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A brief history
• Manin, Feynman, early 1980s: Quantum computers should 

be good at simulating quantum systems

• Deutsch, 1985: Formal model of quantum computers

• Deutsch, Jozsa, Bernstein, Vazirani, Simon, late 1980s/early 
1990s: Examples of problems where quantum computers 
outperform classical ones

• Shor 1994: Efficient quantum algorithms for factoring and 
discrete log



Quantum bits
• One qubit: H = C2

|ψ〉 = α0|0〉 + α1|1〉 , |α2
0| + |α2
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Quantum bits
• One qubit:

• n qubits: 

|ψ〉 =
∑

z∈{0,1}n

αz |z1〉 ⊗ |z2〉 ⊗ · · · ⊗ |zn〉

H = C2

H = C2 ⊗ C2 ⊗ · · ·⊗ C2
︸ ︷︷ ︸

n

∑

z∈{0,1}n

|αz|2 = 1

|ψ〉 = α0|0〉 + α1|1〉 , |α2
0| + |α2

1| = 1



• Prepare n qubits in the state

• Apply a sequence of poly(n) unitary operations acting on 
one or two qubits at a time

• Measure in the computational basis to get the result
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Three major questions
• How can we build a quantum computer?

(Implementations)

• How useful is an imperfect quantum computer?
(Fault tolerance)

• What can we do with a perfect quantum computer? 
(Algorithms)



Hamiltonian dynamics
In the circuit model, we say a unitary operation can be 
implemented efficiently if it can be realized (approximately) by 
a short sequence of one- and two-qubit gates.

What Hamiltonian dynamics can be implemented efficiently?

i
d
dt

|ψ(t)〉 = H(t)|ψ(t)〉
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Hamiltonian dynamics
In the circuit model, we say a unitary operation can be 
implemented efficiently if it can be realized (approximately) by 
a short sequence of one- and two-qubit gates.

What Hamiltonian dynamics can be implemented efficiently?

• Hamiltonians we can directly realize in the laboratory

• Hamiltonians we can efficiently simulate using quantum 
circuits

H =
∑

〈i,j〉

Hij

i
d
dt

|ψ(t)〉 = H(t)|ψ(t)〉



Simulating Hamiltonian dynamics
Definition.  A Hamiltonian H acting on n qubits can be 
efficiently simulated if for any error ε>0 and time t>0 there is a 
quantum circuit U consisting of poly(n, t, 1/ε) gates such that 
‖U – e–iHt ‖<ε.
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Simulating Hamiltonian dynamics
Definition.  A Hamiltonian H acting on n qubits can be 
efficiently simulated if for any error ε>0 and time t>0 there is a 
quantum circuit U consisting of poly(n, t, 1/ε) gates such that 
‖U – e–iHt ‖<ε.

Theorem. If H is a sum of local terms, then it can be efficiently 
simulated. [Lloyd 1996]

Basic idea: Lie product formula

e−i(H1+···+Hk)t = (e−iH1t/r · · · e−iHkt/r)r

+ O(kt2 max{‖Hj‖2}/r)



Sparse Hamiltonians
Theorem. Suppose that for any fixed a, we can efficiently 
compute all the nonzero values of            .  (In particular, 
there must be only polynomially many such values.)  Then H 
can be simulated efficiently. [Aharonov & Ta-Shma 2003, Childs 
et al. 2003,  Ahokas et al. 2005]
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The adiabatic theorem
Let          be a smoothly varying Hamiltonian for s∈[0,1]

                         where E0(s) < E1(s) ≤ E2(s) ≤ ⋅⋅⋅≤ ED-1(s)

H̃(s)

H̃(s) =
D−1∑

j=0

Ej(s)|Ej(s)〉〈Ej(s)|
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The adiabatic theorem
Let          be a smoothly varying Hamiltonian for s∈[0,1]

                         where E0(s) < E1(s) ≤ E2(s) ≤ ⋅⋅⋅≤ ED-1(s)

                         where T is the total run time

Suppose

Then as T→∞,

For large T,                            .  But how large must it be?

H̃(s)

H̃(s) =
D−1∑

j=0

Ej(s)|Ej(s)〉〈Ej(s)|

|〈E0(1)|ψ(T )〉|2 → 1

|ψ(0)〉 = |E0(0)〉

|ψ(T )〉 ≈ |E0(1)〉

H(0) = H̃(0) H(t) = H̃(t/T )

H(T ) = H̃(1)

H(t) = H̃(t/T )



Approximately adiabatic evolution
The total run time required for adiabaticity depends on the 
spectrum of the Hamiltonian.

