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Techniques
• Fourier sampling
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The hidden subgroup problem
Problem: Fix a group G (known) and a subgroup H (unknown).  
Given a black box that computes f: G→S that is

• Constant on any particular left coset of H in G
• Distinct on different left cosets of H in G

(We say that f  hides H.)

Goal: Find (a generating set for) H.
An efficient algorithm runs in time poly(log |G|).

Even for very simple groups (e.g.,             ), a classical algorithm 
provably requires exponentially many queries of f to find H.

G = Zn
2



Most interesting cases of the HSP
• Abelian groups

Applications to factoring, discrete log, Pell’s equation, etc.
Can be solved efficiently

• Dihedral group
Applications to lattice problems [Regev 2002]
Subexponential-time algorithm [Kuperberg 2003]

• Symmetric group
Application to graph isomorphism
No nontrivial algorithms



Efficient algorithms for the HSP
• Abelian groups [Shor 1994; Boneh, Lipton 1995; Kitaev 1995]
• Normal subgroups [Hallgren, Russell, Ta-Shma 2000]
• “Almost abelian” groups [Grigni, Schulman, Vazirani2 2001]
• “Near-Hamiltonian” groups [Gavinsky 2004]
•                          [Püschel, Rötteler, Beth 1998]
•                , smoothly solvable groups [Friedl, Ivanyos, Magniez, 

Santha, Sen 2002]

• p-hedral: Z  N o Z p, p=φ(N)/poly(log N) prime, N prime
[Moore, Rockmore, Russell, Schulman 2004]

•                [Inui, Le Gall 2004]
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Efficient algorithms for the HSP
• Abelian groups [Shor 1994; Boneh, Lipton 1995; Kitaev 1995]
• Normal subgroups [Hallgren, Russell, Ta-Shma 2000]
• “Almost abelian” groups [Grigni, Schulman, Vazirani2 2001]
• “Near-Hamiltonian” groups [Gavinsky 2004]
➡                         [Püschel, Rötteler, Beth 1998]
•                , smoothly solvable groups [Friedl, Ivanyos, Magniez, 

Santha, Sen 2002]
➡p-hedral: Z  N o Z p, p=φ(N)/poly(log N) prime, N prime

[Moore, Rockmore, Russell, Schulman 2004], N arbitrary
➡               [Inui, Le Gall 2004]
➡             , r constant (including Heisenberg, r=2)

(Zn
2 × Zn

2 ) ! Z2

Zn
pk ! Z2

Zpk ! Zp

NEW!

NEW!Zr
p ! Zp
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|G|

∑
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|g, f(g)〉

|gH〉 :=
1√
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|gh〉

Discard second register to get a coset state,

with g∈G (unknown) chosen uniformly at random.

ρH :=
1

|G|
∑

g∈G

|gH〉〈gH|
Equivalently, we have the hidden subgroup state

Now we can (without loss of generality) perform a Fourier 
transform over G, and measure which irreducible representation 
the state is in (weak Fourier sampling).



Distinguishing quantum states
Problem: Given a quantum state ρ chosen from an ensemble of 
states ρi with a priori probabilities pi, determine i.

This can only be done perfectly if the states are orthogonal.  In 
general, we would just like a high probability of success.
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HSP as state estimation

Good news: In principle k=poly(log |G|) copies contain enough 
information to identify H.  [Ettinger, Høyer, Knill 1999]

Bad news: For some groups, it is necessary to make joint 
measurements on Ω(log |G|) copies.  [Moore, Russell, Schulman 
2005-6; Hallgren, Rötteler, Sen 2006]
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HSP by optimal measurement

[Ip 2003]: Shor’s algorithm implements the optimal 
measurement for the abelian HSP.

Question: What measurement maximizes the probability of 
successfully identifying the hidden subgroup?

Can we use this as a principle to find quantum algorithms?



Optimal measurement
Theorem. [Holevo 1973, Yuen-Kennedy-Lax 1975]
Given an ensemble of quantum states ρi  with a priori 
probabilities pi, the measurement with POVM elements Ei

 maximizes the probability of successfully identifying the state if 
and only if R = R† and R ≥ pi ρi for all i, where

R :=
∑
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piρiEi .
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probabilities pi, the measurement with POVM elements Ei

 maximizes the probability of successfully identifying the state if 
and only if R = R† and R ≥ pi ρi for all i, where

R :=
∑

i

piρiEi .

In general, it is nontrivial to find a POVM that satisfies these 
conditions (although it is a semidefinite program!).

But for all the cases discussed in this talk, the optimal 
measurement is a particularly simple POVM, the pretty good 
measurement.
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elements

Pretty good measurement

Ei := pi
1√
Σ

ρi
1√
Σ

Σ :=
∑

i

piρiwhere

This is a POVM:
∑

i

Ei =
1√
Σ

( ∑

i

piρi

) 1√
Σ

= 1

The PGM often does a pretty good job of distinguishing the ρi.

