From optimal state estimation to efficient quantum algorithms

Andrew Childs
Caltech Institute for Quantum Information
in collaboration with
Dave Bacon
University of Washington
Wim van Dam
UC Santa Barbara

quant-ph/050I044, quant-ph/0504083, quant-ph/0507I90

What are quantum computers good for?

What are quantum computers good for?

Practical question: Building a quantum computer will take a lot of resources. If we build one, can we use it to do anything useful other than factoring numbers?

What are quantum computers good for?

Practical question: Building a quantum computer will take a lot of resources. If we build one, can we use it to do anything useful other than factoring numbers?

Fundamental question:What is the computational power of quantum mechanics?

What are quantum computers good for?

Practical question: Building a quantum computer will take a lot of resources. If we build one, can we use it to do anything useful other than factoring numbers?

Fundamental question:What is the computational power of quantum mechanics?

Problems

- Simulating quantum dynamics
- Factoring
- Discrete log
- Pell's equation
- Abelian HSP
- Some nonabelian HSPs
- Estimating gauss sums
- Legendre symbol/polynomial reconstruction
- Graph traversal
- Approximating Jones polynomial
- Counting solutions of finite field equations

What are quantum computers good for?

Practical question: Building a quantum computer will take a lot of resources. If we build one, can we use it to do anything useful other than factoring numbers?

Fundamental question:What is the computational power of quantum mechanics?

Problems

- Simulating quantum dynamics
- Factoring
- Discrete log
- Pell's equation
- Abelian HSP
- Some nonabelian HSPs
- Estimating gauss sums
- Legendre symbol/polynomial reconstruction
- Graph traversal
- Approximating Jones polynomial
- Counting solutions of finite field equations

Techniques

- Fourier sampling
- Quantum walk
- Adiabatic optimization
- Trace estimation
- Optimal measurement

Outline

- The hidden subgroup problem (HSP)
- Optimal measurements for distinguishing quantum states
- Dihedral HSP
- Heisenberg HSP
- Unlabeled hidden shift problem
- Summary and open problems

The hidden subgroup problem

Problem: Fix a group G (known) and a subgroup H (unknown). Given a black box that computes $f: G \rightarrow S$ that is

- Constant on any particular left coset of H in G
- Distinct on different left cosets of H in G
(We say that f hides H.)
Goal: Find (a generating set for) H.
An efficient algorithm runs in time poly $(\log |G|)$.

Even for very simple groups (e.g., $G=\mathbb{Z}_{2}^{n}$), a classical algorithm provably requires exponentially many queries of f to find H.

Most interesting cases of the HSP

- Abelian groups

Applications to factoring, discrete log, Pell's equation, etc. Can be solved efficiently

- Dihedral group

Applications to lattice problems [Regev 2002] Subexponential-time algorithm [Kuperberg 2003]

- Symmetric group

Application to graph isomorphism
No nontrivial algorithms

Efficient algorithms for the HSP

- Abelian groups [Shor I 994; Boneh, Lipton I 995; Kitaev | 995]
- Normal subgroups [Hallgren, Russell, Ta-Shma 2000]
- "Almost abelian" groups [Grigni, Schulman, Vazirani" 200I]
- "Near-Hamiltonian" groups [Gavinsky 2004]
- $\left(\mathbb{Z}_{2}^{n} \times \mathbb{Z}_{2}^{n}\right) \rtimes \mathbb{Z}_{2}$ [Püschel, Rötteler, Beth I 998]
- $\mathbb{Z}_{p^{k}}^{n} \rtimes \mathbb{Z}_{2}$, smoothly solvable groups [Friedl, Ivanyos, Magniez, Santha, Sen 2002]
- p-hedral: $\mathbb{Z}_{N} \rtimes \mathbb{Z}_{p}$, $p=\phi(N) / \operatorname{poly}(\log N)$ prime, N prime [Moore, Rockmore, Russell, Schulman 2004]
- $\mathbb{Z}_{p^{k}} \rtimes \mathbb{Z}_{p}$ [Inui, Le Gall 2004]

Efficient algorithms for the HSP

- Abelian groups [Shor I 994; Boneh, Lipton I 995; Kitaev | 995]
- Normal subgroups [Hallgren, Russell, Ta-Shma 2000]
- "Almost abelian" groups [Grigni, Schulman, Vazirani" 200I]
- "Near-Hamiltonian" groups [Gavinsky 2004]
$\Rightarrow\left(\mathbb{Z}_{2}^{n} \times \mathbb{Z}_{2}^{n}\right) \rtimes \mathbb{Z}_{2}$ [Püschel, Rötteler, Beth I 998]
- $\mathbb{Z}_{p^{k}}^{n} \rtimes \mathbb{Z}_{2}$, smoothly solvable groups [Friedl, Ivanyos, Magniez, Santha, Sen 2002]
$\Rightarrow p$-hedral: $\mathbb{Z}_{N} \rtimes \mathbb{Z}_{p}, p=\phi(N) / \operatorname{poly}(\log N)$ prime, N prime [Moore, Rockmore, Russell, Schulman 2004], N arbitrary NEW!S
$\Rightarrow \mathbb{Z}_{p^{k}} \rtimes \mathbb{Z}_{p}$ [Inui, Le Gall 2004]
$\Rightarrow \mathbb{Z}_{p}^{r} \rtimes \mathbb{Z}_{p}, r$ constant (including Heisenberg, $r=2$) $\underbrace{\text { NW }}_{\text {NEW! }}$

