Overview of adiabatic quantum computation

Andrew Childs
Caltech Institute for Quantum Information

Outline

- Quantum mechanical computers
- Quantum computation and Hamiltonian dynamics
- The adiabatic theorem
- Adiabatic optimization
- Examples of success
- Example of failure
- Random satisfiability problems
- Universal quantum computation

A brief history

- Manin, Feynman, early 1980s: Quantum computers should be good at simulating quantum systems
- Deutsch, 1985: Formal model of quantum computers
- Deutsch, Jozsa, Bernstein, Vazirani, Simon, late 1980s/early 1990s: Examples of problems where quantum computers outperform classical ones
- Shor 1994: Efficient quantum algorithms for factoring and discrete log

Quantum bits

- One qubit: $\mathcal{H}=\mathbb{C}^{2}$

$$
|\psi\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle, \quad\left|\alpha_{0}^{2}\right|+\left|\alpha_{1}^{2}\right|=1
$$

Quantum bits

- One qubit: $\mathcal{H}=\mathbb{C}^{2}$

$$
|\psi\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle, \quad\left|\alpha_{0}^{2}\right|+\left|\alpha_{1}^{2}\right|=1
$$

- n qubits: $\mathcal{H}=\underbrace{\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}}_{n}$

$$
\begin{aligned}
|\psi\rangle= & \sum_{z \in\{0,1\}^{n}} \alpha_{z}\left|z_{1}\right\rangle \otimes\left|z_{2}\right\rangle \otimes \cdots \otimes\left|z_{n}\right\rangle \\
& \sum_{z \in\{0,1\}^{n}}\left|\alpha_{z}\right|^{2}=1
\end{aligned}
$$

Quantum circuits

- Prepare n qubits in the state $|0 \cdots 0\rangle$
- Apply a sequence of poly(n) unitary operations acting on one or two qubits at a time
- Measure in the computational basis to get the result

Three major questions

- How can we build a quantum computer? (Implementations)
- How useful is an imperfect quantum computer? (Fault tolerance)
- What can we do with a perfect quantum computer? (Algorithms)

$$
\text { Hamiltonian dynamics } \quad i \frac{\mathrm{~d}}{\mathrm{~d} t}|\psi(t)\rangle=H(t)|\psi(t)\rangle
$$

In the circuit model, we say a unitary operation can be implemented efficiently if it can be realized (approximately) by a short sequence of one- and two-qubit gates.

What Hamiltonian dynamics can be implemented efficiently?

Hamiltonian dynamics $\quad i \frac{\mathrm{~d}}{\mathrm{~d} t}|\psi(t)\rangle=H(t)|\psi(t)\rangle$
In the circuit model, we say a unitary operation can be implemented efficiently if it can be realized (approximately) by a short sequence of one- and two-qubit gates.

What Hamiltonian dynamics can be implemented efficiently?

- Hamiltonians we can directly realize in the laboratory

$$
H=\sum_{\langle i, j\rangle} H_{i j}
$$

Hamiltonian dynamics $\quad i \frac{\mathrm{~d}}{\mathrm{~d} t}|\psi(t)\rangle=H(t)|\psi(t)\rangle$
In the circuit model, we say a unitary operation can be implemented efficiently if it can be realized (approximately) by a short sequence of one- and two-qubit gates.
What Hamiltonian dynamics can be implemented efficiently?

- Hamiltonians we can directly realize in the laboratory

$$
H=\sum_{\langle i, j\rangle} H_{i j}
$$

- Hamiltonians we can efficiently simulate using quantum circuits

Simulating Hamiltonian dynamics

Definition. A Hamiltonian H acting on n qubits can be efficiently simulated if for any error $\epsilon>0$ and time $t>0$ there is a quantum circuit U consisting of poly($n, t, I / \epsilon$) gates such that $\left\|U-\mathrm{e}^{-i H t}\right\|<\epsilon$.

Simulating Hamiltonian dynamics

Definition. A Hamiltonian H acting on n qubits can be efficiently simulated if for any error $\epsilon>0$ and time $t>0$ there is a quantum circuit U consisting of poly($n, t, I / \epsilon$) gates such that $\left\|U-\mathrm{e}^{-i H t}\right\|<\epsilon$.

