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Motivated by Ying’ work on automata theory based on quantum logic (Ying, M. S.
(2000). International Journal of Therotical Physics, 39(4): 985–996; 39(11): 2545–
2557) and inspired by the close relationship between the automata theory and the theory
of formal grammars, we have established a basic framework of grammar theory on
quantum logic and shown that the set ofl -valued quantum regular languages generated
by l -valued quantum regular grammars coincides with the set ofl -valued quantum
languages recognized byl -valued quantum automata.
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1. PRELIMINARIES

To provide a new model of quantum computation, Ying used the semantically
analysis approach to study the automata theory based on quantum logic. Ying
presented a basic framework of automata theory on quantum logic (Ying, 2000a,b).
In particular, Ying introduced the orthomodular lattice-valued quantum predicate
of recognizability and established some of its fundamental properties. The most
interesting result obtained is the Proposition 2 in Ying (2000b) that says that
the language recognized by the product of automata is the intersection of the
languages recognized by the factors iff the truth-value lattice of the underlying logic
is distributive. But an orthomodular lattice possessing distributivity is a Boolean
algebra! This negative result may help us to clarify the boundary between classical
computation and quantum computation. Lu and Zheng (2002) defined and studied
three different types of lattice-valued finite state quantum automata (LQA) and
four different kinds of LQA operation, discussed their advantages, disadvantages,
and various properties. The most interesting results (Lu and Zheng, 2002) obtained
are the Theorem 3.14, Theorem 3.15, and Theorem 3.16 that say that the validity
of many properties of the latticeLAT (l ,6,2), such as whether it is complete,
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distributive, or modular, depends on the corresponding properties of the original
lattice.

With the close relationship between automaton theory and the theory of for-
mal grammars in our minds, we have to consider whether or not we can establish
a grammar theory based on quantum logic corresponding to the automaton theory
based on quantum logic established by Ying (2000a,b). If we can do so, could we
obtain the relation between quantum automa and quantum grammars correspond-
ing to the classical one?

First let’s review the classical automata theory and formal grammar theory.

1.1. Classical Automaton Theory

Definition 1.1. A finite state automaton is a quintupleM (Howie, 1991), where

M = (Q, A, ϕ, i , T)

Q is a finite nonempty set, called the states ofM ;
A is a finite nonempty set, called the set of inputs or the alphabet ofM ;
i ∈ Q is the initial state ofM ;
T is a nonempty subset ofQ and the elements ofT are called the terminal states
of M ; ϕ is a mapping fromQ× A to Q, called the state trnsition function ofM .
It is natural to expandϕ to be a mapping fromQ× A∗ to Q in a recursive way by
stipulating that

ϕ(q, 1)= q(q ∈ Q) (1 stands for the empty word)

ϕ(q, wa) = ϕ(ϕ(q, w), a)(q ∈ Q, w ∈ A∗, a ∈ A)

An elementw of A∗ is said to recognized byM if ϕ(i , w) ∈ T . The language
L(M) recognized byM is the set of all elementsw in A∗ that are recognized by
M , that is to say

L(M) = {w ∈ A∗|ϕ(i , w) ∈ T}

Let q(a1a2 . . .an) = q′, then the statesq, q′ in the automaton are connected by a
path

q
a1→q2

a2→q3→ · · · → qn
an→q′

The worda1a2 . . .an is called the label of the path. A path will be called
successful if it begins with the initiali and ends with a terminal statet in T . Thus
w ∈ L(M) if and only if there exists a successful path with labelw.
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1.2. The Classical Formal Grammar Theory

Definition 1.2. A formal grammar (phrase structure grammar) is a quadruple
(Howie, 1991)

0 = (V, A, π, σ );

V is a finite set of symbols called the vocabulary of0;
A is a nonempty subset ofV called the terminal alphabet of0;
π is a finite subset of (V\A)+ × V∗. The elements (u, v) of π are called the
productions of0, and we writeu→ v whenever (u, v) ∈ π ;
σ ∈ V\A is an initial symbol.

