miss high and CacheAck b inactive, in-

dicating that the external bus has been released. [Data Bus released and Miss

setup to CacheAck b inactive is 0ns (min.)].

External Write Hit:

8. Once the BIU recognizes that the external data bus has been released, a �rst-level

cache write-back operation can occur. The write-back address and data are driven

onto the bus and Read/Write b is driven low. An external write-back cycle can

start relative to the inactive edge of an acknowledge signal or the beginning of an

internal �1 period.

9. CacheReq b is driven active, starting the external write cycle. [Address Bus,

Data Bus, and Read/Write b valid to CacheReq b active is 0ns (min.)].

10. To execute a write operation, the cache controller drives the tag/data RAM chip-

selects and the tag RAM output-enables active and performs a tag compare once

tag data is valid. Once the tag compare is completed, the cache controller drives

Miss valid and CacheAck b active. [Miss setup to CacheAck b active is 0ns

(min.)].

11. The BIU drives CacheReq b inactive, indicating that a write-hit was detected.

The cache controller pulses the write-enable signals to the RAMs, using the RAM

completion signals for write-pulse timing.

12. The external cache controller drives Miss and CacheAck b high. [Miss high to

CacheAck b inactive is 0ns (min.)].



CHAPTER 5. DESIGN OF A HIGH-PERFORMANCE CACHE CONTROLLER 137

13. The BIU drives Read/Write b high and the Data Bus tri-state. [Data Bus

tri-state to Read/Write b high is 0ns (min.)].

5.3.3 SRAM Completion Detection

Our goal in developing the second-level cache controller is to support fully asynchronous

interfaces. To support a fully asynchronous interface between the cache controller and

SRAMs, we require an SRAM con�guration which provides completion detection. 9-

bit wide SRAMs are assumed in our second-level cache design. This allows eight bits

to be used for data/tag information with one bit used to provide access completion

detection. All access completion detect bits are written with a \0" and connected to a

pullup resistor. When the SRAMs are deselected, the completion signals are pulled high.

When the SRAMs are accessed, the completion signals are driven low with the same

access time as the other SRAM data signals. This method of completion detection for

commercial SRAMs only works for read cycles. The write-enable signals must be timed

via an external delay line, satisfying the minimum write-enable pulse width. However,

SRAM designs typically contain internal timing signals. These signals, if externalized,

would provide completion signalling for both read and write operations.

A completion detection network which combines these individual completion signals

can be formed using standard techniques [65].

5.4 Second-Level Cache Controller: Design

We now describe how the above cache protocol can be speci�ed and implemented using

our locally-clocked design method.

5.4.1 Signalling Issues

The cache protocol of the previous section includes both transitions on control signals

(e.g. CacheReq b) and sampling of data values (e.g. Read/Write b, which may not

transition on every cycle). However, our burst-mode speci�cation style requires that

every system event be a transition: only control signals are permitted.



CHAPTER 5. DESIGN OF A HIGH-PERFORMANCE CACHE CONTROLLER 138

In the case of data values, such as Read/Write b, we must transform the single-

rail data signal into a dual-rail pair of control signals: RD and WR. A sampling of

the single-rail data signal is represented in a burst-mode speci�cation by a transition of

the appropriate dual-rail signal (which is later reset). After all data inputs have been

transformed into dual-rail control signals, the cache protocol of Section 5.3.2 can be

described by a burst-mode speci�cation. (Note that many asynchronous speci�cation

styles have similar constraints, e.g. [12, 14, 19, 47, 55, 65, 67, 68, 96].)

Each data input can be implemented in hardware as a dual-rail pair of control inputs

by simple gating of the input, and its complement, with a strobe signal. Such strobe

signals are generated as outputs by the cache controller. (This technique is similar to one

used by Martin and Burns [14, 55, 58].) To simplify the exposition, we do not include

these strobe outputs in the speci�cation described below.

5.4.2 Timing Issues

A locally-clocked implementation usually assumes that no new inputs arrive until the

machine has stabilized after generating outputs [73]. That is, the machine operates cor-

rectly in fundamental mode, where the known delays in the environment are greater than

the settling time of the state machine. In the case of the cache subsystem, the controller

environment consists of the processor, cache SRAMs, and external memory controller.

Delays of each of these components are known, and the environmental assumption is

easily satis�ed.

5.4.3 Controller Speci�cation

We have described the protocols discussed in the previous section with a burst-mode

speci�cation. The speci�cation has 16 primary inputs, 19 primary outputs, 38 states

and 49 transitions. The speci�cation supports protocols for: cache read, cache write,

snoop read, and snoop write. Figure 5.4 describes the top-level speci�cation where mode

selection occurs. Figure 5.5 describes the cache read protocol and Figure 5.6 describes

the cache write protocol. Both protocols include both cache hit and miss options; we

describe only hit protocols in Figures 5.5 and 5.6. Snoop protocols are described by

similar speci�cations.



CHAPTER 5. DESIGN OF A HIGH-PERFORMANCE CACHE CONTROLLER 139

0

CacheReq_b-, WR+ /
CS*-, OETag*-, EnMiss*-

[to state #1]

[to state #12]

[to state #29]

[to state #32]

(CACHE READ)

(CACHE WRITE)

(SNOOP READ)

(SNOOP WRITE)

CacheReq_b-, RD+ /
CS*-, OEData*-,
OETag*-, EnMiss*-

MemReq_b-, Snoop*-, RD+ /
CS*-, OEData*-,
OETag*-, EnMiss*-

MemReq_b-, Snoop*-, WR+ /
CS*-, OEData*-,
OETag*-, EnMiss*-

KEY:  each transition is described by:  input burst / output burst.