Standard approach to the HSP

Compute uniform superposition of function values:

$$
\frac{1}{\sqrt{|G|}} \sum_{g \in G}|g\rangle \mapsto \frac{1}{\sqrt{|G|}} \sum_{g \in G}|g, f(g)\rangle
$$

Standard approach to the HSP

Compute uniform superposition of function values:

$$
\frac{1}{\sqrt{|G|}} \sum_{g \in G}|g\rangle \mapsto \frac{1}{\sqrt{|G|}} \sum_{g \in G}|g, f(g)\rangle
$$

Discard second register to get a coset state,

$$
|g H\rangle:=\frac{1}{\sqrt{|H|}} \sum_{h \in H}|g h\rangle
$$

with $g \in G$ (unknown) chosen uniformly at random.

Standard approach to the HSP

Compute uniform superposition of function values:

$$
\frac{1}{\sqrt{|G|}} \sum_{g \in G}|g\rangle \mapsto \frac{1}{\sqrt{|G|}} \sum_{g \in G}|g, f(g)\rangle
$$

Discard second register to get a coset state,

$$
|g H\rangle:=\frac{1}{\sqrt{|H|}} \sum_{h \in H}|g h\rangle
$$

with $g \in G$ (unknown) chosen uniformly at random.
Equivalently, we have the hidden subgroup state

$$
\rho_{H}:=\frac{1}{|G|} \sum_{g \in G}|g H\rangle\langle g H|
$$

Standard approach to the HSP

Compute uniform superposition of function values:

$$
\frac{1}{\sqrt{|G|}} \sum_{g \in G}|g\rangle \mapsto \frac{1}{\sqrt{|G|}} \sum_{g \in G}|g, f(g)\rangle
$$

Discard second register to get a coset state,

$$
|g H\rangle:=\frac{1}{\sqrt{|H|}} \sum_{h \in H}|g h\rangle
$$

with $g \in G$ (unknown) chosen uniformly at random.
Equivalently, we have the hidden subgroup state

$$
\rho_{H}:=\frac{1}{|G|} \sum_{g \in G}|g H\rangle\langle g H|
$$

Now we can (without loss of generality) perform a Fourier transform over G, and measure which irreducible representation the state is in (weak Fourier sampling).

Distinguishing quantum states

Problem: Given a quantum state ρ chosen from an ensemble of states ρ_{i} with a priori probabilities p_{i}, determine i.

This can only be done perfectly if the states are orthogonal. In general, we would just like a high probability of success.

HSP as state estimation

State distinguishability problem: given the state ρ_{H}, determine H.

HSP as state estimation

State distinguishability problem: given the state ρ_{H}, determine H.

In general, we can use many copies of the coset states: make $\rho_{H}^{\otimes k}$ (equivalently, $\left|g_{1} H, g_{2} H, \ldots, g_{k} H\right\rangle$) for $k=\operatorname{poly}(\log |G|)$.

HSP as state estimation

State distinguishability problem: given the state ρ_{H}, determine H.
In general, we can use many copies of the coset states: make $\rho_{H}^{\otimes k}$ (equivalently, $\left|g_{1} H, g_{2} H, \ldots, g_{k} H\right\rangle$) for $k=\operatorname{poly}(\log |G|)$.

Good news: In principle $k=\operatorname{poly}(\log |G|)$ copies contain enough information to identify H. [Ettinger, Høyer, Knill I 999]

HSP as state estimation

State distinguishability problem: given the state ρ_{H}, determine H.
In general, we can use many copies of the coset states: make $\rho_{H}^{\otimes k}$ (equivalently, $\left|g_{1} H, g_{2} H, \ldots, g_{k} H\right\rangle$) for $k=\operatorname{poly}(\log |G|)$.

Good news: In principle $k=\operatorname{poly}(\log |G|)$ copies contain enough information to identify H. [Ettinger, Høyer, Knill I 999]

Bad news: For some groups, it is necessary to make joint measurements on $\Omega(\log |G|)$ copies. [Moore, Russell, Schulman 2005-6; Hallgren, Rötteler, Sen 2006]

HSP by optimal measurement

Question:What measurement maximizes the probability of successfully identifying the hidden subgroup?