Formally, forw, w′ in V∗ we writew ⇒ w′ if there existx, y in V∗ and a
productionu→ v in π such thatw = xuy, w′ = xvy. We say thatw′ derives from
w. We writew

∗⇒ z if either w = z or there existw1, w2, . . . , wn (with n ≥ 2) in
V∗ such thatw = w1, z= wn andwi ⇒ wi+1(i = 1, 2,. . . , n− 1). We refer to
this chain of transformations as a derivation in0, and say thatz derives fromw.

The languageL(0) generated by0 is the set of words in the terminal alphabet
A that can be derived in this way fromσ , i.e.,L(0) = {w ∈ A∗ : σ

∗⇒w}.
The simplest type of grammar is a regular grammar, where every production

in π is either of the form

α→ xβ(x ∈ A+, α, β ∈ V\A)

or of the form

α→ y(α ∈ V\A, y ∈ A∗)

A grammar is hyper-regular if all productions have the form

α→ aβ(α, β ∈ V\A, a ∈ A)

or the form

α→ 1(α ∈ V\A)

A language is regular (hyper-regular) if it can be generated by a regular
(hyper-regular) grammar.

2. GRAMMAR THEORY BASED ON QUANTUM LOGIC

2.1. Automaton Theory Based on Quantum Logic

Ying (2000a,b) presented a basic framework for automaton theory based on
quantum logic. We repeat the concept of anl -valued quantum automaton over

∑
defined by Ying (2000a,b) in a slightly different notation and definition.
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Definition 2.1. Let l = (L ,≤, ∧, ∨,⊥, 0, 1) be an orthomodular lattice andA be
a finite alphabet (Ying, 2000b). Then anl -valued quantum automaton overA is a
quintupleM , where

M = (Q, A, ϕ, i , T);

Q is a finite set of states;
A is a finite alphabet;
i ∈ Q is the initial state;
T ⊆ Q is the set of terminal states;

ϕ is anl -valued subset ofQ× A× Q, i.e., a mapping fromQ× A× Q into
L and is called thel -valued quantum transition relation ofM . Intuitively, for and
p, q ∈ Q andσ ∈ A, ϕ(p, σ, q) indicates the truth-value of the proposition that
inputσ causes statep to becomeq.

An l -valued quantum automaton overA determines anl -valued (unary)
predicate recM on A∗ ∪∞k=0 Ak, and it is defined as follows: for allk ≥ 0, w =
σ1, . . . , σk ∈ A,

recM (w) = recM (σ1 . . . σk)

def=(∃q0 = i , q1, . . . , qk−1 ∈ Q, qk ∈ T)pathM (q0σ1q1 . . .qk−1σkqk)

where

pathM (q0σ1q1 . . .qk−1σkqk)
def= ∧k

j=0[(qj , σ j+1, qj+1) ∈ ϕ]

qk+1 = qk, σk+1 = 1 and ϕ(qk, σk+1, qk+1) = ϕ(qk, 1,qk) ∈ L .

Intuitively, recM (w) stands for the proposition that the wordw is recognized
by the quantum automatonM and its truth-value is

value(recM (w)) = value(recM (σ1 . . . σk))
def= ∨q0=i ,q1,...,qk−1∈Q,qk∈T ∧k

j=0

ϕ(qj , σ j+1, qj+1)l M (w)
def= value(recM (w)).

We call anl -valued subset ofA∗ anl -valued quantum language overA. Thus,
thel -valued quantum language overA generated byM is L(M), where

L(M) = {(w, l M (w))|w ∈ A∗)}.

2.2. Grammar Theory Based on Quantum Logic

Definition 2.2. Let l = (L ,≤, ∧, ∨,⊥, 0, 1) be an orthomodular lattice. Then an
l -valued quantum grammar is a quadrupleG, where

G = (V, T, I , P)
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V is a finite alphabet of variables;
T is a finite alphabet of terminals;
I ∈ V is an initial variable;
P is a finite set of productionsα→ β, α ∈ V+, β ∈ (V ∪ T)∗.