Figure 5.4: Top level of the cache-controller �nite-state diagram where mode selection
occurs.

Cache read and write hit protocols were described using the timing diagram in the

previous section. We point out the key events in the corresponding burst-mode speci�-

cation.

Cache Read Hit (Figure 5.5):

Transition 0!1: The controller waits for the dual-rail read input and the

cache access request from the processor (CacheReq b). It then generates

the appropriate outputs to initiate the cache read.

Transition 1!2: Once the completion input signals have arrived from the

cache, the controller generates acknowledge outputs to the processor. At this

point, the processor may latch the read data and proceed with its operations.



CHAPTER 5. DESIGN OF A HIGH-PERFORMANCE CACHE CONTROLLER 140

1

2

3

[to state #0]

[from state #0]

CacheReq_b-, RD+ /

CS*-, OEData*-, OETag*-, EnMiss*-

CAck_All*-, CAck_Tag*- /

CacheAck_b-, WBL* -

CacheReq_b+, RD- /

CS*+, OEData*+, OETag*+,
WBL*+, EnMiss*+

CAck_All*+, CAck_Tag*+ /

CacheAck_b+

MemReq_b- /
OEData*+, OETag*+,
WBL*+, EnMiss*+

[to state #4]

CACHE READ HIT

(CACHE READ MISS)

Figure 5.5: Cache-read-hit section of cache controller �nite-state diagram.

Transition 2!3: The dual-rail read input is reset, and the processor read

request (CacheReq b) is deasserted. The controller deasserts cache (and

other) signals.

Transition 3!0: The SRAM completion detection signals are deasserted; the

controller then deasserts the remaining handshaking signal (CacheAck b).

Note that the signalling convention of the controller on both of its interfaces is a

4-phase handshaking protocol. However, in practice the deassertion of the handshaking

signals occurs after the processor has read the cache data. This signalling protocol

e�ectively hides the overhead of the 4-phase handshaking and allows low-latency access

to the cache. (Cf. similar hiding done by Alain Martin and Steve Burns in [14, 55, 58].)

Cache Write Hit (Figure 5.6):



CHAPTER 5. DESIGN OF A HIGH-PERFORMANCE CACHE CONTROLLER 141

Transition 0!12: This transition is similar to a read request but the con-

troller waits for the dual-rail write input. It then generates the appropriate

outputs to initiate a tag compare.

Transition 12!13: Once the completion input signal has arrived from the

cache, the controller generates an acknowledge output to the processor and

enables the bidirectional Miss signal to the processor.

Transitions 13!14,15,16,17: The processor indicates a write hit by deassert-

ingCacheReq b. Appropriate (dual-rail) address bits are used to determine

the correct SRAM write address. The controller generates the appropriate

cache write signals.

Transitions 14,15,16,17!18: When the SRAM completion detection signals

are asserted, the write is complete. The controller then deasserts the cache

write enable signals.

Transition 18!0: When the SRAM completion detection signals are de-

asserted, the controller deasserts the remaining cache signals as well as its

acknowledge to the processor.

5.4.4 Resulting Implementation and Performance

The complete second-level cache controller for the STRiP processor has been designed

using the locally-clocked synthesis method, by a combination of manual and automated

techniques. Manual techniques were used for one step of the state minimization pro-

cedure. We are currently improving our automated state minimization algorithms to

handle large examples. After state minimization, the machine requires 12 states; there-

fore four state bits are used. Sum-of-products logic equations were produced for the 19

output variables, four state variables and the local clock. The total number of products

and literals for this implementation are given in Table 5.1. Our �nal logic-level imple-

mentation has 245 product terms, 886 literals, 23 phase-1 dynamic D-latches and four

phase-2 static D-latches.



CHAPTER 5. DESIGN OF A HIGH-PERFORMANCE CACHE CONTROLLER 142

[to state #0]

[from state #0]

CacheReq_b-, WR+ /

CS*-, OETag*-, EnMiss*-

CAck_Tag*- /

CacheAck_b-, OETag*+, MissLatch*-

CacheReq_b+,
CAck_Tag*+, 
WR-,

CacheReq_b+,
CAck_Tag*+, 
WR-,

CacheReq_b+,
CAck_Tag*+, 
WR-,

CacheReq_b+,
CAck_Tag*+, 
WR-,

ADDR2_L+,
ADDR3_H+ /ADDR2_L+,

ADDR3_L+ /

ADDR2_H+,
ADDR3_L+ /

ADDR2_H+,
ADDR3_H+ /

WE0*-,
WE1*-, WE2*-,

WE3*-,

WETag*-,
TagDirty*-,
TagDrive*-,
EnMiss*+,
MissLatch*+

WETag*-,
TagDirty*-,
TagDrive*-,
EnMiss*+,
MissLatch*+

WETag*-,
TagDirty*-,
TagDrive*-,
EnMiss*+,
MissLatch*+

WETag*-,
TagDirty*-,
TagDrive*-,
EnMiss*+,
MissLatch*+

MemReq_b-,  CAckTag*+,
WR-, RD+ /

OEData*-,
OETag*-,
EnMiss*+,
MissLatch*+ 

CAck_All*-,
CAck_Tag*-,

CAck_All*-,
CAck_Tag*-,

CAck_All*-,
CAck_Tag*-,

ADDR2_L*-,
ADDR3_L*- /

ADDR2_H* -,
ADDR3_L*- /

ADDR2_H*-,
ADDR3_H*- /

WE0*+, WETag*+

CAck_All*-,
CAck_Tag*-,
ADDR2_L*-,
ADDR3_H*- /

WE1*+, WETag*+ WE2*+, WETag*+ WE3*+, WETag*+

CAck_All*+, CAck_Tag*+ /
CS*+, CacheAck_b+,
TagDrive*+, TagDirty*+

12

13

14 15 16 17

18

[to state #19]

(CACHE WRITE MISS)

CACHE WRITE HIT

Figure 5.6: Cache-write-hit section of cache controller �nite-state diagram.