HSP by optimal measurement

Question:What measurement maximizes the probability of successfully identifying the hidden subgroup?
[lp 2003]: Shor's algorithm implements the optimal measurement for the abelian HSP.

HSP by optimal measurement

Question:What measurement maximizes the probability of successfully identifying the hidden subgroup?
[lp 2003]: Shor's algorithm implements the optimal measurement for the abelian HSP.

Can we use this as a principle to find quantum algorithms?

Optimal measurement

Theorem. [Holevo I973, Yuen-Kennedy-Lax I 975]
Given an ensemble of quantum states ρ_{i} with a priori probabilities p_{i}, the measurement with POVM elements E_{i} maximizes the probability of successfully identifying the state if and only if $R=R^{\dagger}$ and $R \geq p_{i} \rho_{i}$ for all i, where

$$
R:=\sum_{i} p_{i} \rho_{i} E_{i}
$$

Optimal measurement

Theorem. [Holevo I973, Yuen-Kennedy-Lax I975]
Given an ensemble of quantum states ρ_{i} with a priori probabilities p_{i}, the measurement with POVM elements E_{i} maximizes the probability of successfully identifying the state if and only if $R=R^{\dagger}$ and $R \geq p_{i} \rho_{i}$ for all i, where

$$
R:=\sum_{i} p_{i} \rho_{i} E_{i}
$$

In general, it is nontrivial to find a POVM that satisfies these conditions (although it is a semidefinite program!).

But for all the cases discussed in this talk, the optimal measurement is a particularly simple POVM, the pretty good measurement.

Pretty good measurement

Given states p_{i} with a priori probabilities p_{i}, define POVM elements

$$
E_{i}:=p_{i} \frac{1}{\sqrt{\Sigma}} \rho_{i} \frac{1}{\sqrt{\Sigma}} \quad \text { where } \quad \Sigma:=\sum_{i} p_{i} \rho_{i}
$$

(invert Σ over its support)

Pretty good measurement

Given states p_{i} with a priori probabilities p_{i}, define POVM elements

$$
E_{i}:=p_{i} \frac{1}{\sqrt{\Sigma}} \rho_{i} \frac{1}{\sqrt{\Sigma}} \quad \text { where } \quad \Sigma:=\sum_{i} p_{i} \rho_{i}
$$

(invert Σ over its support)
This is a POVM:

$$
\sum_{i} E_{i}=\frac{1}{\sqrt{\Sigma}}\left(\sum_{i} p_{i} \rho_{i}\right) \frac{1}{\sqrt{\Sigma}}=1
$$

Pretty good measurement

Given states p_{i} with a priori probabilities p_{i}, define POVM elements

$$
E_{i}:=p_{i} \frac{1}{\sqrt{\Sigma}} \rho_{i} \frac{1}{\sqrt{\Sigma}} \quad \text { where } \quad \Sigma:=\sum_{i} p_{i} \rho_{i}
$$

(invert Σ over its support)
This is a POVM:

$$
\sum_{i} E_{i}=\frac{1}{\sqrt{\Sigma}}\left(\sum_{i} p_{i} \rho_{i}\right) \frac{1}{\sqrt{\Sigma}}=1
$$

The PGM often does a pretty good job of distinguishing the ρ_{i}. In fact, sometimes it is optimal! (Check Holevo/YKL conditions)

Dihedral group $\left(\mathbb{Z}_{N} \rtimes \mathbb{Z}_{2}\right)$

Symmetry group of an N-sided regular polygon

Dihedral group $\left(\mathbb{Z}_{N} \rtimes \mathbb{Z}_{2}\right)$

Symmetry group of an N-sided regular polygon

$$
(a, b)(c, d)=\left(a+(-1)^{b} c, b+d\right)
$$

Dihedral group $\left(\mathbb{Z}_{N} \rtimes \mathbb{Z}_{2}\right)$

Symmetry group of an N-sided regular polygon

$$
(a, b)(c, d)=\left(a+(-1)^{b} c, b+d\right)
$$

[Ettinger, Høyer 1998] To solve the HSP, it is sufficient to distinguish the order two subgroups $\{(0,0),(a, 1)\}$ (hidden reflections)

Dihedral group $\left(\mathbb{Z}_{N} \rtimes \mathbb{Z}_{2}\right)$

Symmetry group of an N-sided regular polygon

$$
(a, b)(c, d)=\left(a+(-1)^{b} c, b+d\right)
$$

[Ettinger, Høyer 1998] To solve the HSP, it is sufficient to distinguish the order two subgroups $\{(0,0),(a, 1)\}$ (hidden reflections)

Coset states: $\left|\left(a^{\prime}, 0\right) H\right\rangle=\frac{1}{\sqrt{2}}\left(\left|a^{\prime}, 0\right\rangle+\left|a+a^{\prime}, 1\right\rangle\right)$

