Exact Essential-Hazard-Free State Minimization of
Incompletely Specified Asynchronous Sequential
Machines

Fu-Chiung J. Cheng Luis Plana

Columbia University
Department of Computer Science
New York, NY 10027

Tel: 212-939-7070, Fax: 212-666-0140
{cheng, plana}@cs.columbia.edu

CUCS-033-94

December 1994

Abstract

To insure correct dynamic behaviour of asynchronous sequential machines, hazards
must be eliminated for they may cause malfunctions of the whole system. However,
Hazard-free state minimization has received almost no prior attention in the literature.
This paper describes an exact algorithm for essential-hazard-free state minimization of
incompletely specified asynchronous sequential machines. Novel techniques for the elimi-
nation of apparent and potential essential hazards are proposed and exploited in our algo-
rithm. The algorithm has been implemented and applied to over a dozen asynchronous se-
quential machines. Results are compared with results of non-essential-hazard-free method
SIS. Most of the tested cases can be reduced to essential hazard free flow tables.

I(eyWOI'dS: State minimization, essential hazards, hazard-free synthesis, flow tables,
asynchronous sequential circuits.

TOn leave from Universidad Nacional Experimental Politécnica, Barquisimeto, Venezuela. This author is
supported by a grant from Consejo Nacional de Investigaciones Cientificas y Tecnoldgicas, Venezuela.

1 Introduction

Interest in asynchronous sequential circuits is growing due to several potential benefits: avoid-
ance of clock skew, low power consumption, average-case instead of worst-case performance, and
automatic adaptation to physical properties among others [LKSV91, MBM89, Mar86, ND91].

The synthesis of asynchronous circuits starts with an asynchronous state machine specifica-
tion and consists of the following three steps: state minimization, state assignment, and logic
minimization. One of the most important aspects of asynchronous design is to guarantee that
the circuit implementations are hazard-free.

To synthesize hazard-free asynchronous circuits, the following conditions must be satisfied:
First, the specification must be free of sequential hazards. Second, the state assignment must
be free of critical races. Finally, the implementation must be free of combinational hazards.
The exact hazard-free logic minimization for two-level combinational circuits, which solves the
combinational-hazard-free problem, has been proposed by Nowick [ND92]. A unicode single
transition time state (USTT) state assignment which solves the critical-race-free assignment
problem, was proposed by Tracey [Tra66]. One important and difficult problem in designing
hazard-free asynchronous sequential circuits is to guarantee that the specification remains free
of essential hazards in every stage of the synthesis process. This paper addresses the problem
of essential-hazard-free state minimization.

State minimization is an important step for the synthesis of sequential circuits. Many
researchers have worked on this problem [Ung69, HRSJ91, PG93]. However, The existing state
minimization methods pay no attention to essential hazards. The reason for this may be due
to the belief that state minimization has no impact on the presence of essential hazards in a
reduced flow table.

This paper presents an exact algorithm for essential-hazard-free (EHF) state minimization
of incompletely specified asynchronous machines. Novel techniques to eliminate potential and
apparent essential hazards are presented. The goal of EHF state minimization is, given an
incompletely specified normal flow table, to find an EHF minimal closed cover, if such a solution
exists.

This work is important for the following reasons: first, no hazard-free asynchronous circuit
can be built under unbounded delay assumption (i.e. arbitrary finite gate and wire delays) if
there are any essential hazards. Second, an asynchronous circuit implemented from an EHF
flow table would be fast and robust since no delays need to be added and no glitches will be
generated [Ung68].

This paper is organized as follows: Section 2 gives some basic definitions that simplify the
discussion. Section 3 illustrates the essential hazard problems in EHF state minimization. The
techniques to eliminate and avoid EHs are also proposed here. Section 4 describes the EHF state
minimization algorithm in detail. Section 5 gives experimental results. Section 6 concludes this

paper.

2 Definitions

To simplify the discussion, we introduce some basic definitions in this section. These definitions
are taken from [PG93, Ung69] with minor modifications.

2.1 State Minimization

The behavior of a sequential machine can be described by a flow table. A flow table is a two-
dimensional array where columns correspond to the input states and rows correspond to the
internal states. The entries are ordered pairs representing the next state and the output. The
next state in state s and input ¢ is denoted by N(s,¢) and the output by Z(s,7). The kth literal
of the output is denoted by Zx(s,¢). The pair of current state and current input, (s,%), is called
total state. Flow table exl is shown in Table 1. It has 6 states, 3 inputs and 2 outputs. State :
is abbreviated as ¢ if no confusion can be generated.

T1ToT3
000 001 011 101 010
L{[joo| 2--] - ---[[1jto] 1
20 -2] 3--] —--1[2}11]|X 2
31[3J00 | ---[[3Jo0] ---] 4--]|14X 24 X 3
4 [[4]00 | 5--[[4],00 | ---][4]00]]25X 25 34 X 4
5500 [[5[00 | 3--] 6--[[5,00]]25X X 45 | 34 5
6 3--[[6j11 | ---[[6)11] ---][1326X 3456 X [35X]6

Table 1: Incompletely Specified Flow Table ex] and its Pair Chart

Two states ¢ and j of a flow table are compatible, denoted ¢ ~ 3, if and only if for every pos-
sible input sequence applicable to ¢ and j, the same computed output sequences are produced.
On the other hand, if the output sequences differ, then ¢ and j are incompatible. For example,
states 1 and 2 in ex! are incompatible because the outputs, Z5(1,010) = 0 and Z,(2,010) = 1,
differ. States 2 and 6, states 3 and 4, and states 3 and 6 are compatible. In some cases, for
two states to be compatible, they require other states to be compatible too. For example, the
compatibility of states 3 and 5 depends on states 4 and 5 being compatible. The pair chart
in Table 1 shows the compatible states, the conditionally compatible states with their implied
compatible pairs, and the incompatible states.