An estimate of the area overhead of the asynchronous controller can be derived from

Table 5.1. A comparable synchronous controller can be implemented using similar output

and state logic, but requires no local clock. The local clock contains 6.9% (17/245) of

the products and 12.5% (111/886) of the literals in our logic-level implementation.

Performance of the STRiP's asynchronous memory interface was analyzed assuming

a 0.8�mCMOS process for the processor and second-level cache controller and an SRAM

with a worst-case access time of 12ns (7ns nominal). Gate and latch delays in a STRiP

processor implementation have been previously analyzed using Spice [30]. We assumed a

full-custom implementation of the controller using a similar gate and process technology.



CHAPTER 5. DESIGN OF A HIGH-PERFORMANCE CACHE CONTROLLER 143

To determine the controller processing delay, we �rst identi�ed the critical path for

cache read access in the controller. We then manually mapped the critical logic into

a simple multi-level network of full-custom gates (see Chapter 4.10) and estimated the

corresponding path delay.

A breakdown of element delays controlling the second-level cache cycle time is given

in Table 5.2. The internal clock's cycle period for a second-level cache read hit (including

clock startup time) was 35ns, assuming nominal process, voltage, and temperature. If the

second-level cache controller was included on the processor chip (additional pins required

to support an external tag RAM) the cycle time is reduced to 20ns. Including the cache

controller on the processor chip provides the highest performance, and advances in chip

density and packaging allow this con�guration to be practical for future designs.

A synchronous processor implemented in the same 0.8�m CMOS technology would

have a maximumclock rate of approximately 66MHz. At this clock rate, assuming worst-

case design constraints, four clock periods are required to access a synchronous cache

subsystem equivalent to the proposed self-timed subsystem (three clocks if the cache

controller is included on the processor chip). Therefore, the self-timed interface and

controller provides approximately twice the performance of an equivalent synchronous

system (35ns versus 60ns for an o�-chip cache controller and 20ns versus 45ns for an

on-chip cache controller). Much of this performance is gained through the ability of the

self-timed system to take advantage of typical operating conditions and avoid discrete

increments in cycle time.

Number of Number of

Number Products/ Transparent

Signals Required Literals Latches

Primary Outputs 19 215/720 19
State Variables 4 13/54 8
Local Clock 1 17/111 0

Total 24 245/886 27

Table 5.1: Area Evaluation of Locally-Clocked Cache Controller.



CHAPTER 5. DESIGN OF A HIGH-PERFORMANCE CACHE CONTROLLER 144

Second-Level Cache Async. O�-Chip

Critical Logic Path Cache Typical Delay,

Elements 0.8�m CMOS (ns)

Proc. o�-chip driver 3
Cache Ctrl. on-chip driver 2*
Cache Ctrl. processing 5*
Cache Ctrl. o�-chip driver 3*
SRAM typical access time 7
Cache Ctrl. on-chip driver 2*
Completion detection 2.5
Cache Ctrl. processing 2.5
Cache Ctrl. o�-chip driver 3*
Proc. on-chip driver 2
Dynamic Clock Startup Time 3

Total 35

*Eliminated if second-level cache controller is implemented
on processor chip (with external tag RAMs).

Table 5.2: Main elements in Second-Level Cache Critical Logic Path.

5.5 Conclusions

Our second-level cache controller design indicates the practicality of the locally-clocked

synthesis method. The controller is large, compared with existing asynchronous con-

trollers; it supports the full functionality of the second-level cache protocol; and it sat-

is�es the interface requirements of the STRiP processor. Interestingly, the burst-mode

speci�cation style was shown to be su�cient and natural for describing a signi�cant

concurrent controller design. The features of generalized Petri nets, STGs, and parallel

languages used in other competing design methods [12, 14, 19, 33, 47, 55, 65, 67, 68, 96]

were not required. In addition, the design resulted in a performance improvement of

approximately 100% over an equivalent synchronous implementation.



Chapter 6

Conclusions

We have presented a new method for the design of asynchronous state-machine con-

trollers. The method is sound, has been automated and produces high-performance

designs which are hazard-free at the gate-level.

The thesis has described the following results:

Burst-mode speci�cations. We introduced and formalized a new class of speci�ca-

tions for asynchronous controllers, called burst-mode speci�cations. Speci�cations are

described by state diagrams and allow multiple-input changes. Traditional \multiple-

input change" designs require inputs to change within a narrow window of time. In

contrast, burst-mode speci�cations impose no timing constraints on inputs within a

burst. The speci�cations typically assume a fundamental-mode of operation: no input

burst can arrive until a system is stable from the previous burst.

Locally-clocked implementations. We introduced a new self-synchronized implemen-

tation style for the implementation of burst-mode speci�cations. Our approach was

guided by two goals: correctness and performance. Unlike many existing methods, de-

signs are hazard-free at the gate-level. In addition, realizations typically have the latency

of their combinational logic.