Dihedral group $\left(\mathbb{Z}_{N} \rtimes \mathbb{Z}_{2}\right)$

Symmetry group of an N-sided regular polygon

$$
(a, b)(c, d)=\left(a+(-1)^{b} c, b+d\right)
$$

[Ettinger, Høyer I998] To solve the HSP, it is sufficient to distinguish the order two subgroups $\{(0,0),(a, 1)\}$ (hidden reflections)

Coset states: $\left|\left(a^{\prime}, 0\right) H\right\rangle=\frac{1}{\sqrt{2}}\left(\left|a^{\prime}, 0\right\rangle+\left|a+a^{\prime}, 1\right\rangle\right)$
Fourier transform: $\frac{1}{\sqrt{2 N}} \sum_{x \in \mathbb{Z}_{N}}|x\rangle\left(|0\rangle+\omega^{x a}|1\rangle\right)$

Dihedral group $\left(\mathbb{Z}_{N} \rtimes \mathbb{Z}_{2}\right)$

Symmetry group of an N-sided regular polygon

$$
(a, b)(c, d)=\left(a+(-1)^{b} c, b+d\right)
$$

[Ettinger, Høyer I998] To solve the HSP, it is sufficient to distinguish the order two subgroups $\{(0,0),(a, 1)\}$ (hidden reflections)

Coset states: $\left|\left(a^{\prime}, 0\right) H\right\rangle=\frac{1}{\sqrt{2}}\left(\left|a^{\prime}, 0\right\rangle+\left|a+a^{\prime}, 1\right\rangle\right)$
Fourier transform: $\frac{1}{\sqrt{2 N}} \sum_{x \in \mathbb{Z}_{N}}|x\rangle\left(|0\rangle+\omega^{x a}|1\rangle\right)$
By symmetry, we can measure x wlog (Fourier sampling: measure which irreducible representation)

Multiple dihedral coset states

$$
\left(\frac{1}{\sqrt{2}}\left(|0\rangle+\omega^{x a}|1\rangle\right)\right)^{\otimes k}=\frac{1}{\sqrt{2^{k}}} \sum_{b \in \mathbb{Z}_{2}^{k}} \omega^{(b \cdot x) a}|b\rangle
$$

Multiple dihedral coset states

$$
\begin{aligned}
\left(\frac{1}{\sqrt{2}}\left(|0\rangle+\omega^{x a}|1\rangle\right)\right)^{\otimes k} & =\frac{1}{\sqrt{2^{k}}} \sum_{b \in \mathbb{Z}_{2}^{k}} \omega^{(b \cdot x) a}|b\rangle \\
& =\frac{1}{\sqrt{2^{k}}} \sum_{w \in \mathbb{Z}_{N}} \omega^{w a} \sqrt{\eta_{w}^{x}}\left|S_{w}^{x}\right\rangle
\end{aligned}
$$

solutions of subset sum problem: $\quad S_{w}^{x}:=\left\{b \in \mathbb{Z}_{2}^{k}: b \cdot x=w\right\}$

$$
\begin{aligned}
\eta_{w}^{x} & :=\left|S_{w}^{x}\right| \\
\left|S_{w}^{x}\right\rangle & :=\frac{1}{\sqrt{\eta_{w}^{x}}} \sum_{b \in S_{w}^{x}}|b\rangle
\end{aligned}
$$

Subset sum and DHSP

The PGM (which is optimal) can be implemented unitarily by doing the inverse of the quantum sampling transformation:

$$
|w\rangle \mapsto\left|S_{w}^{x}\right\rangle
$$

Subset sum and DHSP

The PGM (which is optimal) can be implemented unitarily by doing the inverse of the quantum sampling transformation:

$$
|w\rangle \mapsto\left|S_{w}^{x}\right\rangle
$$

Applying this to the coset state gives

$$
\frac{1}{\sqrt{2^{k}}} \sum_{w \in \mathbb{Z}_{N}} \omega^{w a} \sqrt{\eta_{w}^{x}}\left|S_{w}^{x}\right\rangle \mapsto \frac{1}{\sqrt{2^{k}}} \sum_{w \in \mathbb{Z}_{N}} \omega^{w a} \sqrt{\eta_{w}^{x}}|w\rangle
$$

Subset sum and DHSP

The PGM (which is optimal) can be implemented unitarily by doing the inverse of the quantum sampling transformation:

$$
|w\rangle \mapsto\left|S_{w}^{x}\right\rangle
$$

Applying this to the coset state gives

$$
\frac{1}{\sqrt{2^{k}}} \sum_{w \in \mathbb{Z}_{N}} \omega^{w a} \sqrt{\eta_{w}^{x}}\left|S_{w}^{x}\right\rangle \mapsto \frac{1}{\sqrt{2^{k}}} \sum_{w \in \mathbb{Z}_{N}} \omega^{w a} \sqrt{\eta_{w}^{x}}|w\rangle
$$