Every productionα→ β ∈ P has a value inL, i.e., there exists a mappingl
from P into L such thatl (α→ β) ∈ L for anyα→ β ∈ P.

If w′ derives fromw, i.e.,w ⇒ w′ by the productionα→ β ∈ P, we define
l (w ⇒ w′) = l (α→ β) ∈ L. If w

∗⇒ z, i.e., eitherw = z, thenl (w
∗⇒ z) ∈ L or

there existw1, w2, . . . , wn (with n ≥ 2) in V∗ such thatw = w1, z= wn and
wi ⇒ wi+1(i = 1, 2,. . . , n− 1) with the corresponding productionαi → βi for
everywi ⇒ wi+1(i = 1, 2,. . . , n− 1), then

l (w
∗⇒ z) = ∧n−1

i=1 l (wi ⇒ wi+1) = ∧n−1
i=1 l (αi → βi ).

An l -valued quantum grammarG is regular if it has only productions of the
form

α1→ βα2(β ∈ T+, α1, α2 ∈ V) with l (α1→ β1α2) ∈ L

or of the form

α1→ β(β ∈ T∗, α1, ∈ V) with l (α1→ β) ∈ L .

An l -valued quantum grammarG is hyper-regular if it has only productions
of the form

α1→ βα2(β ∈ T, α1, α2 ∈ V) with l (α1→ β1α2) ∈ L

or of the form

α→ 1(α ∈ V) with l (α1→ 1) ∈ L .

An l -valued quantum grammar determines anl -valued (unary) predicate recG

on T∗ = ∪∞k=0Tk, and it is defined as follows: for allk ≥ 0, w ∈ T∗,

recG(w)
def=(∃w1 = I , w2, . . . , wk−1 ∈ (V ∪ T)∗, wk = w)deriG

× (w1⇒ w2, . . . , wk−1⇒ wk),

where the derivation degree ofw is defined as follows:

deriG(w1⇒ w2, . . . , wk−1⇒ wk)
def= ∧k−1

i=1 l (wi ⇒ wi+1),

value(recG(w))
def= ∨w1=I ,w2,...,wk−1∈(V∪T)∗,wk=w ∧k−1

i=1 l (wi ⇒ wi+1),

lG(w)
def= value(recG(w)).
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The languageL(G) generated byG is

L(G) = {(w, lG(w))|w ∈ T∗}.
An l -valued quantum (hyper-) regular language is one generated by some

l -valued quantum (hyper-) regular grammar.
Let l = (L ,≤, ∧, ∨,⊥, 0, 1) be an orthomodular lattice. Twol -valued quan-

tum grammarG1 = (V1, T, I1, P1) andG2 = (V2, T, I2, P2) are equivalent, i.e.,
L(G1) = L(G2), if lG1(w) = lG2(w) for all w ∈ T∗.

First we can obtain the important relation betweenl -valued quantum regular
languages and quantum hyper-regular languages as same as that in class one.

Lemma 2.1. Every l-valued quantum regular language is an l-valued quantum
hyper-regular language.

Proof: Let l = (L ,≤, ∧, ∨,⊥, 0, 1) be an orthomodular lattice andG =
(V, T, I , P) is an l -valued quantum regular grammar. Then the languageL(G)
generated byG is

L(G) = {(w, lG(w))|w ∈ T∗}
We can define anl -valued hyper-regular grammarG1 = (V1, T, I , P1) such

thatL(G) = L(G1).
For each production

α→ a1a2 . . .amβ ∈ P with lG(α→ a1a2 . . .amβ) ∈ L (1)

When m= 1, we havea1 ∈ T, α, β ∈ V ⊆ V1, and α→ a1β ∈ P1 with
lG1(α→ a1β) = lG(α→ a1β) ∈ L, as required; whenm≥ 2, a1, a2, . . . , am ∈
T, α, β ∈ V ⊆ V1, and we can define non-terminal symbolsζ1, ζ2, . . . , ζm−1 in V1

and withinP1 mimic the production (1) by means of productions

α→ a1ζ1, ζ1→ a2ζ2, . . . , ζm−1→ amβ ∈ P1 with lG1(α→ a1ζ1)