In fact, sometimes it is optimal!  (Check Holevo/YKL conditions)

(invert Σ over its support)
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Dihedral group
Symmetry group of an N-sided regular polygon

(1,0)

(0,1)

(a, b)(c, d) = (a + (−1)bc, b + d)

[Ettinger, Høyer 1998] To solve the HSP, it is 
sufficient to distinguish the order two 
subgroups                       (hidden reflections){(0, 0), (a, 1)}

(ZN ! Z2)

Coset states: |(a′, 0)H〉 =
1√
2
(|a′, 0〉+ |a + a′, 1〉)

Fourier transform:
1√
2N

∑

x∈ZN

|x〉(|0〉+ ωxa|1〉)

By symmetry, we can measure x wlog (Fourier sampling: measure 
which irreducible representation)
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Multiple dihedral coset states

(
1√
2
(|0〉+ ωxa|1〉)

)⊗k

=
1√
2k

∑

b∈Zk
2

ω(b·x)a|b〉

Sx
w := {b ∈ Zk

2 : b · x = w}
ηx

w := |Sx
w|

|Sx
w〉 :=

1√
ηx

w

∑

b∈Sx
w

|b〉

solutions of subset sum problem:

=
1√
2k

∑

w∈ZN

ωwa
√

ηx
w|Sx

w〉
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Subset sum and DHSP
The PGM (which is optimal) can be implemented unitarily by 
doing the inverse of the quantum sampling transformation:

|w〉 "→ |Sx
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Applying this to the coset state gives 
1√
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∑
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ωwa
√

ηx
w|Sx

w〉 #→
1√
2k

∑

w∈ZN

ωwa
√

ηx
w|w〉

This is close to the FT of |ai if the      are nearly uniform in wηx
w

Questions:
•How big must k be so that the solutions of the subset sum 
problem are nearly uniformly distributed?

•For such values of k, can we quantum sample from the subset 
sum solutions?
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Subset sum problem
Problem: Given k integers x1,...,xk from ZN and a target w from 
ZN, find a subset of the k integers that sum to the target
(i.e., find b1,...,bk from Z2 so that b·x=w).

In general, this problem is NP-hard.  But the average-case 
problem at a fixed density ∫ :=  k/log2 N may be much easier.

k < c
√

log N k > 2c
√

log N

hard?efficient classical algorithm
[Lagarias, Odlyzko 1985]

poly(k) classical algorithm
[Flaxman, Przydatek 2004]

low density ∫high density
most subsets have a distinct sum most sums achieved by some subset

1

poly(k) quantum DHSP algorithm
[Kuperberg 2003]

subset sum ⇒ DHSP [Regev 2002]
PGM succeeds



General approach
• Cast problem as a state distinguishability problem

(e.g., coset states for HSP)

• Express the states in terms of an average-case algebraic 
problem (e.g., subset sum for dihedral HSP)

• Perform the pretty good measurement on k copies of the 
states:
- Choose k  large enough that the measurement succeeds with 

reasonably high probability (this happens if the average-case 
problem typically has many solutions)

- Implement the measurement by solving the problem on 
average (quantum sampling from the set of solutions)
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Semidirect product Z2
p !ϕ Zp

ϕ : Zp → Aut(Z2
p) ϕ(c)(a, b) = (a + bc, b)

(a, b, c)(a′, b′, c′) = (a + a′ + b′c, b + b′, c + c′)

with

Group of p×p unitary matrices

                                                    where

X :=
∑

x∈Zp

|x + 1〉〈x| , Z :=
∑

x∈Zp

ωx|x〉〈x| , ω := e2πi/p

〈X, Z〉 = {ωaXbZc : a, b, c ∈ Zp}



Heisenberg subgroups
Fact: To solve the HSP in the Heisenberg group, it is sufficient to 
distinguish the order p subgroups 〈(a, b, 1)〉={(a, b, 1)j : j∈Zp}

(a, b, 1)2 = (a, b, 1)(a, b, 1) = (2a + b, 2b, 2)

(a, b, 1)3 = (a, b, 1)(2a + b, 2b, 2) = (3a + 3b, 3b, 3)

(a, b, 1)4 = (a, b, 1)(3a + 2b, 3b, 3) = (4a + 6b, 4b, 4)
...