This is close to the FT of $|a\rangle$ if the η_{w}^{x} are nearly uniform in w

Subset sum and DHSP

The PGM (which is optimal) can be implemented unitarily by doing the inverse of the quantum sampling transformation:

$$
|w\rangle \mapsto\left|S_{w}^{x}\right\rangle
$$

Applying this to the coset state gives

$$
\frac{1}{\sqrt{2^{k}}} \sum_{w \in \mathbb{Z}_{N}} \omega^{w a} \sqrt{\eta_{w}^{x}}\left|S_{w}^{x}\right\rangle \mapsto \frac{1}{\sqrt{2^{k}}} \sum_{w \in \mathbb{Z}_{N}} \omega^{w a} \sqrt{\eta_{w}^{x}}|w\rangle
$$

This is close to the FT of $|a\rangle$ if the η_{w}^{x} are nearly uniform in w
Questions:

- How big must k be so that the solutions of the subset sum problem are nearly uniformly distributed?
- For such values of k, can we quantum sample from the subset sum solutions?

Subset sum problem

Problem: Given k integers x_{1}, \ldots, x_{k} from \mathbb{Z}_{N} and a target w from \mathbb{Z}_{N}, find a subset of the k integers that sum to the target
(i.e., find b_{1}, \ldots, b_{k} from \mathbb{Z}_{2} so that $b \cdot x=w$).

Subset sum problem

Problem: Given k integers x_{1}, \ldots, x_{k} from \mathbb{Z}_{N} and a target w from \mathbb{Z}_{N}, find a subset of the k integers that sum to the target (i.e., find b_{1}, \ldots, b_{k} from \mathbb{Z}_{2} so that $b \cdot x=w$).

In general, this problem is NP-hard. But the average-case problem at a fixed density $\nu:=k / \log _{2} N$ may be much easier.

Subset sum problem

Problem: Given k integers x_{1}, \ldots, x_{k} from \mathbb{Z}_{N} and a target w from \mathbb{Z}_{N}, find a subset of the k integers that sum to the target (i.e., find b_{1}, \ldots, b_{k} from \mathbb{Z}_{2} so that $b \cdot x=w$).

In general, this problem is NP-hard. But the average-case problem at a fixed density $\nu:=k / \log _{2} N$ may be much easier.

Subset sum problem

Problem: Given k integers x_{1}, \ldots, x_{k} from \mathbb{Z}_{N} and a target w from \mathbb{Z}_{N}, find a subset of the k integers that sum to the target (i.e., find b_{1}, \ldots, b_{k} from \mathbb{Z}_{2} so that $b \cdot x=w$).

In general, this problem is NP-hard. But the average-case problem at a fixed density $\nu:=k / \log _{2} N$ may be much easier.

$$
k<c \sqrt{\log N}
$$

efficient classical algorithm [Lagarias, Odlyzko 1985]
hard?

$$
k>2^{c \sqrt{\log N}}
$$

poly (k) classical algorithm [Flaxman, Przydatek 2004]

Subset sum problem

Problem: Given k integers x_{1}, \ldots, x_{k} from \mathbb{Z}_{N} and a target w from \mathbb{Z}_{N}, find a subset of the k integers that sum to the target (i.e., find b_{1}, \ldots, b_{k} from \mathbb{Z}_{2} so that $b \cdot x=w$).

In general, this problem is NP-hard. But the average-case problem at a fixed density $\nu:=k / \log _{2} N$ may be much easier.

Subset sum problem

Problem: Given k integers x_{1}, \ldots, x_{k} from \mathbb{Z}_{N} and a target w from \mathbb{Z}_{N}, find a subset of the k integers that sum to the target (i.e., find b_{1}, \ldots, b_{k} from \mathbb{Z}_{2} so that $b \cdot x=w$).

In general, this problem is NP-hard. But the average-case problem at a fixed density $\nu:=k / \log _{2} N$ may be much easier.

General approach

- Cast problem as a state distinguishability problem (e.g., coset states for HSP)
- Express the states in terms of an average-case algebraic problem (e.g., subset sum for dihedral HSP)
- Perform the pretty good measurement on k copies of the states:
- Choose k large enough that the measurement succeeds with reasonably high probability (this happens if the average-case problem typically has many solutions)
- Implement the measurement by solving the problem on average (quantum sampling from the set of solutions)

The Heisenberg group Subgroup of $\mathrm{GL}_{3}\left(\mathbb{F}_{p}\right) \quad\left\{\left(\begin{array}{lll}1 & 0 & 0 \\ b & 1 & 0 \\ a & c & 1\end{array}\right): a, b, c \in \mathbb{F}_{p}\right\}$