Automated synthesis algorithms. We developed and automated a complete set of

state and logic minimization algorithms. The logic minimization algorithm solves a gen-

eral, previously unsolved problem, called the two-level hazard-free logic minimization

problem. The algorithm �nds a minimal cover of a Boolean function that is hazard-free

for a given set of multiple-input changes, if such a solution exists. An interesting feature

145



CHAPTER 6. CONCLUSIONS 146

of our algorithms is that they require only small changes to existing synchronous algo-

rithms. In particular, state minimization requires only a modi�cation of the de�nition

of \compatibility". Logic minimization generalizes the notions of \prime implicant" and

\minterm" to new notions of \dhf-prime implicant" and \required cube", but otherwise

sets up a standard covering problem.

Large example. Finally, we applied the method to a large, realistic example: a high-

performance cache controller for a new self-timed RISC architecture. This controller is

more complex than existing examples from the literature. The resulting asynchronous

cache subsystem, using our design, is approximately twice as fast as a comparable syn-

chronous subsystem.

Recent Developments

Some recent work builds on the results of the thesis, and extends it in new ways.

Yun et al. [106] have developed an alternative design method for the synthesis of

burst-mode controllers. The method demonstrates that a burst-mode asynchronous con-

troller can be designed without latches or a local clock. The resulting Hu�man machines

are called 3D machines. These machines do not incur the area overhead of the local clock

or the latches. In addition, there is a small gain in e�ciency, since output changes do not

need to pass through dynamic latches. However, unlike the locally-clocked method, the

3Dmethod requires two feedback cycles to implement a state change. Yun has developed

a complete set of state minimization and assignment algorithms for the method [105].

However, he makes use of our logic minimizer, described in Chapter 4, to insure a

hazard-free logic implementation. The method has been e�ectively applied to a number

of design problems.

Aghdasi [1] has developed an alternative self-synchronized design method, using

\data-driven clocks". He extends our work by partitioning the local clock into sev-

eral clocks. Each clock controls an individual state variable. As a result, each clock may

be smaller, and clocks need not pulse for every global state change.

A di�erent extension to our work is proposed by Yun et al. [107]. This work points out

di�culties in using burst-mode speci�cations to describe certain real systems. The work

proposes two practical extensions to burst-mode. First, limited concurrency between



CHAPTER 6. CONCLUSIONS 147

inputs and outputs is allowed. And, second, speci�cations are generalized to describe

the sampling of level signals. These extensions to burst-mode have been implemented

in the 3D design style.

Open Problems

A number of incremental improvements to the locally-clocked method are possible. In

particular, algorithms for state minimization, state assignment and logic minimization

can be further optimized. Here, though, we consider more fundamental open problems

that need to be addressed in the future.

Noise. In an asynchronous design, noise on wires can cause a system to fail. This

phenomenon holds in a synchronous design, except that the global clock limits the win-

dow of vulnerability to noise. It is important to explore the sensitivity of asynchronous

designs to noise, and to develop techniques to avoid potential problems.

High-Level System Design. A burst-mode speci�cation is useful in describing small-

and medium-sized systems. However, it would be di�cult to describe a large concurrent

system using a state-machine speci�cation. Translation methods [57, 10, 3, 95] have been

more e�ective in describing such systems. However, Davis, Coates and Stevens [29, 26]

have demonstrated that a large highly-concurrent system can be constructed from a

collection of interacting asynchronous state machines. State machines are speci�ed using

data-driven speci�cations [26], which are related to our burst-mode style. However, the

decomposition of the system behavior was performed manually. It is desirable to develop

formal techniques to decompose a concurrent system into a collection of communicating

state machines which can be described by burst-mode speci�cations.

Testing. Testing of asynchronous circuits is an underdeveloped area, which is critical

to the acceptance of the designs. In principle, it should not be signi�cantly harder

to test locally-clocked machines than synchronous one-phase latch machines [60]. In

particular, requirements for testing include the testing of combinational logic and the

delay testing of various paths through the machine to insure that timing constraints

are met. However, two-level hazard-free combinational logic may contain redundant or

non-prime implicants, which make testing more di�cult. Therefore, it is important to

develop testing and design-for-testability techniques for hazard-free combinational logic.



CHAPTER 6. CONCLUSIONS 148



Bibliography

[1] F. Aghdasi. Asynchronous state machine synthesis using data driven clocks. In

Proceedings of the 1992 European Design Automation Conference, pages 9{14.

[2] F. Aghdasi. Synthesis of asynchronous sequential machines for VLSI applications.

In Proceedings of the 1991 International Conference on Concurrent Engineering

and Electronic Design Automation (CEEDA), pages 55{59, March 1991.

[3] V. Akella and G. Gopalakrishnan. SHILPA: a high-level synthesis system for self-

timed circuits. In Proceedings of the 1992 IEEE/ACM International Conference on

Computer-Aided Design, pages 587{91. IEEE Computer Society Press, November

1992.

[4] D.B. Armstrong, A.D. Friedman, and P.R. Menon. Realization of asynchronous

sequential circuits without inserted delay elements. IEEE Transactions on Com-

puters, C-17(2):129{134, February 1968.

[5] P.A. Beerel and T. Meng. Automatic gate-level synthesis of speed-independent

circuits. In Proceedings of the 1992 IEEE/ACM International Conference on

Computer-Aided Design, pages 581{586. IEEE Computer Society Press, November

1992.