= lG1(ζ1→ a2ζ2) = . . . = lG1(ζm−1→ amβ) = lG(α→ a1a2 . . .amβ). (2)

Then

lG1(α→ a1a2 . . .amβ)

= lG1(α→ a1ζ1) ∧ lG1(ζ1→ a2ζ2) ∧ . . . ∧ lG1(ζm−1→ amβ)

= lG(α→ a1a2 . . .amβ).

For each production

α→ b1b2 . . .bn ∈ P with lG(α→ b1b2 . . .bn) ∈ L . (3)
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When n = 0,α ∈ V ⊆ V1, and we haveα→ 1 ∈ P1 with lG1(α→ 1)=
lG(α→ 1) ∈ L, as required; whenn ≥ 1, b1, b2, . . . , bn ∈ T, α ∈ V ⊆ V1, and
we can define nonterminal symbolsη1, η2, . . . , ηn in V1 and withinP1 mimic the
production (3) by means of productions

α→ b1η1, η1→ b2η2, . . . , ηn−1→ bnηn, ηn→ 1 ∈ P1 with lG1(α→ b1η1)

= lG1(η1→ b2η2) = . . . = lG1(ηn−1→ bnηn) = lG1(ηn→ 1)

= lG(α→ b1b2 . . .bn) (4)

Then

lG1(α→ b1b2 . . .bn)

= lG1(α→ b1η1) ∧ lG1(η1→ b2η2) ∧ . . . ∧ lG1(ηn−1→ bnηn) ∧ lG1(ηn→ 1)

= lG(α→ b1b2 . . .bn)

Certainly G1 is an l -valued quantum hyper-regular grammar. Moreover, it
is clear that the productions (2) give thatI

∗⇒a1a2 . . .amβ in G1 with lG1(I
∗⇒

a1a2 . . .amβ) = lG(I
∗⇒a1a2 . . .amβ) ∈ L. We similarly obtain thatI

∗⇒ b1b2 . . .

bn in G1 from the productions (4) withlG1(I
∗⇒ b1b2 . . .bn) = lG(I

∗⇒ b1b2 . . .bn)
∈ L. Thus very derivationI

∗⇒w in G with lG(I
∗⇒w) ∈ L can be simulated

by a longer derivationI
∗⇒w in G1 with lG1(I

∗⇒w) ∈ L and lG1(I
∗⇒w) =

IG(I
∗⇒w). Then for allw ∈ T∗, we havelG1(w) = lG(w), Thus we conclude

thatL(G) ⊆ L(G1).
To prove the reverse inclusion, suppose that for somew ∈ T∗, there is a

derivationI
∗⇒w in G1 with lG1(I

∗⇒w) ∈ L. Then certainly there is a derivation

I
∗⇒w in G2 with LG2(I

∗⇒w) = lG1(I
∗⇒w) ∈ L (5)

whereG2 = (V1, T, I , P ∪ P1) has all the productions inG together with all the
productions inG1.

We shall show that there is a derivation ofw in G, by induction on the number
of symbols fromV1\V appearing in the derivation (5). If no such symbols appear
then (5) is already a derivation inG. Otherwise the first appearance of a symbol
of V1\V is based either on a production

α→ α1ζ1 with lG2(α→ α1ζ1) = lG1(α→ α1ζ1) ∈ L

whereα→ a1a2 . . .amβ is a production inG, or on a production

α→ b1η1 with lG2(α→ b1η1) = lG1(α→ b1η1) ∈ L

whereα→ b1b2 . . .bn is a production inG. Consider the first of these cases. Since
the final wordw in the derivation (5) has no nonterminal symbols, and since the
grammarG2 has no productions of the typeζi → y(y ∈ T∗) with lG2(ζi → y) ∈ L
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for any of the symbols ofV1\V , the only way in whichζ1, once introduced, can
subsequently disappear must involve changes fromζ1 to a2ζ2, . . . , ζm−1 to amβ.
But then the sequence of transitions