A set of states is a compatible if and only if every pair of states in the set are compatible.
For example, states 3, 4, and 5 are a compatible (named 345) because states 3 and 4, states 4
and 5, and states 3 and 5 are compatible. Table 2 shows all compatibles in flow table exl. In a
similar fashion, a set of states is an incompatible if and only if every pair of states in the set
are incompatible.

A compatible C; covers compatible C;, denoted by C; > C;, if and only if C; D C;. A
maximal compatible is a compatible that is not covered by any other compatible. For exam-
ple, compatible 345 is maximal but compatible 34 is not. Similarly, a maximal incompatible
is an incompatible that is not covered by any other incompatible. The procedures to construct
a pair chart and to obtain the maximal compatibles and maximal incompatibles can be found
in [Ung69].

The closure class ®(C;) of a compatible C; is a set of all compatibles implied by C; such
that:

1. each implied compatible has more than one state,

2. no implied compatible is a subset of C;, and

3. no implied compatible is a subset of any other member of the closure class.

For example, compatible 35 implies compatible 45 and compatible 45 implies compatible
34, so the closure class of compatible 35 is {45, 34}. The closure classes of the compatibles of
exl are shown in the third column of Table 2.

A compatible C; is said to be prime if there exists no other compatible C; such that:

1. CJ‘ > (.

2. ®(C;) C O(Cy).

For example, compatible 345 is prime but compatible 35 is not, for compatible 35 is covered
by compatible 345 and ®(345) =) C ®(35) = {45,34}. The forth column of Table 2, labeled

PC, shows which compatibles are prime.

Compatible | Closure Class PC | EHF-PC
1 | <345 > [} Yes | Yes
2 | <45> < 34> No | No
3| <36> [} Yes | Yes
4 | <35> <45> < 34> | No | No
5 | <34 > [} No | No
6 | < 26> [} Yes | Yes
7T]1<6> [} No | Yes
8 | <5H> [} No | No
9 | <4> [} No | No
10 | <3 > [} No | No
11 | <2> [} No | Yes
12 | <1> [} Yes | Yes

Table 2: Compatibles and Corresponding Closure Classes of exl

The extended closure class ®(6) of a set of compatibles ¢ is a set of all compatibles
implied by é such that:

1. each implied compatible has more than one state,

2. no implied compatible is a subset of any member of ¢, and

3. no implied compatible is a subset of any other member of the extended closure class.

A set of compatibles ¢ is closed if and only if, for every compatible contained in the set,
each implied compatible is also contained in at least one compatible of the set. That is, the
extended closure class ®(¢) is empty. For example, the set of compatibles {34, 26} is closed
but the set {35, 26} is not because ®({34,26}) = 0 but ®({35,25}) = {45, 34}.

Definition 1 A set of compatibles 6 is a minimal closed cover if and only if 6 satisfies:
1. covering condition: 6 covers all the states of the flow table,
2. closure condition: 6 s closed, and
3. minimal condition: 6 ts minimal.

For example, {1, 26, 34, 5} and {1, 26, 345} are both closed covers but the later is minimal

and the former is not.
The goal of state minimization is to find a minimal closed cover. The state minimization

process [PG93, HRSJ91] usually has the following steps:

4

e Obtain the prime compatibles (or maximal compatibles).

e Select a set of compatibles from the prime compatibles (or maximal compatibles) which
satisfies the covering, closure, and minimal conditions.

The set of compatibles {1, 26, 345} is an optimal solution for state minimization'. The
reduced flowtable is shown in Table 3.

T1T2T3

000 001 011 101 010 wyiy»

a(l) [[@l00] b, | ---] ---[[apio]11
b(26) | c--||bj11| c--|[bl11 [[bl11 |10
¢(345) [Tc],00 | [c};00 [[c},00 [b-- | [c];00 | 00

Table 3: A reduced Flow Table for exl.

2.2 Essential Hazards

A sequential circuit contains a hazard if, for some input change, there is a set of stray delay
values that produces a spurious pulse or glitch in a signal or causes the circuit to enter the
wrong stable state.

Sequential hazards are present in the circuit specification. They are called essential hazards
to denote that they are an inherent property of the sequential function and not of the particular
circuit implementation.

There are two types of essential hazards in asynchronous circuits: transient essential haz-
ards (sometimes referred to as output hazards) and steady state essential hazards. A circuit
specification is said to contain a transient essential hazard (TEH) if, for some input change, a
glitch may appear on an output. A circuit specification contains a steady state essential hazard
(SSEH) if, for some input change, an undesired change may occur in a state variable and, as a
result, the circuit may reach an incorrect stable state.

The flow table in Figure 1(a) is used to illustrate the existence of TEHs and SSEHs. The logic
expressions and circuit implementation of ex1 are shown in Figures 1(b) and 1(c) respectively.

There is a TEH in the flow table starting in total state (2,1) and x changing from 1 to 0:
Initially zy,y2 = 101; when x turns off, it will cause Y] to turn on. Suppose there is big delay
between = and a, z may see y; change first so it will change from 0 to 1. Eventually = will reset
the z output. Thus an output glitch is generated.

There is also a SSEH in the flow table in Figure 1(a) starting in total state (1,0) when
turns on: Initially zy,y2 = 000; when x turns on, it will cause Y; to turn on. Suppose there is
big delay between x and ¢, ¥} may see y, change first and locks itself at 1. Thus the circuit
winds up in state 3 instead of state 2.