Gap: ∆(s) = E1(s)− E0(s) , ∆ = min
s∈[0,1]

∆(s)
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Approximately adiabatic evolution
The total run time required for adiabaticity depends on the 
spectrum of the Hamiltonian.

Gap:

Rough estimates (see for example [Messiah 1961]) suggest the 
condition

Theorem. [Teufel 2003 + perturbation theory]

implies
∥∥|ψ(T )〉 − |E0(1)〉

∥∥ ≤ ε

T ! Γ2

∆2
, Γ2 = max

s∈[0,1]

∥∥[ ˙̃H(s)
]2∥∥

∆(s) = E1(s)− E0(s) , ∆ = min
s∈[0,1]

∆(s)

T ≥ 4
ε

[
‖ ˙̃H(0)‖
∆(0)2

+
‖ ˙̃H(1)‖
∆(1)2

+
∫ 1

0
ds

(
10
‖ ˙̃H‖2

∆3
+
‖ ¨̃H‖
∆

)]



Satisfiability problems
• Given h: {0,1}n → {0,1,2,...}, is there a value of z ∈ {0,1}n 

such that h(z)=0?

• Alternatively, what z minimizes h(z)?

• Example: 3SAT.

         where

(z1 ∨ z2 ∨ z̄3) ∧ · · · ∧ (z̄17 ∨ z37 ∨ z̄42)

h(z) =
∑

c

hc(z)

hc(z) =

{
0 clause c satisfied by z

1 otherwise



Adiabatic optimization
• Define a problem Hamiltonian whose ground state encodes 

the solution:

• Define a beginning Hamiltonian whose ground state is easy 
to create, for example

• Choose          to interpolate from HB to HP, for example

• Choose total run time T so the evolution is nearly adiabatic

H̃(s)

H̃(s) = (1− s)HB + sHP

HP =
∑

z∈{0,1}n

h(z)|z〉〈z|

HB = −
n∑

j=1

σ(j)
x

[Farhi et al. 2000]



Please mind the gap
Recall rough estimate:

For                                           ,

Crucial question: How big is Δ?

• ≥1/poly(n): Efficient quantum algorithm

• 1/exp(n): Inefficient quantum algorithm

T ! Γ2

∆2
, Γ2 = max

s∈[0,1]

∥∥[ ˙̃H(s)
]2∥∥

H̃(s) = (1− s)HB + sHP

‖ ˙̃H‖ = ‖HP −HB‖
≤ ‖HB‖+ ‖HP ‖



Unstructured search

Finding a needle in a haystack:
  (here h: {0,1,...,N-1}→{0,1})

h(z) =

{
0 z = w

1 z != w



Unstructured search

Finding a needle in a haystack:
  (here h: {0,1,...,N-1}→{0,1})

Query complexity (given black box for h) 

• Classically,           queries

• Quantumly,              queries are sufficient to find w 
[Grover 1996]

• This cannot be improved:              queries are 
necessary [Bennett et al. 1997]

Θ(N)

O(
√

N)

Ω(
√

N)

h(z) =

{
0 z = w

1 z != w

(|z〉|a〉 "→ |z〉|a⊕ h(z)〉)



Example: Adiabatic unstructured search
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Example: Adiabatic unstructured search

h(z) =

{
0 z = w

1 z != w
⇒ HP =

∑

z

h(z)|z〉〈z| = 1− |w〉〈w|

HB = 1 − |s〉〈s|

|s〉 =
1√
N

∑

z

|z〉Start in

H̃(s) = (1− s)HB

+ sHP

H̃(s) = [1− f(s)]HB

+ f(s) HP

Δ(s)
s(f)

[Roland, Cerf 2002; van Dam et al. 2001]



Example: Transverse Ising model

HB = −
n∑

j=1

σ(j)
x

H̃(s) = (1− s)HB + sHP

Diagonalize by fermionization (Jordan-Wigner transformation)

Result:               (at critical point of quantum phase transition)∆ ∝ 1
n

“agree”

with ground state

[Farhi et al. 2000]

|E0(s ≈ 0)〉 ≈ | + · · · +〉
|E0(s ≈ 1)〉 ≈ 1√

2
(|0 · · · 0〉+ |1 · · · 1〉)

|s〉 = |+ · · · +〉

=
∑

z∈{0,1}n

|z〉

HP =
∑

j∈Zn

1
2
(
1− σ(j)

z σ(j+1)
z

)