α→ α1ζ1, ζ1→ a2ζ2, . . . , ζm−1→ amβ with

lG2(α→ α1ζ1) = lG1(α→ α1ζ1), lG2(ζ1→ α2ζ2) = lG1(ζ1→ α2ζ2)

, . . . , lG2(ζm−1→ αmβ) = lG1(ζm−1→ αmβ) ∈ L

can be replaced by a single transition

α→ a1a2 · · ·amβ

with

lG2(α→ a1a2 . . .amβ)

= lG2(α→ a1ζ1) ∧ lG2(ζ1→ a2ζ2) ∧ · · · ∧ lG2(ζm−1→ amβ)

= lG1(α→ a1ζ1) ∧ lG1(ζ1→ a2ζ2) ∧ · · · ∧ lG1(ζm−1→ amβ)

= lG(α→ a1a2 . . .amβ)

in G2. Thus the number of symbols fromV1\V has been reduced.
Equally, in the second case the derivation must involve subsequent changes

from η1 to b2η2, . . . , ηn−1 to bnηn, and thesen transitions can be replaced by a
single transition inG2 from α to b1b2 · · ·bn with

lG2(α→ b1b2 . . .bn)

= lG2(α→ b1η1) ∧ lG2(η1→ b2η2) ∧ · · · ∧ lG2(ηn−1→ bnηn) ∧ lG2(ηn→ 1)

= lG1(α→ b1η1) ∧ lG1(η1→ b2η2) ∧ · · · ∧ lG1(ηn−1→ bnηn) ∧ lG1(ηn→ 1)

= lG(α→ b1b2 . . .bn).

In both cases the derivation (5) is replaced by one with fewer occurrences
of symbols fromV1\V with lG2(w) = lG1(w). By induction it now follows that
L(G2) ⊆ L(G). Hence certainlyL(G1) ⊆ L(G). ¤

In Theorem 2andTheorem 3below, we shall prove that the set ofl -valued
quantum regular languages coincides with the set ofl -valued quantum languages,
as same as that in class one.

Theorem 2.2. Let l = (L ,≤, ∧, ∨,⊥, 0, 1)be an orthomodular lattice and M
and l-valued quantum automaton over a finite alphabet A, then there exists an
l-valued quantum regular grammar G such that L(G) = L(M).
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Proof: Let M is anl -valued quantum automaton overA, where

M = (Q, A, ϕ, i , T)

Thel -valued quantum languageL(M) over A generated byM is

L(M) = {(w, l M (w)))\w ∈ A∗}
We define anl -valued quantum regular grammarG as follows:G = (Q, A,

I (= i ), P) whereP consists of the productions

p→ aq(p, q ∈ Q, a ∈ A) with lG(p→ aq) = ϕ(p, a, q) ∈ L

and

t → 1(t ∈ T) with lG(t → 1)= ϕ(t, 1, t) ∈ L .

We show thatL(G) = L(M).
Suppose first that (w, lG(w)) = (a1a2 . . .an, lG(a1a2 . . .an)) ∈ L(G).

Because

lG(w) = ∨w1=1,w2,...,wk−1∈(V∪T)∗,wk=w ∧k−1
i=1 l (wi ⇒ wi+1)

there is a derivation

I
∗⇒a1a2 . . .an with lG(I

∗⇒a1a2 . . .an) = lG(w)