To synthesize hazard-free circuits, both hazards must be eliminated.

1t is a solution for non-essential-hazard-free state minimization but not for EHF state minimization.

_|O'ﬂ

X Y1
0 1

J.2.0 yéoyz zZ = X1

3@0 11 Yaz e ri]_‘b
Y2

(a) Flow Table (b) Logic Expression (c) And-Or Implementation

N e
=]
=)

T
If%

< Le

N
+
<

Figure 1: Examples of TEH and SSEH

2.3 Transition Trios

Every change in the outputs or state of a sequential circuit is triggered by a transition in an
input signal. An input change causes a circuit to move from a total state (¢, A) to a total state
(7, B). If ¢ = j then the transition is free of essential hazards because there are no intermediate
states in the transition. When ¢ # j, we define a transition trio of a transition as follows:

Definition 2 Given a transition from a total state (i, A) to a total state (j, B), where ¢ # j, a
transition trio is a set of three total states, t1, o, and ts, where ty is the starting state, (¢, A),
t5 the destination state, (j, B), and ty is one of two possible intermediate total states (i, B) and

(4, 4)-

Each single input change (SIC) transition has two transition trios: Let t be a transition trio,

(2, 4), (k, C), (5, B)}.

e ! is a type 1 transition trio if and only if : = k # j and A # C = B. It represents
transitions involving an input change first and then a state change;

e ! is a type 2 transition trio if and only if ¢+ # k = j and A = C' # B. It represents
transitions involving a state change first and then an input change;

°c ¢
1|[alot2-
<Y, C29
<>

(a) An Input Transition (b) Two Transition Trios

Figure 2: An Input Transition and its Trios.

For example, the transition from (1,0) to (2,1) in Figure 2(a) has two transition trios, {(1,0),
(L,1), (2,1)} and {(1,0), (2,0), (2,1)}, shown in Figure 2(b). Transition trios are used to analyze
hazards in a flow table.

3 Essential Hazard Analysis

In this section we analyze the possible patterns in a flow table which may cause essential hazards
and present novel techniques to eliminate those hazards, whenever this is possible. We consider

only SIC, normal flow tables [Ung69]. Don’t care output and next state entries are denoted by
X.

A B A B A B A B A B

i |104j0] i 1040 RSN Pl P i

i |x1]}.0 i [x-1}0 ik |¥] ik [V i [-1¥
k | k| I [l k | k|]

(@) TEH (b) PTEH (c) SSEH (d) d-trio (€) PSSEH

Figure 3: Examples of TEH, PTEH, SSEH, d-trio and PSSEH

3.1 Transient Essential Hazards

Definition 3 A flow table contains a transient essential hazard for a transition from total
state (1, A) to total state (j, B) if and only if there exists an output literal Z,, such that Z, (1, A) #
X, Z.(j,B) = Z,(1,A), and:

1. Z,(1,B) # X and Z,(1,B) # Z,(i, A), or

2. Z.(3,A) # X and Z,(3,A) # Z,(1, A).

The flow table shown in Figure 3(a) illustrates a TEH. There is no way to eliminate a TEH
once it exists in a flow table.

The following lemmas, stated without proof, present necessary and sufficient conditions to
insure that a flow table is free of TEHs:

Lemma 1 A transition trio {(¢,A),(k,C), (3, B)} is TEH-free if and only if for each output
literal Z,,, s = Z,(1,A), d = Z,(3,B) and t = Z,(k,C) satisfy one or more of the following
conditions:

I.s=Xord=X,

2. 5s=d,

3. s=1t=d.

Lemma 2 A transition {(¢, A), (5, B)} is TEH-free if and only if
1.1=y, or
2.t # j and the corresponding type 1 and type 2 transition trios are TEH-free.

Lemma 3 A flow table is TEH-free if and only if every transition in the flow table is TEH-free.

3.2 Potential Transient Essential Hazards

In an incompletely specified flow table some patterns that include don’t care entries can become
TEHs if an inadequate value is assigned to one or more output don’t cares. This type of pattern
is called a potential transient essential hazard (PTEH).

Definition 4 A flow table contains a potential transient essential hazard for a transition
from total state (v, A) to total state (3, B) if and only if there exists an output literal Z) such
that Zu(i, A) % X, Zu(j, B) = Zi(i, A), and:

1. Zy(t,B) = X, or

2. Zu(j,A) = X.

The flow table shown in Figure 3(b) illustrates a PTEH. This PTEH becomes a TEH if the
don’t care output in total state (j, A) is specified as 1. If, on the other hand, the don’t care
output is specified as 0, the PTEH is eliminated.

It the presence of PTEHs is not accounted for during state minimization, a PTEH can
become a transient essential hazard. Consider the incompletely specified flow table ex2 in
Table 4. The set of maximal compatibles is {12,23}. States 2 and 3 are compatible, so they
can be merged, (i.e. covered by a single state in the reduced flow table). The reduced flow table
is shown in Table 5(a). This reduced table is not unique: rows 1 and 2 can also be merged.
The alternative reduced flow table is shown in Table 5(b).

00 01 11 10
Lo 2,0 --[[L}o 1
- 11201 30 - -

3131 [[3lo][3]0o] 1,0 23 X |3

Table 4: Incompletely Specified Flow Table ex2 and its Pair Chart.