[6] J. Beister. A uni�ed approach to combinational hazards. IEEE Transactions on

Computers, C-23(6):566{575, JUNE 1974.

[7] R.K. Brayton, G.D. Hachtel, C.T. McMullen, and A.L. Sangiovanni-Vincentelli.

Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers,

Boston, MA, 1984.

149



BIBLIOGRAPHY 150

[8] J.G. Bredeson. Synthesis of multiple-input change hazard-free combinational

switching circuits without feedback. International Journal of Electronics (GB),

39(6):615{624, December 1975.

[9] J.G. Bredeson and P.T. Hulina. Elimination of static and dynamic hazards for mul-

tiple input changes in combinational switching circuits. Information and Control,

20:114{224, 1972.

[10] E. Brunvand. Translating concurrent communicating programs into asynchronous

circuits. Technical Report CMU-CS-91-198, Carnegie Mellon University, 1991.

Ph.D. Thesis.

[11] E. Brunvand. The NSR processor. In Proceedings of the Twenty-Sixth Annual

Hawaii International Conference on System Sciences, volume I, pages 428{435.

IEEE Computer Society Press, January 1993.

[12] E. Brunvand and R. F. Sproull. Translating concurrent programs into delay-

insensitive circuits. In Proceedings of the 1989 IEEE International Conference on

Computer-Aided Design, pages 262{265. IEEE Computer Society Press, November

1989.

[13] J.A. Brzozowski and J.C. Ebergen. Recent developments in the design of asyn-

chronous circuits. Technical Report CS-89-18, University of Waterloo, Computer

Science Department, 1989.

[14] S. M. Burns. Automated compilation of concurrent programs into self-timed cir-

cuits. Technical Report Caltech-CS-TR-88-2, California Institute of Technology,

1987. M.S. Thesis.

[15] S.M. Burns. Performance analysis and optimization of asynchronous circuits. Tech-

nical Report Caltech-CS-TR-91-01, California Institute of Technology, 1991. Ph.D.

Thesis.

[16] S.M. Burns and A.J. Martin. Syntax-directed translation of concurrent programs

into self-timed circuits. In J. Allen and T.F. Leighton, editors, Advanced Research



BIBLIOGRAPHY 151

in VLSI: Proceedings of the Fifth MIT Conference, pages 35{50. MIT Press, Cam-

bridge, MA, 1988.

[17] T.J. Chaney and C.E. Molnar. Anomalous behavior of synchronizer and arbiter

circuits. IEEE Transactions on Computers (Correspondence), C-22(4):421{425,

April 1973.

[18] J.-S. Chiang and D. Radhakrishnan. Hazard-free design of mixed operating mode

asynchronous sequential circuits. International Journal of Electronics, 68(1):23{

37, January 1990.

[19] T.-A. Chu. Synthesis of self-timed vlsi circuits from graph-theoretic speci�cations.

Technical Report MIT-LCS-TR-393, Massachusetts Institute of Technology, 1987.

Ph.D. Thesis.

[20] T.-A. Chu. Automatic synthesis and veri�cation of hazard-free control circuits

from asynchronous �nite state machine speci�cations. In Proceedings of the 1992

IEEE International Conference on Computer Design: VLSI in Computers and

Processors, pages 407{413. IEEE Computer Society Press, 1992.

[21] H.Y.H. Chuang and S. Das. Synthesis of multiple-input change asynchronous ma-

chines using controlled excitation and ip-ops. IEEE Transactions on Computers,

C-22(12):1103{1109, December 1973.

[22] W.A. Clark. Macromodular computer systems. In Proceedings of the Spring Joint

Computer Conference, AFIPS, April 1967.

[23] B. Coates, 1992. Private communication.

[24] I. David, R. Ginosar, and M. Yoeli. Self-timed implementation of a reduced in-

struction set computer. Technical Report 732, Technion and Israel Institute of

Technology, October 1989.

[25] A. Davis, B. Coates, and K. Stevens, 1990. Private communication.

[26] A. Davis, B. Coates, and K. Stevens. Automatic synthesis of fast compact self-

timed control circuits. In 1993 IFIP Working Conference on Asynchronous Design

Methodologies (Manchester, England), 1993.



BIBLIOGRAPHY 152

[27] A.L. Davis. A data-driven machine architecture suitable for VLSI implementation.

In C.L. Seitz, editor, Proceedings of the Caltech Conference on Very Large Scale

Integration, pages 479{494, January 1979.

[28] Al Davis. The mayy parallel processing system. Technical Report HPL-SAL-89-

22, Hewlett-Packard Systems Architecture Laboratory, 1989.

[29] A.L. Davis, B. Coates, and K. Stevens. The post o�ce experience: Designing a

large asynchronous chip. In Proceedings of the Twenty-Sixth Annual Hawaii Inter-

national Conference on System Sciences, volume I, pages 409{418. IEEE Computer

Society Press, January 1993.

[30] M.E. Dean. STRiP: A self-timed RISC processor architecture. Technical report,

Stanford University, 1992. Ph.D. Thesis.

[31] M.E. Dean, D.L. Dill, and M. Horowitz. Self-timed logic using current-sensing

completion detection (CSCD). In Proceedings of the 1991 IEEE International Con-

ference on Computer Design: VLSI in Computers and Processors. IEEE Computer

Society Press, October 1991.

[32] David L. Dill. Trace Theory for Automatic Hierarchical Veri�cation of Speed-

Independent Circuits. MIT Press, Cambridge, MA, 1989.