We see that this derivation must be of the form

I ⇒ a1q1⇒ a1a2q2⇒ · · · ⇒ a1a2 . . .anqn ⇒ a1a2 . . .an

where I → a1q1, q1→ a2q2, . . . , qn−1→ anqn, qn→ 1 are productions inG
with lG(I → a1q1), lG(q1→ a2q2), . . . , lG(qn−1→ anqn), lG(qn→ 1) ∈ L, and
qn ∈ T . Because

lG(I → a1q1) = ϕ(I , a1, q1),

lG(q1→ a2q2) = ϕ(q1, a2, q2),

. . . ,

lG(qn−1→ anqn) = ϕ(qn−1, an, qn),

lG(qn→ 1)= ϕ(qn, 1,qn),

andqn ∈ T,

we have (I → a1q1), (q1→ a2q2),. . ., qn−1, an, qn), (qn, 1,qn) ∈ ϕ andqn ∈ T .
Thus, there exists a successful path

I
a1→q1

a2→ Q2→ · · · → qn−1
an→qn
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in M such that

pathM (I a1q1a2q2 . . .qn−1anqn)

= ϕ(I , a1, q1) ∧ ϕ(q1, a2, q2) ∧ · · · ∧ ϕ(qn−1, an, qn) ∧ ϕ(qn, 1,qn)

= lG(I → a1q1) ∧ lG(q1→ a2q2) ∧ · · · ∧ lG(qn−1→ anqn) ∧ lG(qn→ 1)

= lG(I
∗⇒a1a2 . . .an) = lG(w) ∈ L .

Because for every derivation derik in G, there exists a successful path pathk

with labelw such thatl M (pathk) = lG(derik), it follows that

l M (w) = ∨pathk ∧ l M (pathk) = ∨q0=1,q1,...,qk−1∈Q,qn∈T ∧n
i=0 ϕ(qi , ai+1, qi+1)

= ∨I→a1q1,q1→a2q2,...,qn−1→anqn,qn→1(lG(I → a1q1) ∧ lG(q1→ a2q2) ∧
· · · ∧ lG(qn−1→ anqn) ∧ lG(qn→ 1))

= ∨derik ∧ lG(derik) = ∨I
∗⇒wlG(I

∗⇒w) = lG(w).

ThusL(G) ⊆ L(M).
Conversely, suppose that

(w, lG(w)) = (a1a2 . . .an, lG(a1a2 . . .an)) ∈ L(M)

so that there is a successful path

I
a1→q1

a2→q2→ · · · → qn−1
an→qn

in M with

l M (w) = pathM (I a1q1a2q2 . . .qn−1anqn)

= ϕ(I , a1, q1) ∧ ϕ(q1, a2, q2) ∧ · · · ∧ ϕ(qn−1, an, qn) ∧ ϕ(qn, 1,qn)

andϕ(I , a1, q1), ϕ(q1, a2, q2), . . . , ϕ(qn−1, an, qn), ϕ(qn, 1,qn) ∈ L and qn ∈
T . Then there are productions

I → a1q1, q1→ a2q2, . . . , qn−1→ anqn, qn→ 1 in G with l (I → a1q1),
l (q1→ a2q2), . . . , l (qn−1→ anqn), l (qn→ 1) ∈ L and

l (I → a1q1) = ϕ(I , a1, q1),

l (q1→ a2q2) = ϕ(q1, a2, q2),

. . . ,

l (qn−1→ anqn) = ϕ(qn−1, an, qn),

l (qn→ 1)= ϕ(qn, 1,qn).

So there is a derivation

I ⇒ a1q1⇒ a1a2q2⇒ · · · ⇒ a1a2 . . .anqn ⇒ a1a2 . . .an
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in G, and

deriG(I ⇒ a1q1⇒ a1a2q2⇒ · · · ⇒ a1a2 . . .anqn ⇒ a1a2 . . .an)

= l (I → a1q1) ∧ l (q1→ a2q2) ∧ · · · ∧ l (qn−1→ anqn) ∧ l (qn→ 1)

= ϕ(I , a1, q1) ∧ ϕ(q1, a2, q2) ∧ · · · ∧ ϕ(qn−1, an, qn) ∧ ϕ(qn, 1,qn)

= l M (w)