T129 T1T2o

00 01 11 10 Y 00 01 11 10
Lo 20 --[[tfo]o 12][1lo][Llo] 3,0][L]0
23 121 [[2J0][2)0] 1,01 3 [[3}1[[3]o][3]0] 1,0

(a) Hazardous F'T (b) Essential-hazard-free FT
Table 5: Two Reduced Flow Tables of ex2.

Both flow tables in Table 5 have a minimal number of states and have no steady state
essential hazard. However, while there are no TEHs in Table 5(b), there is a transient essential
hazard in Table 5(a) for the transition from total state (1,00) to total state (2,01).

The TEH appears in the reduced flow table because the output don’t care entry in total
state (2,00) of ex2 is transformed into a 1 by merging states 2 and 3 during state minimization.

8

If we constrain the output of the (2,00) entry to 0, then states 2 and 3 are no longer compat-
ible. Minimizing this constrained flow table leads to a single reduced table, the one shown in
Table 5(b). As mentioned before, this table has no essential hazards.

According to Lemma 1, in order to eliminate a PTEH from a transition (i.e. to avoid
introducing a transient essential hazard), some output functions of the flow table must be
constrained: Given a transition trio, {(¢, A), (k,C), (7, B)}, for any output literal Z,, such that
Zn(t,A) = Z,(5,B) and Z,(k,C) = X, then Z,(k,C) should be set to Z,(¢,A) to make it
TEH-free.

While any particular PTEH can be eliminated by constraining the flow table, it is not
always possible to eliminate all PTEHs present in a flow table. If the transition trios associated
with two PTEHs involve the same intermediate total state, they might impose contradictory
conditions on an output don’t care. In this case, only one of the PT'EHs can be eliminated.

3.3 Steady State Essential Hazards

Definition 5 A flow table contains a steady state essential hazard for the transition from
total state (i, A) to total state (j, B) if and only if there exists state k such that k = N(j, A),

k#1i, k#j, and N(k,B) # j.

Every SSEH involves three states. The flow table shown in Figure 3(c) illustrates a SSEH
(outputs are not shown because they are not relevant). States ¢ (the start state), j (the
destination state), and k (the transient state) contribute to the SSEH. Note that % is not
specified as a transient state in the transition but it can be reached due to the presence of
delays in the circuit. If the hazard manifests, the circuit will go to state [, an incorrect stable
state.

The following lemmas, stated without proof, present necessary and sufficient conditions to
insure that a flow table is free of SSEHs:

Lemma 4 A transition trio {(i, A), (k,C), (5, B)} is SSEH-free if and only if N(k,C) =1 or
N(k,C)=j.

An immediate consequence of Lemma 4 is that type 1 transition trios are always SSEH-free.

Lemma 5 A transition {(¢, A), (3, B)} is SSEH-free if and only if
1.1=7y, or
2. 1 # j and the corresponding type 2 transition trio is SSEH-free.

Lemma 6 A flow table is SSEH-free if and only if every transition in the flow table s SSEH-
free.

3.4 d-trios

The flow table shown in Figure 3(d) contains a pattern that is very similar to a SSEH. This
pattern is called a d-trio [Ung69].

Definition 6 A flow table contains a d-trio for the transition from total state (i, A) to total
state (3, B) if and only if there exists state k such that k = N(j,A), k # ¢, k # j, and
N(k,B)=j.

A d-trio is not considered an essential hazard because a circuit that contains a d-trio, if
designed properly and allowed to settle, will not reach an incorrect state. In [Ung69], Unger
shows a procedure that produces a USTT state assignment that leads to a circuit which will
reach the correct state even in the presence of SHs.

It’s important to note that, if a d-trio manifests, there will be glitches in one or more
state variables, thus increasing the time that the circuit needs to settle down. Also, there is
no guarantee that the outputs will not glitch if a d-trio manifests. For these reasons, d-trios
should be treated as hazards and be eliminated whenever possible.

Due to the similarity between d-trios and SSEHs, the techniques used in this paper to
analyze SSEHs and to eliminate apparent and potential SSEHs work effectively with d-trios.
No further mention of d-trios will be made.

3.5 Apparent Steady State Essential Hazards

Consider the transition from total state (2,010) to total state (3,011) in flow table exl, shown
in Table 1. This transition looks like a SSEH. The transition involves states 2, 3, and 4. As
shown in the pair chart, states 3 and 4 are compatible and they can be merged. If, during state
minimization, a minimal closed cover is selected such that one of the compatibles in the cover
contains states 3 and 4, then the pattern will not be present in the reduced flow table. The
three states have been reduced to two and they cannot constitute a SSEH.

This type of transition, which is present in unminimized flow tables only, is called an ap-
parent steady state essential hazard (ASSEH). It resembles a SSEH but it involves at least two
compatible states. If the proper cover is selected, the ASSEH is eliminated. If, on the other
hand, an incorrect cover is selected (i.e. no compatible in the cover includes two states that
contribute to the apparent hazard), then the ASSEH becomes a SSEH.

Definition 7 An unminimized flow table contains an apparent steady state essential haz-
ard for the transition from total state (i, A) to total state (j, B) if and only if there exists state
k such that k = N(j,A), k#1i, k#j, and k ~1 ork ~ j.

Flow table ex1 contains another ASSEH for the transition from total state (5,010) to total
state (3,011). It involves states 5, 3, and 4. This ASSEH can also be eliminated if any two of
these states are merged. If compatible 345 is included in the solution, both apparent SSEHs
are eliminated. The optimal state minimization is to merge states 2 and 6, and states 3, 4, and
5. The resulting reduced flow table contains only three states as shown in Table 3.