[33] Jo Ebergen. A formal approach to designing delay-insensitive circuits. Distributed

Computing, 5(3):107{119, 1991.

[34] E.B. Eichelberger. Hazard detection in combinational and sequential switching

circuits. IBM Journal of Research and Development, 9(2):90{99, 1965.

[35] J. Frackowiak. Methoden der analyse und synthese von hasardarmen schaltnetzen

mit minimalen kosten I. Elektronische Informationsverarbeitung und Kybernetik,

10(2/3):149{187, 1974.

[36] A.D. Friedman and P.R. Menon. Synthesis of asynchronous sequential circuits

with multiple-input changes. IEEE Transactions on Computers, C-17(6):559{566,

June 1968.



BIBLIOGRAPHY 153

[37] R. Ginosar and N. Michell. On the potential of asynchronous pipelined proces-

sors. Technical Report UUCS-90-015, VLSI Systems Research Group, University

of Utah, 1990.

[38] G. Gopalakrishnan and V. Akella. Speci�cation, simulation and synthesis of self-

timed circuits. In Proceedings of the Twenty-Sixth Annual Hawaii International

Conference on System Sciences, volume I, pages 399{408. IEEE Computer Society

Press, January 1993.

[39] A. Grasselli. Minimal closed partitions for incompletely speci�ed ow tables.

IEEE Transactions on Electronic Computers (Short Notes), EC-15(2):245{249,

April 1966.

[40] A. Grasselli and F. Luccio. A method for minimizing the number of internal states

in incompletely speci�ed sequential networks. IEEE Transactions on Electronic

Computers, EC-14(3):350{359, June 1965.

[41] Alan B. Hayes. Stored state asynchronous sequential circuits. IEEE Transactions

on Computers, C-30(8):596{600, August 1981.

[42] C.A.R. Hoare. Communicating sequential processes. Communications of the ACM,

21(8):666{677, August 1978.

[43] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, Reading, MA, 1979.

[44] M.B. Josephs and J.T. Udding. An overview of D-I algebra. In Proceedings of

the Twenty-Sixth Annual Hawaii International Conference on System Sciences,

volume I, pages 329{338. IEEE Computer Society Press, January 1993.

[45] D.S. Kung. Hazard-non-increasing gate-level optimization algorithms. In Proceed-

ings of the 1992 IEEE/ACM International Conference on Computer-Aided Design,

pages 631{634. IEEE Computer Society Press, November 1992.

[46] M. Ladd and W. P. Birmingham. Synthesis of multiple-input change asynchronous

�nite state machines. In Proceedings of the 28th ACM/IEEE Design Automation

Conference, pages 309{314. Association for Computing Machinery, June 1991.



BIBLIOGRAPHY 154

[47] L. Lavagno, K. Keutzer, and A. Sangiovanni-Vincentelli. Algorithms for synthesis

of hazard-free asynchronous circuits. In Proceedings of the 28th ACM/IEEE Design

Automation Conference, pages 302{308. Association for Computing Machinery,

June 1991.

[48] L. Lavagno, C.W. Moon, R.K. Brayton, and A. Sangiovanni-Vincentelli. Solving

the state assignment problem for signal transition graphs. In Proceedings of the

29th IEEE/ACM Design Automation Conference, pages 568{572. IEEE Computer

Society Press, June 1992.

[49] L. Lavagno and A. Sangiovanni-Vincentelli. Linear programming for optimum

hazard elimination in asynchronous circuits. In Proceedings of the 1992 IEEE In-

ternational Conference on Computer Design: VLSI in Computers and Processors,

pages 275{278. IEEE Computer Society Press, October 1992.

[50] A. Liebchen and G. Gopalakrishnan. Dynamic reordering of high latency trans-

actions using a modi�ed micropipeline. In Proceedings of the 1992 IEEE Inter-

national Conference on Computer Design: VLSI in Computers and Processors,

pages 336{340. IEEE Computer Society Press, 1992.

[51] K.-J. Lin and C.-S. Lin. Automatic synthesis of asynchronous circuits. In Pro-

ceedings of the 28th ACM/IEEE Design Automation Conference, pages 296{301.

Association for Computing Machinery, June 1991.

[52] C.N. Liu. A state variable assignment method for asynchronous sequential switch-

ing circuits. Journal of the ACM, 10:209{216, April 1963.

[53] G. Mago. Realization methods for asynchronous sequential circuits. IEEE Trans-

actions on Computers, C-20(3):290{297, March 1971.

[54] A.J. Martin. The design of a self-timed circuit for distributed mutual exclusion.

In Henry Fuchs, editor, Proceedings of the 1985 Chapel Hill Conference on Very

Large Scale Integration, pages 245{60. CSP, Inc., 1985.

[55] A.J. Martin. Compiling communicating processes into delay-insensitive vlsi cir-

cuits. Distributed Computing, 1:226{234, 1986.



BIBLIOGRAPHY 155

[56] A.J. Martin. The limitation to delay-insensitivity in asynchronous circuits. In

W.J. Dally, editor, Advanced Research in VLSI: Proceedings of the Sixth MIT

Conference, pages 263{278. MIT Press, Cambridge, MA, 1990.

[57] A.J. Martin. Programming in VLSI: From communicating processes to delay-

insensitive circuits. In C.A.R. Hoare, editor, Developments in Concurrency and

Communication, UT Year of Programming Institute on Concurrent Programming,

pages 1{64. Addison-Wesley, Reading, MA, 1990.