The Heisenberg group

Subgroup of $\mathrm{GL}_{3}\left(\mathbb{F}_{p}\right) \quad\left\{\left(\begin{array}{ccc}1 & 0 & 0 \\ b & 1 & 0 \\ a & c & 1\end{array}\right): a, b, c \in \mathbb{F}_{p}\right\}$
Semidirect product $\mathbb{Z}_{p}^{2} \rtimes_{\varphi} \mathbb{Z}_{p}$

$$
\begin{gathered}
\varphi: \mathbb{Z}_{p} \rightarrow \operatorname{Aut}\left(\mathbb{Z}_{p}^{2}\right) \quad \text { with } \quad \varphi(c)(a, b)=(a+b c, b) \\
(a, b, c)\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=\left(a+a^{\prime}+b^{\prime} c, b+b^{\prime}, c+c^{\prime}\right)
\end{gathered}
$$

The Heisenberg group

Subgroup of $\mathrm{GL}_{3}\left(\mathbb{F}_{p}\right) \quad\left\{\left(\begin{array}{ccc}1 & 0 & 0 \\ b & 1 & 0 \\ a & c & 1\end{array}\right): a, b, c \in \mathbb{F}_{p}\right\}$
Semidirect product $\mathbb{Z}_{p}^{2} \rtimes_{\varphi} \mathbb{Z}_{p}$

$$
\begin{gathered}
\varphi: \mathbb{Z}_{p} \rightarrow \operatorname{Aut}\left(\mathbb{Z}_{p}^{2}\right) \quad \text { with } \quad \varphi(c)(a, b)=(a+b c, b) \\
(a, b, c)\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=\left(a+a^{\prime}+b^{\prime} c, b+b^{\prime}, c+c^{\prime}\right)
\end{gathered}
$$

Group of $p \times p$ unitary matrices
$\langle X, Z\rangle=\left\{\omega^{a} X^{b} Z^{c}: a, b, c \in \mathbb{Z}_{p}\right\}$ where

$$
X:=\sum_{x \in \mathbb{Z}_{p}}|x+1\rangle\langle x|, \quad Z:=\sum_{x \in \mathbb{Z}_{p}} \omega^{x}|x\rangle\langle x|, \quad \omega:=e^{2 \pi \mathrm{i} / p}
$$

Heisenberg subgroups

Fact:To solve the HSP in the Heisenberg group, it is sufficient to distinguish the order p subgroups $\langle(a, b, 1)\rangle=\left\{(a, b, 1)^{j}: j \in \mathbb{Z}_{p}\right\}$

$$
\begin{aligned}
(a, b, 1)^{2} & =(a, b, 1)(a, b, 1)=(2 a+b, 2 b, 2) \\
(a, b, 1)^{3} & =(a, b, 1)(2 a+b, 2 b, 2)=(3 a+3 b, 3 b, 3) \\
(a, b, 1)^{4} & =(a, b, 1)(3 a+2 b, 3 b, 3)=(4 a+6 b, 4 b, 4) \\
& \vdots \\
(a, b, 1)^{j} & =\left(j a+\binom{j}{2} b, j b, j\right)
\end{aligned}
$$

Heisenberg coset states

Identity coset:

$$
|H\rangle=\frac{1}{\sqrt{p}} \sum_{j \in \mathbb{Z}_{p}}\left|j a+\binom{j}{2} b, j b, j\right\rangle
$$

Heisenberg coset states

Identity coset:

$$
|H\rangle=\frac{1}{\sqrt{p}} \sum_{j \in \mathbb{Z}_{p}}\left|j a+\binom{j}{2} b, j b, j\right\rangle
$$

General coset:

$$
\left|\left(a^{\prime}, b^{\prime}, 0\right) H\right\rangle=\frac{1}{\sqrt{p}} \sum_{j \in \mathbb{Z}_{p}}\left|a^{\prime}+j a+\binom{j}{2} b, b^{\prime}+j b, j\right\rangle
$$

Heisenberg coset states

Identity coset:

$$
|H\rangle=\frac{1}{\sqrt{p}} \sum_{j \in \mathbb{Z}_{p}}\left|j a+\binom{j}{2} b, j b, j\right\rangle
$$

General coset:

$$
\left|\left(a^{\prime}, b^{\prime}, 0\right) H\right\rangle=\frac{1}{\sqrt{p}} \sum_{j \in \mathbb{Z}_{p}}\left|a^{\prime}+j a+\binom{j}{2} b, b^{\prime}+j b, j\right\rangle
$$

Fourier transform and measure the first two registers:

$$
\frac{1}{\sqrt{p}} \sum_{j \in \mathbb{Z}_{p}} \omega^{x\left[j a+\binom{j}{2} b\right]+y j b}|j\rangle
$$

x, y uniformly random; note a^{\prime}, b^{\prime} disappear

Two coset states

$$
\left(\frac{1}{\sqrt{p}} \sum_{j \in \mathbb{Z}_{p}} \omega^{a x j+b\left[y j+x\binom{j}{2}\right]}|j\rangle\right)^{\otimes 2}
$$