The following lemma states necessary and sufficient conditions to eliminate an ASSEH:

Lemma 7 An ASSEH, constituted by states t, 3 and k, where © is the start state, j is the
destination state, and k is the intermediate state, can be eliminated if and only if there exists a
compatible C in the selected cover such that:

l.i~kandi,keC, or

2. j~kandj keC.

10

(2,7, k) is called a required item and we say that compatible C' properly covers the required
item. To eliminate all ASSEHs from a flow table, the selected cover must satisfy the following
condition:

Definition 8 A cover é§ satisfies the required condition if and only if every required item is
properly covered by a compatible in 6.

3.6 Potential Steady State Essential Hazards

In an incompletely specified flow table, some patterns that include don’t care entries can become
SSEHs if the wrong value is assigned to one or more don’t care next state entries. This patterns
are called potential steady state essential hazards.

Definition 9 A flow table contains a potential steady state essential hazard for the tran-
sition from total state (i, A) to total state (3, B) if and only if N(5,A) = X.

The flow table shown in Figure 3(e) illustrates a PSSEH. Depending on the value given to
the don’t care next state entry in total state (j, A), a PSSEH can be eliminated or can become
an ASSEH or a SSEH. If the don’t care next state entry is specified as k such that k& # ¢,
k#j,k+vand k o4 5 then the PSEEH becomes a SSEH. If the don’t care next state entry is
specified as k such that k # ¢, k # 5, and k ~ ¢ or k ~ j then the PSSEH becomes an ASSEH.
On the other hand, If the don’t care next state in total state (j, A) is specified as ¢ or j, there
is no risk of a SSEH, thus the PSSEH is eliminated.

If PSSEHs are not eliminated during state minimization, the reduced flow table can contain
SSEHs that were not present in the initial specification. For example, the flow table shown
in Table 3 corresponds to a minimal closed cover of exl. However, it contains a steady state
essential hazard for the transition from total state (a,000) to total state (b,001). This is caused
by a PSSEH present in exl for the transition from (1,000) to (2,001). This PSSEH became a
SSEH because, during state minimization, the don’t care state in entry (2,000) was specified
as state 3.

To avoid introducing this hazard, compatibles 26 and 345 cannot be both included in the
solution, that is, they interfere with each other. We say that two compatibles interfere with
each other if their simultaneous presence in a cover introduces one or more SSEHs in the reduced
flow table.

The following lemma presents necessary and sufficient conditions to determine when two
compatibles interfere with each other:

Lemma 8 Two compatibles C'1 and C?2 interfere with each other if and only if they satisfy all
of the following conditions:

1. There exists a transition from total state (i, A) to total state (j, B) such that i & C2,
JeCl,j¢C2and N(j,A) = X,

2. There exists state r such that r € C1, r #1,r# 3, N(r,A)=k and k € C2.

To avoid introducing SSEHs during state minimization, the selected cover must not include
compatibles that interfere with each other, that is, the selected cover must satisfy the following
condition:

11

Definition 10 A cover 6 satisfies the interference-free condition if and only if no compat-
ibles in 6 interfere with each other.

In the example above, state 2 is the key to the PSSEH because it contains the don’t care
next state entry. Compatible 26 is called the major culprit because it contains state 2.

An interference relation can be broken if the compatibles that interfere can be split. How-
ever, splitting compatibles may be a complicated and computationally intensive process?. An
alternative is to redefine the prime compatibles.

Definition 11 A compatible C; is said to be EHF-prime if
1. C; is prime.
2. C; s non-prime and there exists C; such that C; is a major culprit and C; < C;.

In example ex1, compatibles 2 and 6 are non-prime since ®(26) = (). However, compatibles
2 and 6 are EHF-prime because they are subsets of compatible 26, which is a major culprit.
The EHF-prime compatibles are listed in the fifth column of Table 2.

4 Essential-hazard-free state minimization

4.1 Essential-hazard-free Cover

The following lemma follows from Lemma 3 and Lemma 6:

Lemma 9 A flow table is essential-hazard-free (EHF) if and only if every transition in the
flow table s TEH-free and SSEH-free.

Now we can define an EHF solution for state minimization as follows:

Definition 12 A cover 6 is an EHF minimal closed cover if and only if it satisfies all of
the following conditions:

1. Covering condition: 6 covers every state of the flow table,
Closure condition: 6 is closed,
Required condition: every required item is properly covered by a compatible in ¢,

Interference-free condition: no compatibles in 6 interfere with each other, and

Sros

Minimal condition: No other set of compatibles satisfies the above conditions and has
fewer compatibles.

The EHF state minimization problem can be stated as follows: Given an incompletely
specified flow table and a set of SIC input transitions, find an EHF minimal closed cover.

2Which compatibles should be split and how to split them so that the solution is still optimal.

12

4.2 Elimination of potential Transient Essential Hazards

As described in the previous section, PTEHs are eliminated by constraining the output func-
tions of the original specification. The algorithm which adds output constraints to prevent
PTEHs from becoming TEHs during state minimization consists of two steps: first, identify all
transition trios which contain PTEHs, and second, for each output function, set the don’t care
output to the proper value to prevent an EHs. The details of the algorithm are shown below:

Algorithm 1 Constraining the original flow table:

Input : A& flow table and a list of input transitioms.
Output: A constrained flow table.
Method:
Build_Constrained_FT()
{
for each transition in the list of input transitions
list all the transition trios
for each transitiom trio, t={(i,4), (k,C), (j,B)}, in the
list of transition trios
for each output literal Zn
if Zn(i,A) = Zn(j,B) and Zn(k,C) is a don’t care
then set Zn(k,C) = Zn(i,A)

4.3 Constructing the Required and Interference Lists

We showed in the previous section that we can eliminate an ASSEH by merging any two states
which contribute to the hazard. A required item contains the information needed to eliminate
a ASSEH. The required list is a collection of all required items.