[58] A.J. Martin, S.M. Burns, T.K. Lee, D. Borkovic, and P.J. Hazewindus. The design

of an asynchronous microprocessor. In 1989 Caltech Conference on Very Large

Scale Integration, 1989.

[59] E.J. McCluskey. Introduction to the Theory of Switching Circuits. McGraw-Hill,

New York, NY, 1965.

[60] E.J. McCluskey. Logic Design Principles: with emphasis on testable semicustom

circuits. Prentice-Hall, Englewood Cli�s, NJ, 1986.

[61] P.C. McGeer and R.K. Brayton. Hazard prevention in combinational circuits.

In Proceedings of the Twenty-Third Annual Hawaii International Conference on

System Sciences, volume I, pages 111{120. IEEE Computer Society Press, January

1990.

[62] R.B. McGhee. Some aids to the detection of hazards in combinational switching

circuits. IEEE Transactions on Computers (Short Notes), C-18:561{565, June

1969.

[63] C. Mead and L. Conway. Introduction to VLSI Systems, chapter 7. Addison-

Wesley, Reading, MA, 1980. C.L. Seitz, System Timing.

[64] T. H.-Y. Meng, R.W. Brodersen, and D.G. Messerschmitt. Automatic synthe-

sis of asynchronous circuits from high-level speci�cations. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 8(11):1185{1205,

November 1989.



BIBLIOGRAPHY 156

[65] T.H. Meng. Synchronization Design for Digital Systems. Kluwer Academic Pub-

lishers, Boston, MA, 1991.

[66] R.E. Miller. Switching Theory. Volume II: Sequential Circuits and Machines. John

Wiley and Sons, New York, NY, 1965.

[67] C.E. Molnar, T.-P. Fang, and F.U. Rosenberger. Synthesis of delay-insensitive

modules. In Henry Fuchs, editor, Proceedings of the 1985 Chapel Hill Conference

on Very Large Scale Integration, pages 67{86. CSP, Inc., 1985.

[68] C.W. Moon, P.R. Stephan, and R.K. Brayton. Synthesis of hazard-free asyn-

chronous circuits from graphical speci�cations. In Proceedings of the 1991 IEEE

International Conference on Computer-Aided Design, pages 322{325. IEEE Com-

puter Society Press, November 1991.

[69] C. Myers and T. Meng. Synthesis of timed asynchronous circuits. In Proceedings of

the 1992 IEEE International Conference on Computer Design: VLSI in Computers

and Processors, pages 279{284. IEEE Computer Society Press, October 1992.

[70] C.D. Nielsen and A. Martin. The design of a delay-insensitive multiply-accumulate

unit. In Proceedings of the Twenty-Sixth Annual Hawaii International Conference

on System Sciences, volume I, pages 379{388. IEEE Computer Society Press, Jan-

uary 1993.

[71] S.M. Nowick, M.E. Dean, D.L. Dill, and M. Horowitz. The design of a high-

performance cache controller: a case study in asynchronous synthesis. In Pro-

ceedings of the Twenty-Sixth Annual Hawaii International Conference on System

Sciences, volume I, pages 419{427. IEEE Computer Society Press, January 1993.

[72] S.M. Nowick and D.L. Dill. Automatic synthesis of locally-clocked asynchronous

state machines. In Proceedings of the 1991 IEEE International Conference on

Computer-Aided Design, pages 318{321. IEEE Computer Society Press, November

1991.



BIBLIOGRAPHY 157

[73] S.M. Nowick and D.L. Dill. Synthesis of asynchronous state machines using a local

clock. In Proceedings of the 1991 IEEE International Conference on Computer De-

sign: VLSI in Computers and Processors. IEEE Computer Society Press, October

1991.

[74] S.M. Nowick and D.L. Dill. Exact two-level minimization of hazard-free logic

with multiple-input changes. In Proceedings of the 1992 IEEE/ACM International

Conference on Computer-Aided Design, pages 626{630. IEEE Computer Society

Press, November 1992.

[75] S.M. Nowick, K.Y. Yun, and D.L. Dill. Practical asynchronous controller design.

In Proceedings of the 1992 IEEE International Conference on Computer Design:

VLSI in Computers and Processors, pages 341{345. IEEE Computer Society Press,

October 1992.

[76] Suhas S. Patil. An Asynchronous Logic Array. Technical Report Technical Mem-

orandom 62, Massachusetts Institute of Technology, Project MAC, 1975.

[77] J.L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall,

Englewood Cli�s, NJ, 1981.

[78] M. Rem, J.L.A. van de Snepscheut, and J.T. Udding. Trace theory and the def-

inition of hierarchical components. In Randal Bryant, editor, Proceedings of the

Third Caltech Conference on Very Large Scale Integration, pages 225{239. CSP,

Inc., 1983.

[79] C.A. Rey and J. Vaucher. Self-synchronized asynchronous sequential machines.

IEEE Transactions on Computers, C-23(12):1306{1311, December 1974.

[80] L.Y. Rosenblum and A.V. Yakovlev. Signal graphs: from self-timed to timed ones.

In Proceedings of International Workshop on Timed Petri Nets, Torino, Italy,

pages 199{207. IEEE Computer Society Press, July 1985.

[81] R. Rudell. Logic synthesis for VLSI design. Technical Report UCB/ERL M89/49,

Berkeley, 1989. Ph.D. Thesis.