Two coset states

$$
\begin{aligned}
& \left(\frac{1}{\sqrt{p}} \sum_{j \in \mathbb{Z}_{p}} \omega^{a x j+b\left[y j+x\binom{j}{2}\right]}|j\rangle\right)^{\otimes 2} \\
& =\frac{1}{p} \sum_{j_{1}, j_{2} \in \mathbb{Z}_{p}} \omega^{a\left(x_{1} j_{1}+x_{2} j_{2}\right)+b\left[y_{1} j_{1}+y_{2} j_{2}+x_{1}\binom{j_{1}}{2}+x_{2}\binom{j_{2}}{2}\right]}\left|j_{1}, j_{2}\right\rangle
\end{aligned}
$$

Two coset states

$$
\begin{aligned}
& \left(\frac{1}{\sqrt{p}} \sum_{j \in \mathbb{Z}_{p}} \omega^{a x j+b\left[y j+x\binom{j}{2}\right]}|j\rangle\right)^{\otimes 2} \\
& =\frac{1}{p} \sum_{j_{1}, j_{2} \in \mathbb{Z}_{p}} \omega^{a\left(x_{1} j_{1}+x_{2} j_{2}\right)+b\left[y_{1} j_{1}+y_{2} j_{2}+x_{1}\binom{j_{1}}{2}+x_{2}\binom{j_{2}}{2}\right]}\left|j_{1}, j_{2}\right\rangle \\
& \mapsto \frac{1}{p} \sum_{j_{1}, j_{2} \in \mathbb{Z}_{p}} \omega^{a v+b w}\left|j_{1}, j_{2}, v, w\right\rangle
\end{aligned}
$$

Two coset states

$\left(\frac{1}{\sqrt{p}} \sum_{j \in \mathbb{Z}_{p}} \omega^{a x j+b\left[y j+x\binom{j}{2}\right]}|j\rangle\right)^{\otimes 2}$
$=\frac{1}{p} \sum_{j_{1}, j_{2} \in \mathbb{Z}_{p}} \omega^{a\left(x_{1} j_{1}+x_{2} j_{2}\right)+b\left[y_{1} j_{1}+y_{2} j_{2}+x_{1}\binom{j_{1}}{2}+x_{2}\binom{j_{2}}{2}\right.}\left|j_{1}, j_{2}\right\rangle$
$\mapsto \frac{1}{p} \sum_{j_{1}, j_{2} \in \mathbb{Z}_{p}} \omega^{a v+b w}\left|j_{1}, j_{2}, v, w\right\rangle$
Now we would like to erase j_{1}, j_{2}.
For typical values of $x_{1}, x_{2}, y_{1}, y_{2}, v, w$ there are two solutions $\left(j_{1,1}, j_{2,1}\right),\left(j_{1,2}, j_{2,2}\right)$.
For each v, w, we can unitarily erase $\frac{1}{\sqrt{2}}\left(\left|j_{1,1}, j_{2,1}\right\rangle+\left|j_{1,2}, j_{2,2}\right\rangle\right)$

Two coset states

$\left.\left(\frac{1}{\sqrt{p}} \sum_{j \in \mathbb{Z}_{p}} \omega^{a x j+b\left[y j+x\binom{j}{2}\right.}| | j\right\rangle\right)^{\otimes 2}$
$=\frac{1}{p} \sum_{j_{1}, j_{2} \in \mathbb{Z}_{p}} \omega^{a\left(x_{1} j_{1}+x_{2} j_{2}\right)+b\left[y_{1} j_{1}+y_{2} j_{2}+x_{1}\binom{j_{1}}{2}+x_{2}\binom{j_{2}}{2}\right.}\left|j_{1}, j_{2}\right\rangle$
$\mapsto \frac{1}{p} \sum_{j_{1}, j_{2} \in \mathbb{Z}_{p}} \omega^{a v+b w}\left|j_{1}, j_{2}, v, w\right\rangle$
Now we would like to erase j_{1}, j_{2}.
For typical values of $x_{1}, x_{2}, y_{1}, y_{2}, v, w$ there are two solutions
$\left(j_{1,1}, j_{2,1}\right),\left(j_{1,2}, j_{2,2}\right)$.
For each v, w, we can unitarily erase $\frac{1}{\sqrt{2}}\left(\left|j_{1,1}, j_{2,1}\right\rangle+\left|j_{1,2}, j_{2,2}\right\rangle\right)$
$\mapsto \frac{1}{p} \sum_{v, w} \omega^{a v+b w}|v, w\rangle$, overlap $1 / 2$ with FT of $|a, b\rangle$

Entangled measurement

This algorithm for the Heisenberg group HSP implements an entangled measurement across two coset states.