We also showed that some avoidable SSEHs may be introduced during state minimization
due to the presence of PSSEHs. The information needed to avoid these SSEHs (i.e. the
compatibles that interfere with each other) must be collected in a list called the interference
list.

The algorithm which constructs the required and interference lists is shown below:

Algorithm 2 Constructing the required and interference lists:

Input : The Constrained flow table and the list of input transitioms.
Output: The required and interference lists.
Method:
Build_PLFL()
{
for each transition from (i,A) to (j,B), in the list of
input transitions
if i <> j then
{
if N(j,A) =k, k <> i and k <> j
then add (i,j,k) to the required list

if N(j,A) is a don’t care then

{

for every compatible C1 in Prime Compatibles

13

if j in C1 and exists r in C1 such that r <> j
N(r,A) = k, k in C2, and i and j not in C2

then add (C1,C2) to the interference list

/* Note that C1 is the major culprit */

4.4 EHF-MinCover Algorithm

The EHF state minimization process is a modified version of state minimization. It is similar
to the Puri method for efficiently searching for minimal closed covers [PG93]. The Puri method

constructs a search tree from prime compatibles and builds up a tree-like search space by
utilizing a tight lower bound derived from the maximal incompatibles. The tree is expanded if

a solution is not found for the current lower bound.

Our algorithm consists of the following steps:

1
2

3

4.

5

Construct the constrained flow table by applying Algorithm 1.
Generate the maximal incompatibles and prime compatibles.
Construct the required and interference lists by applying Algorithm 2.
Generate the EHF-prime compatibles.

Generate the cover table:

For each compatible, C'; in the set of EHF-prime compatibles, if state s in (', then insert
C into entry s of the cover table, CT|[s].

Set the lower bound to the number of states in the largest maximal incompatible and set
the upper bound to the total number of states.

Since the states in a maximal incompatible must be covered by different compatibles (i.e.
a compatible cannot cover two incompatible states) and the compatibles in a minimal
closed cover must cover all states, the lower bound of a minimal closed cover is equal to
the number of states in the maximal incompatible with the maximum number of states.

It is obvious that the upper bound is equal to the total number of states. An upper
bound is used to evaluate the termination condition of state minimization: when the
current lower bound is greater than the upper bound then the algorithm terminates.
Note that there is always a solution for traditional state minimization (i.e. the unreduced
flow table is a solution) but there may be no solution for EHF state minimization.

Based on the maximal incompatibles, generate a maximal incompatible search tree (MIST).

A MIST tree is used to find a minimal solution. A path in the tree is a maximal in-
compatible. A node in the path is a state of the maximal incompatible. The MIST is
constructed as follows: For each maximal incompatible generate a corresponding path
such that for any two states 1 and j in a maximal incompatible, if ¢+ < j then state i is a
parent node of state j.

14

8. For each path in the maximal incompatible search tree, find all the possible candidates.

(a) For each state, s, in the path, choose a compatible in CT[s] and put it into candidate.

(b) put candidate into candidates and repeat the above operation to find next candidate.

9. For each candidate, check if the candidate satisfies the covering, closure, required, and
interference-free conditions. If it does then the EHF minimal closed cover is found and
returned.

10. increment the lower bound.
11. If lower bound <= upper bound then expand the maximal incompatible search tree.
12. goto step 8.

The EHF-MinCover algorithm is shown in Algorithm 3 in appendix A.

4.5 An Example

Flow table exl is used to illustrate how the EHF state minimization algorithm works.
Step 1: Construct the constrained flow table: Since flow table exl is TEH-free, no output
constraints are added.
Step 2: Generate the maximal incompatibles and prime compatibles: the maximal incom-
patibles are {123,124,125,146,156} and the prime compatibles are {1,26,345,36}.
Step 3: Construct the required and interference lists: the required list is {(2,4,3),(5,4,3)}
and the interference list is {(26,36), (26,345)}.
Step 4: Generate the EHF-prime compatibles: the EHF-prime compatibles are {1, 2,26, 345, 36,6}
Step 5: Generate the cover table: The cover table is shown in Table 6.

Cover Table
state | EHF-Prime Compatibles
1 <1l>
<26 >< 2>
< 345 >< 36 >
< 345 >
< 345 >
<26 ><36><6>

O O W= | N

Table 6: The Cover Table of ex].

Step 6: Set the lower and upper bounds: The lower bound is 3 and the upper bound is 6.
Step 7: Generate the maximal incompatible search tree (MIST) with bound = 3: The MIST
with bound = 3 is shown in Figure 4(a).

Iteration steps(8-11): Try to find an EHF minimal closed cover with 3 EHF-prime compat-
ibles.

15

I N

2 4 5 4
R i \ | |5
456 5 6
() Search Tree with Lower Bound = 3 (b) Search Tree with Lower Bound = 4

Figure 4: Maximal Incompatible Search Trees:

For incompatible 123, the possible candidates are {1, 26, 345}, {1, 26, 36}, {1, 2, 345}
and {1, 2, 36}. None of them is an EHF minimal close cover, for the first candidate violates
the interference-free condition and the second through forth candidates violate the covering
condition. It is not difficult to show that there is no 3-row EHF solution. Since there is no
3-row EHF solution, the MIST is expanded one more level. The MIST with bound = 4 is shown
in Figure 4(b).