Theorem. If H is a sum of local terms, then it can be efficiently simulated. [Lloyd I 996]

Simulating Hamiltonian dynamics

Definition. A Hamiltonian H acting on n qubits can be efficiently simulated if for any error $\epsilon>0$ and time $t>0$ there is a quantum circuit U consisting of poly($n, t, I / \epsilon$) gates such that $\left\|U-\mathrm{e}^{-i H t}\right\|<\epsilon$.

Theorem. If H is a sum of local terms, then it can be efficiently simulated. [Lloyd I 996]

Basic idea: Lie product formula

$$
\begin{aligned}
e^{-i\left(H_{1}+\cdots+H_{k}\right) t}= & \left(e^{-i H_{1} t / r} \cdots e^{-i H_{k} t / r}\right)^{r} \\
& +O\left(k t^{2} \max \left\{\left\|H_{j}\right\|^{2}\right\} / r\right)
\end{aligned}
$$

Sparse Hamiltonians

Theorem. Suppose that for any fixed a, we can efficiently compute all the nonzero values of $\langle a| H|b\rangle$. (In particular, there must be only polynomially many such values.) Then H can be simulated efficiently. [Aharonov \& Ta-Shma 2003, Childs et al. 2003, Ahokas et al. 2005]

Sparse Hamiltonians

Theorem. Suppose that for any fixed a, we can efficiently compute all the nonzero values of $\langle a| H|b\rangle$. (In particular, there must be only polynomially many such values.) Then H can be simulated efficiently. [Aharonov \& Ta-Shma 2003, Childs et al. 2003, Ahokas et al. 2005]

Basic idea: Color the interaction graph with a small number of colors and simulate each color separately

$$
H=\left(\begin{array}{lllll}
0 & \mathbf{1} & \mathbf{1} & 0 & 0 \\
\mathbf{1} & 0 & \mathbf{1} & \mathbf{1} & 0 \\
\mathbf{1} & \mathbf{1} & 0 & 0 & \mathbf{1} \\
0 & \mathbf{1} & 0 & 0 & \mathbf{1} \\
0 & 0 & \mathbf{1} & \mathbf{1} & 0
\end{array}\right)
$$

Sparse Hamiltonians

Theorem. Suppose that for any fixed a, we can efficiently compute all the nonzero values of $\langle a| H|b\rangle$. (In particular, there must be only polynomially many such values.) Then H can be simulated efficiently. [Aharonov \& Ta-Shma 2003, Childs et al. 2003, Ahokas et al. 2005]

Basic idea: Color the interaction graph with a small number of colors and simulate each color separately

$$
H=\left(\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0
\end{array}\right)
$$

Sparse Hamiltonians

Theorem. Suppose that for any fixed a, we can efficiently compute all the nonzero values of $\langle a| H|b\rangle$. (In particular, there must be only polynomially many such values.) Then H can be simulated efficiently. [Aharonov \& Ta-Shma 2003, Childs et al. 2003, Ahokas et al. 2005]

Basic idea: Color the interaction graph with a small number of colors and simulate each color separately

$$
H=\left(\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0
\end{array}\right)
$$

The adiabatic theorem

Let $\tilde{H}(s)$ be a smoothly varying Hamiltonian for $s \in[0, \mathrm{I}]$

$$
\begin{aligned}
& \tilde{H}(s)=\sum_{j=0}^{D-1} E_{j}(s)\left|E_{j}(s)\right\rangle\left\langle E_{j}(s)\right| \\
& \quad \quad \text { where } E_{0}(s)<E_{1}(s) \leq E_{2}(s) \leq \cdots \leq E_{D-1}(s)
\end{aligned}
$$

The adiabatic theorem

Let $\tilde{H}(s)$ be a smoothly varying Hamiltonian for $s \in[0, \mathrm{I}]$

$$
H(0)=\tilde{H}(0) \quad H(t)=\tilde{H}(t / T)
$$

$\begin{aligned} & \tilde{H}(s)= \sum_{j=0}^{D-1} E_{j}(s)\left|E_{j}(s)\right\rangle\left\langle E_{j}(s)\right| \\ & \quad \text { where } E_{0}(s)<E_{1}(s) \leq E_{2}(s) \leq \cdots \leq E_{D-1}(s)\end{aligned}$
$H(t)=\tilde{H}(t / T)$ where T is the total run time