More generally, for $\mathbb{Z}_{p}^{r} \rtimes \mathbb{Z}_{p}$, the optimal measurement on r copies solves the HSP, and can be implemented by solving r th order equations (use Buchberger's algorithm to compute a Gröbner basis; efficient for r constant).

This is encouraging, since entangled measurements are information-theoretically necessary for some groups!

Generalized abelian hidden shift problem

Problem: Given a function $f:\{0,1, \ldots, M-1\} \times \mathbb{Z}_{N} \rightarrow S$ satisfying $f(b, x)=f(b+1, x+s)$ for $b=0,1, \ldots, M-2$, find the value of the hidden shift $s \in \mathbb{Z}_{N}$.

Generalized abelian hidden shift problem

Problem: Given a function $f:\{0,1, \ldots, M-1\} \times \mathbb{Z}_{N} \rightarrow S$ satisfying $f(b, x)=f(b+1, x+s)$ for $b=0,1, \ldots, M-2$, find the value of the hidden shift $s \in \mathbb{Z}_{N}$.
$M=2$: equivalent to dihedral HSP $M=N$: an instance of abelian HSP (efficiently solvable)

Generalized abelian hidden shift problem

Problem: Given a function $f:\{0,1, \ldots, M-1\} \times \mathbb{Z}_{N} \rightarrow S$ satisfying $f(b, x)=f(b+1, x+s)$ for $b=0,1, \ldots, M-2$, find the value of the hidden shift $s \in \mathbb{Z}_{N}$.
$M=2$: equivalent to dihedral HSP $M=N$: an instance of abelian HSP (efficiently solvable)

Average-case problem: Given $x \in \mathbb{Z}_{N}^{k}$ and $w \in \mathbb{Z}_{N}$ chosen uniformly at random, find $b \in\{0,1, \ldots, M-1\}^{k}$ such that $b \cdot x=w \bmod N$.

Generalized abelian hidden shift problem

Problem: Given a function $f:\{0,1, \ldots, M-1\} \times \mathbb{Z}_{N} \rightarrow S$ satisfying $f(b, x)=f(b+1, x+s)$ for $b=0,1, \ldots, M-2$, find the value of the hidden shift $s \in \mathbb{Z}_{N}$.
$M=2$: equivalent to dihedral HSP $M=N$: an instance of abelian HSP (efficiently solvable)

Average-case problem: Given $x \in \mathbb{Z}_{N}^{k}$ and $w \in \mathbb{Z}_{N}$ chosen uniformly at random, find $b \in\{0,1, \ldots, M-1\}^{k}$ such that $b \cdot x=w \bmod N$.

This is an instance of integer programming in k dimensions. Lenstra's algorithm (based on LLL lattice basis reduction) solves this efficiently for k constant. $k=\log N / \log M \Rightarrow$ efficient algorithm for any $M=N^{\epsilon}$ for fixed $\epsilon>0$.

Original problem	k	Average-case problem	Solution
Abelian HSP	1	Linear equations	Easy
Metacyclic HSP $\mathbb{Z}_{N} \rtimes \mathbb{Z}_{p}, \quad p=\phi(N) / \operatorname{poly}(\log N)$	1	Discrete log	Shor's algorithm
$\begin{aligned} & \mathbb{Z}_{p}^{r} \rtimes \mathbb{Z}_{p} \\ & (r=2 \text { is Heisenberg }) \end{aligned}$	r	Polynomial equations	Buchburger's algorithm, elimination
Generalized abelian hidden shift problem, $M=N^{\epsilon}$	$1 / \epsilon$	Integer programming	Lenstra's algorithm
Dihedral HSP	$\log N$	Subset sum	?
Symmetric group HSP	$n \log n$?	?

Open questions

- Can we find better solutions of average-case problems that arise from this approach?

Open questions

- Can we find better solutions of average-case problems that arise from this approach?
- Metacyclic group with $k=1: a \mu^{x}=b$, discrete log with $k=2: a \mu^{x}+b \mu^{y}=c$, how to solve?

Open questions

- Can we find better solutions of average-case problems that arise from this approach?
- Metacyclic group with $k=1: a \mu^{x}=b$, discrete log with $k=2: a \mu^{x}+b \mu^{y}=c$, how to solve?
- Faster solution of random subset sum problems/random integer programs (quantum algorithms?)

Open questions

- Can we find better solutions of average-case problems that arise from this approach?
- Metacyclic group with $k=1: a \mu^{x}=b$, discrete log with $k=2: a \mu^{x}+b \mu^{y}=c$, how to solve?
- Faster solution of random subset sum problems/random integer programs (quantum algorithms?)
- Is there a problem that is not even information theoretically reconstructible from single-register measurements, but for which there is an efficient multi-register algorithm?