Iteration steps(8-11): Try to find an EHF minimal closed cover with 4 EHF-prime compat-
ibles.

EHF-MinCover finds an EHF minimal closed cover, {1,2,345,6}. The EHF minimal flow
table is shown in Table 7.

L1223

000 001 011 101 010

1) [[@O0] b--] ---] ---[[a}10
) -l | o< - | [bl1a
345) [[c},00 | [c],00 | [c],00 | d,-- | [c],00
d (6) e - [ldlan | - [ldfar | ---

2

Table 7: The Essential-Hazard-Free minimal Flow Table of exl

It’s important to note that there is a PSSEH in the transition from total state (a,000) to
total state (b,001) in the reduced flow table for ex1. This PSSEH was prevented from becoming
a SSEH during state minimization but was not eliminated. It can be eliminated by specifying
the don’t care next state entry in (b,000) as a or b. The choice of a or b should be decided
during the state assignment or logic minimization stages.

5 Experimental Results

EHF-MinCover has been implemented in C++ and runs under Unix. Test cases were run on
a Sun IPX workstation. These test cases are self-timed building blocks from [Ung93, Sut89,
Bru91] and some of them are re-implemented using two-phase handshaking.

Table 8 shows the main results of the EHF state minimization. N;,, N, and Ny are
the number of inputs, outputs and input transitions, respectively. Si.iis¢ and Sgequs: are the

16

number of states before and after minimization, respectively. An NA in column Ng.4s; means
that no EHF solution was found by EHF-MinCover. Npc and Njsj;c are the numbers of prime
compatibles and maximal incompatibles. Ngry, and Njj, are the number of terms in the required
and interference lists, respectively.

Four examples (ifelse, until, while, and two-step) are reduced to single state flow tables, and
thus degenerate into combinational logic. Three examples (toggle, convert2-4, and convert4-2)
have no EHF solution, i.e. the functions specifying these elements contain real essential hazards
which can not be eliminated.

| Example | Nin | Nout | Nir | Ninitst | Nreast | Nec | Nyie | Nre | Nip | EHF Sol |
ex1 3 2 15 6 4 2 5 2 2 | Yes
ex?2 2 2 8 3 2 2 2 0 0 | Yes
call 3 3 16 16 4 24 1 0 0 | Yes
convert2-4 2 2 6 6 NA 3 8 2 0 | No
convert4-2 2 2 6 6 NA 3 8 2 0| No
transitional-demux 3 2 36 16 4 81 1 16 0 | Yes
ifelse) 4 20 16 1 1 0 0 0 | Yes
join 2 1 8 6 2 4 7 4 0 | Yes
RSFF 2 2 16 8 4 4 16 8 0 | Yes
storage-element 3 3 96 32 8 72 1420 32 0 | Yes
toggle 1 2 4 4 NA 4 1 4 0 | No
two-step 4 3 6 12 1 1 0 0 0 | Yes
until 4 3 16 12 1 1 0 0 0 | Yes
while 3 3 16 12 1 1 0 0 0 | Yes

Table 8: Results of EHF MinCover.

Table 9 shows the results of state minimization by SIS [SSL+92, HRSJ91] and EHF-MinCover.
The Unix time command is used to measure the running time of EHF-MinCover. T,y is the
“wall-clock” time, Tyse, the time running in user-mode and Tj,s the time running in system-
mode in Unix. The experiments show that EHF-MinCover is very efficient. All cases take less
than 1 minute to find EHF solutions or to report that no solution exists.

The time listed for SIS, under T pp, measures only the state minimization step, whereas
the time reported for EHF-MinCover measures not only the time for EHF state minimization
but also the time for reading the flow table, completing the hazard analysis, and converting the
flow table to kiss format.

Nsspg and Nppg show the number of SSEHs and TEHs, respectively, in the reduced flow
tables produced by SIS state minimization. Of the examples which do not degenerate into
combinational logic, only two of the ASM flow tables (RSFF and storage-element) solved by
SIS are EHF. In fact, in these two examples, the covers found by SIS and EHF-MinCover are
exactly the same. For the rest of the examples, the solutions found by SIS contain either SSEHs
or TEHs.

In some flow tables, the number of prime compatibles may be relatively large. In these
cases, some heuristics (e.g. use maximal compatibles instead of prime compatibles) may be
applied to avoid generating all the prime compatibles.

17

EHF-MinCover State Minimization of SIS
Example Ninitst || Nreast | Treat | Tuser | Tsys || Nreas: | Tepu | Nssen | Nren
ex1 6 4| 055 0.10 | 0.16 3 0.00 1 0
ex?2 3 21 056 | 0.05|0.16 2 0.00 0 1
call 12 41 141 | 045 0.13 2 0.03 0 4
convert2-4 6 NA | 0.75 0.06 | 0.20 2 0.01 0 2
convert4-2 6 NA | 0.63 0.13 | 0.13 2 0.02 0 2
demultiplexer 16 41 7.88 | 6.15 | 0.30 4 0.28 1 0
ifelse 16 1] 08] 0.26]0.15 1 0.01 0 0
join 6 21 0.65| 0.06|0.15 2 0.01 0 0
RSFF 8 41 098 | 0.15| 0.16 4 0.01 0 0
storage-element 32 8 | 45.76 | 41.08 | 2.05 8 0.24 0 0
toggle 4 NA | 073] 0.03] 0.11 4 NA 4 0
two-step 12 1 0.63 0.05 | 0.13 1 0.00 0 0
until 12 1] 073] 0.16 | 0.13 1 0.01 0 0
while 12 1] 098] 0.16 | 0.13 1 0.00 0 0

Table 9: Comparison of State Minimization of SIS and EHF-MinCover.