BIBLIOGRAPHY 158

[82] R. Rudell and A. Sangiovanni-Vincentelli. Multiple-valued minimization for PLA

optimization. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 6(5):727{750, September 1987.

[83] C.L. Seitz. Asynchronous machines exhibiting concurrency. In Conference Record

of the Project MAC Conference on Concurrent Systems and Parallel Computation,

1970.

[84] P. Siegel, G. De Micheli, and D. Dill. Technology mapping for generalized

fundamental-mode asynchronous designs. In 30th ACM/IEEE Design Automa-

tion Conference, June 1993. To appear.

[85] J. Sparso and J. Staunstrup. Design and performance analysis of delay insensitive

multi-ring structures. In Proceedings of the Twenty-Sixth Annual Hawaii Interna-

tional Conference on System Sciences, volume I, pages 349{358. IEEE Computer

Society Press, January 1993.

[86] K.S. Stevens, S.V. Robison, and A.L. Davis. The post o�ce - communication

support for distributed ensemble architectures. In Sixth International Conference

on Distributed Computing Systems, 1986.

[87] I.E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720{738,

June 1989.

[88] M.A. Tapia. Synthesis of asynchronous sequential systems using boolean calculus.

In 14th Asilomar Conference on Circuits, Systems and Computers, pages 205{209,

November 1980.

[89] J.H. Tracey. Internal state assignments for asynchronous sequential machines.

IEEE Transactions on Electronic Computers, EC-15:551{560, August 1966.

[90] Jan Tijmen Udding. A formal model for de�ning and classifying delay-insensitive

circuits and systems. Distributed Computing, 1(4):197{204, 1986.

[91] S.H. Unger. Asynchronous Sequential Switching Circuits. Wiley-Interscience, New

York, NY, 1969.



BIBLIOGRAPHY 159

[92] S.H. Unger. Asynchronous sequential switching circuits with unrestricted input

changes. IEEE Transactions on Computers, C-20(12):1437{1444, December 1971.

[93] S.H. Unger. Self-synchronizing circuits and nonfundamental mode operation. IEEE

Transactions on Computers (Correspondence), C-26(3):278{281, March 1977.

[94] S.H. Unger. A building block approach to unclocked systems. In Proceedings of

the Twenty-Sixth Annual Hawaii International Conference on System Sciences,

volume I, pages 339{348. IEEE Computer Society Press, January 1993.

[95] C.H. van Berkel and R.W.J.J. Saeijs. Compilation of communicating processes into

delay-insensitive circuits. In Proceedings of the 1988 IEEE International Confer-

ence on Computer Design: VLSI in Computers and Processors, pages 157{162.

IEEE Computer Society Press, 1988.

[96] P. Vanbekbergen, F. Catthoor, G. Goossens, and H. De Man. Optimized synthesis

of asynchronous control circuits from graph-theoretic speci�cations. In Proceedings

of the 1990 IEEE International Conference on Computer-Aided Design, pages 184{

187. IEEE Computer Society Press, November 1990.

[97] P. Vanbekbergen, B. Lin, G. Goossens, and H. De Man. A generalized state as-

signment theory for transformations on signal transition graphs. In Proceedings of

the 1992 IEEE/ACM International Conference on Computer-Aided Design, pages

112{117. IEEE Computer Society, November 1992.

[98] Tom Verhoe�. Delay-insensitive codes { an overview. Distributed Computing,

3(1):1{8, 1988.

[99] T. Villa and A. Sangiovanni-Vincentelli. NOVA: state assignment of �nite state

machines for optimal two-level logic implementation. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 9(9):905{924, Septem-

ber 1990.

[100] T.E. Williams. Self-timed rings and their application to division. Technical Report

CSL-TR-91-482, Computer Systems Laboratory, Stanford University, 1991. Ph.D.

Thesis.



BIBLIOGRAPHY 160

[101] T.E. Williams and M.A. Horowitz. A zero-overhead self-timed 54b 160ns CMOS

divider. IEEE Journal of Solid-State Circuits, 26(11):1651{1661, November 1991.

[102] A.V. Yakovlev. On limitations and extensions of STG model for designing asyn-

chronous control circuits. In Proceedings of the 1992 IEEE International Confer-

ence on Computer Design: VLSI in Computers and Processors, pages 396{400.

IEEE Computer Society Press, October 1992.

[103] O. Yenersoy. Synthesis of asynchronous machines using mixed-operation mode.

IEEE Transactions on Computers, C-28(4):325{329, April 1979.

[104] M.L. Yu and P.A. Subrahmanyam. A path-oriented approach for reducing hazards

in asynchronous designs. In Proceedings of the 29th IEEE/ACM Design Automa-

tion Conference, pages 239{244. IEEE Computer Society Press, June 1992.

[105] K.Y. Yun and D.L. Dill. Automatic synthesis of 3D asynchronous �nite-state

machines. In Proceedings of the 1992 IEEE/ACM International Conference on

Computer-Aided Design. IEEE Computer Society Press, November 1992.

[106] K.Y. Yun, D.L. Dill, and S.M. Nowick. Synthesis of 3D asynchronous state ma-

chines. In Proceedings of the 1992 IEEE International Conference on Computer

Design: VLSI in Computers and Processors, pages 346{350. IEEE Computer So-

ciety Press, October 1992.

[107] K.Y. Yun, D.L. Dill, and S.M. Nowick. Practical generalizations of asynchronous

state machines. In The 1993 European Conference on Design Automation, pages

525{530. IEEE Computer Society Press, February 1993.