Because for every successful path pathk in M there exists a derivation derik

in G such thatlG(derik) = l M (pathk), it follows that

lG(w) = ∨dertk ∧ lG(derik) = ∨I
∗⇒wderiG(I

∗⇒w)

= ∨I⇒a1q1⇒a1a2q2⇒···⇒a1a2...anqn⇒a1a2...anderiG(I ⇒ a1q1⇒ a1a2q2⇒
· · · ⇒ a1a2 . . .anqn ⇒ a1a2 · · ·an)

= ∨I→a1q1,q1→a2q2,...,qn−1→anqn,qn→l (lG(I → a1q1) ∧ lG(q1→ a2q2) ∧
· · · ∧ lG(qn−1→ anqn) ∧ lG(qn→ 1))

= ∨q0=1,q1,q2,...,qn−1∈Q,qn∈T ∧n
i=0 ϕ(qi , ai , qi+1)

= ∨pathk ∧ l M (pathk) = l M (w)

ThusL(M) ⊆ L(G). ¤

We have shown that everyl -valued quantum language is anl -valued quantum
regular language. Next we shall prove that everyl -valued quantum regular language
is also anl -valued quantum language.

Theorem 2.3. Let l = (L ,≤, ∧, ∨,⊥, 0, 1) be an orthomodular lattice and G
an l-valued quantum regular grammar, then there exists an l-valued quantum
automaton M such that L(M) = L(G).

Proof: Suppose thatL(G) is anl -valued quantum regular language, whereG =
(V, T, I , P) is anl -valued quantum regular grammar. By Lemma 1 we can assume
that the grammar G is anl -valued quantum hyper-regular grammar. i.e., that all
productions are of the form

α→ aβ(with a ∈ T, α, β ∈ V) with lG(α→ aβ) ∈ L

or

α→ 1(withα ∈ V) with lG(α→ 1) ∈ L .

Let M = (V, T, ϕ, I , T ′) be thel -valued quantum automaton, where

T ′ = {α ∈ V : α→ 1 ∈ P with l (α→ l ) ∈ L}
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(α, a, β) ∈ ϕ, wheneverα→ aβ ∈ P andα, 1,α) ∈ ϕ, wheneverα→ 1 ∈ P.
Suppose first that (w, lG(w)) = (a1a2 . . .an, lG(a1a2 . . .an)) ∈ L(G). The

derivation ofw must be of the form

I ⇒ a1β1⇒ a1a2β2⇒ · · · ⇒ a1a2 . . .anβn ⇒ a1a2 . . .an

where

I → a1β1, β1→ a2β2, . . . , βn−1→ anβn, βn→ 1 ∈ P

with

lG(I → a1β1), lG(β1→ a2β2), . . . , lG(βn−1→ anβn), lG(βn→ 1) ∈ L .

Thusβn ∈ T ′

I
a1→β1

a2→β2
a3→· · · an→βn

is a successful path inM with labelw and

ϕ(I , a1, β1) = lG(I → a1β1),

ϕ(β1, a2, β2) = lG(β1→ a2β2),

· · · ,
ϕ(βn−1, an, βn) = lG(βn−1→ anβn),

ϕ(βn1,βn) = lG(βn→ 1).

Thus

pathM (I a1β1a2β2 . . . βn−1anβn) = ϕ(I , a1, β1) ∧ ϕ(β1, a2, β2) ∧ . . .
×∧ ϕ(βn−1, an, βn) ∧ ϕ(βn, 1,βn)

= lG(I → a1β1) ∧ lG(β1→ a2β2) ∧ · · ·
× ∧ lG(βn−1→ anβn) ∧ lG(βn→ 1)

= lG(w).