6 Conclusions

This paper proposes an algorithm for essential-hazard-free state minimization of incompletely
specified asynchronous sequential machines. Novel techniques to remove apparent and potential
essential hazards are exploited in our algorithm. We also show that the existing state mini-
mization methods introduce avoidable steady state as well as transient essential hazards during
the state merging process.

This work is important because a normal flow table has no hazard-free realization under
unbounded delay assumption if it contains any essential hazard. One promising result obtained
is that most of the building block elements in [Ung93, Sut89, Bru91] can be reduced to EHF flow
tables. To synthesize a hazard-free asynchronous circuits, a critical race free state assignment
[Tra66] and hazard-free logic minimization [ND92] must be applied to the EHF reduced flow
table generated by EHF-MinCover.

References

[Bru91] Erik Brunvand. Translating Concurrent Communicating Programs into Asyn-
chronous Circuits. PhD thesis, Carnegie Mellon University, 1991.

[HRSJ91] G.D. Hachtel, J.K. Rho, F. Somenzi, and R. Jacoby. Exact and heuristic algorithms
for the minimization of incompletely specified state machines. In Proc. Furopean
Design Automation Conf., pages 184-191. IEEE Computer Society Press, 1991.

[LKSV91] Luciano Lavagno, Kurt Keutzer, and Alberto Sangiovanni-Vincentelli. Algorithms
for synthesis of hazard-free asynchronous circuits. In Proc. ACM/IEEE Design Au-
tomation Conf., pages 302-308, 1991.

18

[Mar86]

[MBMS9]

[ND91]

[ND92]

[PG93]

[SSL*92]

[Sut89]

[Tra66]

[Ung68]

[Ung69]

[Ung93]

Alain J. Martin. Compiling communicating processes into delay-insensitive VLSI
circuits. Distributed Computing, 1(4):226-234, 1986.

Teresa H.-Y. Meng, Robert W. Brodersen, and David G. Messerschmitt. Automatic
synthesis of asynchronous circuits from high-level specifications. [EEE Trans. on

Computer-Aided Design, 8(11):1185-1205, November 1989.

Steven M. Nowick and David L. Dill. Automatic synthesis of locally-clocked asyn-
chronous state machines. In Proc. Int’l. Conf. Computer-Aided Design, pages 318
321. IEEE Computer Society Press, November 1991.

Steven M. Nowick and David L. Dill. Exact two-level minimization of hazard-free
logic with multiple-input changes. In Proc. Int’l. Conf. Computer-Aided Design,
pages 626—630. IEEE Computer Society Press, November 1992.

Ruchir Puri and Jun Gu. An efficient algorithm to search for minimal closed covers
in sequential machines. [EEE Trans. on Computer-Aided Design, 12(6):737-745,
June 1993.

E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoy, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-Vincentelli. SIS: A
system for sequential circuit synthesis. Technical Report UCB/ERL M92/41, De-
partment of Electrical Engineering and Computer Science, University of California,

Berkeley, May 1992.

Ivan E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720-738,
January 1989.

James H. Tracey. Internal state assignment for asynchronous sequential circuits.

IEEE Trans. Electronic Computers, EC-15(4):551-560, August 1966.

Stephen H. Unger. A row assignment for delay-free realizations of flow tables without
essential hazards. IEEFE Transactions on Computers, 17(2):146-151, February 1968.

S. H. Unger. Asynchronous Sequential Switching Circuits. Wiley-Interscience, John
Wiley & Sons, Inc., New York, 1969.

S. H. Unger. A building block approach to unclocked systems. In Proc. Hawaii
International Conf. System Sciences, pages 339-348. IEEE Computer Society Press,
January 1993.

19

Appendix A:

Algorithm 3 EHF-MinCover:

Input : A flow table and a list of input transitioms.
Output: An EHF minimal closed cover.
Method:
EHFMinCover ()
{
/* Construct a constrained flow table by applying Algorithm 1. */
Build_Constrained_FT();
Generate MAXimal InCompatibles (MAXIC) and Prime Compatibles (PC);

/* Construct the required and forbidden lists by applying Algorithm 2. */
Build_PLFL();
Generate EHF-Prime Compatibles (EHF-PC);

/* Generate a Cover Table, CT, from the EHF-Prime Compatibles */
for each compatible C in EHF-PC
for each state s
if s in C then add C to CT[s];

set the LowerBound and UpperBound;
generate Maximal Incompatible search tree(MIST);
While (TRUE) {
for each path MI in MIST {
while(select_Candidate(MI)) {
if Candidate satisfies all of the following conditioms:
1. Covering condition: Candidate covers all states of the flow table;
2. Closure condition: Candidate is closed;
3. Required condition: Every required item is properly covered
by a compatible in Candidate;
4. Interference—-free condition: No compatibles in Candidate
interfere with each other;
then {
solution = shrink the candidate;
return candidate;

} /* end of if check solution */
} /* end of while there is an candidate */
¥ /* end of for each MI */

LowerBound = LowerBound +1;
if (LowerBound > UpperBound)
No EHF Solution is found and exit;
else
Expand MIST with LowerBound;
} /* end of while */

20

/* select_Candidate() function enumerates all the possible candidates from
* CT such that each candidate contains all the states of MI.

*/

select_Candidate(MI)

{
/* A candidate is a set of compatibles */
for each state s in MI {
select a compatible from CT[s];
put the compatible into candidate;
}
if no new Candidate can be found
then return FALSE;
else return TRUE;
}

21