(a, b, 1)j = (ja +
(j
2

)
b, jb, j)
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Heisenberg coset states
Identity coset:

|H〉 =
1
√

p

∑

j∈Zp

|ja +
(j
2

)
b, jb, j〉

General coset:

|(a′, b′, 0)H〉 =
1
√

p

∑

j∈Zp

|a′ + ja +
(j
2

)
b, b′ + jb, j〉

Fourier transform and measure the first two registers:

1
√

p

∑

j∈Zp

ωx[ja+(j
2)b]+yjb|j〉

x,y uniformly random; note a0,  b0 disappear



Two coset states
(

1
√

p

∑

j∈Zp

ωaxj+b[yj+x(j
2)]|j〉

)⊗2



Two coset states

=
1
p

∑
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ωa(x1j1+x2j2)+b[y1j1+y2j2+x1(j1
2 )+x2(j2

2 )]|j1, j2〉

(
1
√

p

∑

j∈Zp

ωaxj+b[yj+x(j
2)]|j〉
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ωa(x1j1+x2j2)+b[y1j1+y2j2+x1(j1
2 )+x2(j2

2 )]|j1, j2〉

!→ 1
p

∑

j1,j2∈Zp

ωav+bw|j1, j2, v, w〉

(
1
√

p

∑

j∈Zp

ωaxj+b[yj+x(j
2)]|j〉

)⊗2



Two coset states

=
1
p

∑

j1,j2∈Zp

ωa(x1j1+x2j2)+b[y1j1+y2j2+x1(j1
2 )+x2(j2

2 )]|j1, j2〉

!→ 1
p

∑

j1,j2∈Zp

ωav+bw|j1, j2, v, w〉

Now we would like to erase j1,j2.
For typical values of x1,x2 ,y1,y2,v,w there are two solutions 
(j1,1,j2,1), (  j1,2,j2,2).
For each v,w, we can unitarily erase 1√

2
(|j1,1, j2,1〉+|j1,2, j2,2〉)

(
1
√

p

∑

j∈Zp

ωaxj+b[yj+x(j
2)]|j〉

)⊗2



Two coset states

=
1
p

∑

j1,j2∈Zp

ωa(x1j1+x2j2)+b[y1j1+y2j2+x1(j1
2 )+x2(j2

2 )]|j1, j2〉

!→ 1
p

∑

j1,j2∈Zp

ωav+bw|j1, j2, v, w〉

Now we would like to erase j1,j2.
For typical values of x1,x2 ,y1,y2,v,w there are two solutions 
(j1,1,j2,1), (  j1,2,j2,2).
For each v,w, we can unitarily erase 1√

2
(|j1,1, j2,1〉+|j1,2, j2,2〉)

!→ 1
p

∑

v,w

ωav+bw|v, w〉, overlap 1/2 with FT of |a,bi

(
1
√

p

∑

j∈Zp

ωaxj+b[yj+x(j
2)]|j〉

)⊗2



Entangled measurement
This algorithm for the Heisenberg group HSP implements an 
entangled measurement across two coset states. 

More generally, for              , the optimal measurement on r 
copies solves the HSP, and can be implemented by solving r th 
order equations (use Buchberger’s algorithm to compute a 
Gröbner basis; efficient for r constant).

Zr
p ! Zp

This is encouraging, since entangled measurements are 
information-theoretically necessary for some groups!
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Generalized abelian hidden shift problem
Problem: Given a function
satisfying                                        for                               ,
find the value of the hidden shift            .
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Generalized abelian hidden shift problem
Problem: Given a function
satisfying                                        for                               ,
find the value of the hidden shift            .

f : {0, 1, . . . ,M − 1}× ZN → S
f(b, x) = f(b + 1, x + s) b = 0, 1, . . . ,M − 2

s ∈ ZN

M =2: equivalent to dihedral HSP
M =N: an instance of abelian HSP (efficiently solvable)

Average-case problem: Given             and              chosen 
uniformly at random, find                                    such 
that                          .

x ∈ Zk
N w ∈ ZN

b ∈ {0, 1, . . . ,M − 1}k

b · x = w mod N

This is an instance of integer programming in k dimensions.  
Lenstra’s algorithm (based on LLL lattice basis reduction) solves 
this efficiently for k constant.  k =log N/log M ⇒ efficient 
algorithm for any M = N² for fixed ²>0.



Original problem k  Average-case problem Solution

Abelian HSP 1 Linear equations Easy

Metacyclic HSP 1 Discrete log Shor’s algorithm

(r=2 is Heisenberg)
r Polynomial equations Buchburger’s 

algorithm, 
elimination

Generalized abelian 
hidden shift problem,
M = N² 

1/² Integer programming Lenstra’s algorithm

Dihedral HSP log N  Subset sum ?

Symmetric group 
HSP

n log n  ? ?

Zr
p ! Zp

ZN ! Zp, p = φ(N)/ poly(log N)
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Open questions
• Can we find better solutions of average-case problems that 

arise from this approach?

- Metacyclic group with k =1:              , discrete log
                          with k =2:                        , how to solve?

aµx = b
aµx + bµy = c

- Faster solution of random subset sum problems/random 
integer programs (quantum algorithms?)

• Is there a problem that is not even information theoretically 
reconstructible from single-register measurements, but for 
which there is an efficient multi-register algorithm?