Because for every derivation derik in G, there exists a successful path pathk,
such thatl M (pathk) = lG(derik), it follows that

l M (w) = ∨pathk ∧ l M (pathk) = ∨β1,β2,...,βn−1∈V,βn∈T′ (ϕ(I, a1, β1)

∧ϕ(β1, a2, β2) ∧ · · · ∧ ϕ(βn−1, an, βn) ∧ ϕ(βn, 1,βn))

= ∨I→a1β1,β1→a2β2,...,βn−1→anβn,βn→I (lG(I→a1β1)∧lG(β1→a2β2) ∧
· · · ∧ lG(βn−1→ anβn) ∧ lG(βn→ 1))

∨derik ∧ lG(derik) = ∨I
∗⇒wlG(I

∗⇒w) = lG(w).
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ThusL(G) ⊆ L(M).
We have shown thatL(G) ⊆ L(M). To show the reverse inclusion suppose

that (w, l M (w)) = (a1a2 . . .an, l M (a1a2 . . .an)) ∈ L(M), so that there is a success-
ful path

I
a1→β1

a2→β2
a3→· · · an→βn(∈ T ′)

and

l M (w) = ϕ(I , a1, β1) ∧ (β1, a2, β2) ∧ · · · ∧ ϕ(βn−1, an, βn) ∧ ϕ(βn, 1,βn)

and soI → a1β1, β1→ a2β2, . . . , βn−1→ anβn, βn→ 1 ∈ P and

l (I → a1β1) = ϕ(I , α1, β1),

l (β1→ a2β2) = ϕ(β1, a2, β2),

· · · ,
l (βn−1→ anβn) = ϕ(βn−1, an, βn),

lG(βn→ 1)= ϕ(βn, 1,βn).

Hence there is a derivation

I ⇒ a1β1⇒ a1a2β2⇒ · · · ⇒ a1a2 . . .anβn ⇒ a1a2 . . .an

in G such that

deriG(I ⇒ a1β1⇒ a1a2β2⇒ · · · ⇒ a1a2 . . .anβn ⇒ a1a2 . . .an)

= lG(I → a1β1) ∧ lG(β1→ a2β2) ∧ · · · ∧ lG(βn−1→ anβn) ∧ lG(βn→ 1)

= ϕ(I , a1, β1) ∧ ϕ(β1, a2, β2) ∧ · · · ∧ ϕ(βn−1, an, βn) ∧ ϕ(βn, 1,βn)

= l M (w).

Because for every successful path pathk in M there exists a derivation derik

in G such thatlG(derik) = l M (pathk), we have

lG(w) = ∨derik ∧ lG(derik) = ∨I
∗⇒wderiG(I

∗⇒w)

= ∨I⇒a1β1⇒a1a2β2⇒···⇒a1a2...anβn⇒a1a2...anderiG(I ⇒ a1β1⇒ a1a2β2⇒
· · · ⇒ a1a2 . . .anβn ⇒ a1a2 . . .an)

= ∨l→a1β1,β1→a2β2,...,βn−1→anβn,βn→l (lG(I → a1β1) ∧ lG(β1→ a2β2) ∧
· · · ∧ lG(βn−1→ anβn) ∧ lG(βn→ 1))

= ∨β1,β2,...,βn−1∈V,βn∈T ′ (ϕ(I , a1, β1) ∧ ϕ(β1, a2, β2) ∧ · · · ∧ ϕ(βn−1, an, βn)

= ∧ϕ(βn, 1,βn))

= ∨pathk ∧ l M (pathk) = l M (w).
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ThusL(M) ⊆ L(G). ¤

Corollary 2.1. The set of l-valued quantum regular languages coincides with
the set of l-valued quantum languages.

Proof: Straightforward by Theorem 2 and Theorem 3. ¤

3. CONCLUSION

In this paper, we outlined a framework of grammar theory based on quantum
logic corresponding to the automata theory based on quantum logic established
by Ying (2000a,b). We defined thel -valued quantum regular grammar and hyper-
regular grammar. Then we proved that everyl -valued quantum regular language is
anl -valued quantum hyper-regular language. The most important results obtained
in this paper is the Theorem 2 and Theorem 3 that say the set ofl -valued quantum
regular languages coincides with the set ofl -valued quantum languages. The further
study about the properties of thel -valued quantum grammars will be left to a later
paper.
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