Example: The Fisher problem

[Fisher 1992; Reichardt 2004]

HB = −
n∑

j=1

σ(j)
x

Jj=1 or 2, chosen randomly

Then typically ∆ ≈ exp(−c
√

n)

HP =
∑

j∈Zn

Jj

2
(
1− σ(j)

z σ(j+1)
z

)



Example: The Fisher problem

[Fisher 1992; Reichardt 2004]

HB = −
n∑

j=1

σ(j)
x

Jj=1 or 2, chosen randomly

Then typically ∆ ≈ exp(−c
√

n)

|0000000〉
+|1111111〉

|++++++〉

|0000000〉
+|1111111〉

HP =
∑

j∈Zn

Jj

2
(
1− σ(j)

z σ(j+1)
z

)



Random satisfiability problems
Consider random instances of some satisfiability problem (e.g. 3SAT, Exact 
cover, ...) with a fixed ratio of clauses/bits.

Few clauses: underconstrained.  Many solutions, easy to find.
Many clauses: overconstrained.  No solutions, easy to find a contradiction.



Random satisfiability problems
Consider random instances of some satisfiability problem (e.g. 3SAT, Exact 
cover, ...) with a fixed ratio of clauses/bits.

Few clauses: underconstrained.  Many solutions, easy to find.
Many clauses: overconstrained.  No solutions, easy to find a contradiction.

Simulation results for random exact cover instances with unique satisfying 
assignments:

8 E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda
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Figure 1: Each circle is the median time to achieve a success probability of 1/8 for 75 gusa

instances. The error bars give 95% confidence limits for each median. The solid line is a quadratic
fit to the data. The broken line, which lies just below the solid line, is the quadratic fit obtained
in [6] for an independent data set up to 15 bits.

each instance with T = T (n). In Figure 2 the circles show the median probability of success
at each n. Not surprisingly, these are all close to 1/8. We also show the tenth-worst and
worst probability for each n. The good news for the quantum algorithm is that these do not
appear to decrease appreciably with n.

To further explore this we generate 1000 new gusa instances of Exact Cover at both
16 and 17 bits. In Figure 3 we show the histograms of the success probability when the
instances are run at T (16) and T (17), respectively. The histograms indicate that a gusa

instance with success probability at or below 0.04 is very unlikely.
If an algorithm (classical or quantum) succeeds with probability at least p, then running

the algorithm k times gives a success probability of at least 1 − (1 − p)k. For example, if
p = 0.04, then 200 repetitions of the algorithm gives a success probability of better than
0.9997. Suppose that as the number of bits increases it remains true that almost all gusa

instances have a success probability of at least 0.04 at the quadratic run time T (n). Then
any n-independent desired probability of success can be achieved with a fixed number of
repetitions.

11 Instances with the number of clauses fixed in advance

To study the performance of the quantum algorithm on instances that do not necessarily
have a usa, we generate new instances now by fixing the number of clauses in advance.
Instances are generated with a fixed number of randomly chosen clauses and then separated
into two categories, those with at least one satisfying assignment and those with none. Both

[Farhi et al. 2001]
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beginning and ending Hamiltonians can simulate arbitrary QC.
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Universal quantum computation
Adiabatic evolution with linear interpolation between local 
beginning and ending Hamiltonians can simulate arbitrary QC.

[Feynman 1985]:

Basic idea [Aharonov et al. 2004]: Use this as -HP.

Final ground state:

HB enforces correct initial state.
Add energy penalties to stay in an appropriate subspace.

H =
k∑

j=1

[Uj ⊗ |j + 1〉〈j| + U†
j ⊗ |j〉〈j + 1|]

1√
k
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UjUj−1 · · · U1|0〉 ⊗ |j〉



Universal quantum computation
Adiabatic evolution with linear interpolation between local 
beginning and ending Hamiltonians can simulate arbitrary QC.

[Feynman 1985]:

Basic idea [Aharonov et al. 2004]: Use this as -HP.

Final ground state:

HB enforces correct initial state.
Add energy penalties to stay in an appropriate subspace.

Note: This is adiabatic, but not adiabatic optimization.

H =
k∑

j=1

[Uj ⊗ |j + 1〉〈j| + U†
j ⊗ |j〉〈j + 1|]

1√
k

k∑

j=1

UjUj−1 · · · U1|0〉 ⊗ |j〉