The adiabatic theorem

Let $\tilde{H}(s)$ be a smoothly varying Hamiltonian for $s \in[0, \mathrm{I}]$

$$
H(0)=\tilde{H}(0) \quad H(t)=\tilde{H}(t / T) \quad{ }^{H}
$$

$\begin{aligned} & \tilde{H}(s)= \sum_{j=0}^{D-1} E_{j}(s)\left|E_{j}(s)\right\rangle\left\langle E_{j}(s)\right| \\ & \quad \text { where } E_{0}(s)<E_{1}(s) \leq E_{2}(s) \leq \cdots \leq E_{D-1}(s)\end{aligned}$
$H(t)=\tilde{H}(t / T)$ where T is the total run time
Suppose $|\psi(0)\rangle=\left|E_{0}(0)\right\rangle$
Then as $T \rightarrow \infty,\left|\left\langle E_{0}(1) \mid \psi(T)\right\rangle\right|^{2} \rightarrow 1$

The adiabatic theorem

Let $\tilde{H}(s)$ be a smoothly varying Hamiltonian for $s \in[0, \mathrm{I}]$

$$
H(0)=\tilde{H}(0)
$$

$\begin{aligned} & \tilde{H}(s)= \sum_{j=0}^{D-1} E_{j}(s)\left|E_{j}(s)\right\rangle\left\langle E_{j}(s)\right| \\ & \quad \text { where } E_{0}(s)<E_{l}(s) \leq E_{2}(s) \leq \cdots \leq E_{D-1}(s)\end{aligned}$
$H(t)=\tilde{H}(t / T)$ where T is the total run time
Suppose $|\psi(0)\rangle=\left|E_{0}(0)\right\rangle$
Then as $T \rightarrow \infty,\left|\left\langle E_{0}(1) \mid \psi(T)\right\rangle\right|^{2} \rightarrow 1$
For large $T,|\psi(T)\rangle \approx\left|E_{0}(1)\right\rangle$. But how large must it be?

Approximately adiabatic evolution

The total run time required for adiabaticity depends on the spectrum of the Hamiltonian.

Gap: $\Delta(s)=E_{1}(s)-E_{0}(s), \quad \Delta=\min _{s \in[0,1]} \Delta(s)$

Approximately adiabatic evolution

The total run time required for adiabaticity depends on the spectrum of the Hamiltonian.

Gap: $\Delta(s)=E_{1}(s)-E_{0}(s), \quad \Delta=\min _{s \in[0,1]} \Delta(s)$
Rough estimates (see for example [Messiah I96।]) suggest the condition

$$
T \gg \frac{\Gamma^{2}}{\Delta^{2}}, \quad \Gamma^{2}=\max _{s \in[0,1]}\left\|[\dot{\tilde{H}}(s)]^{2}\right\|
$$

Approximately adiabatic evolution

The total run time required for adiabaticity depends on the spectrum of the Hamiltonian.

Gap: $\Delta(s)=E_{1}(s)-E_{0}(s), \quad \Delta=\min _{s \in[0,1]} \Delta(s)$
Rough estimates (see for example [Messiah I96|]) suggest the condition

$$
T \gg \frac{\Gamma^{2}}{\Delta^{2}}, \quad \Gamma^{2}=\max _{s \in[0,1]}\left\|[\dot{\tilde{H}}(s)]^{2}\right\|
$$

Theorem. [Teufel $2003+$ perturbation theory]

$$
T \geq \frac{4}{\epsilon}\left[\frac{\|\dot{\tilde{H}}(0)\|}{\Delta(0)^{2}}+\frac{\|\dot{\tilde{H}}(1)\|}{\Delta(1)^{2}}+\int_{0}^{1} \mathrm{~d} s\left(10 \frac{\|\dot{\tilde{H}}\|^{2}}{\Delta^{3}}+\frac{\|\ddot{\tilde{H}}\|}{\Delta}\right)\right]
$$

implies $\||\psi(T)\rangle-\left|E_{0}(1)\right\rangle \| \leq \epsilon$

Satisfiability problems

- Given $h:\{0, I\}^{n} \rightarrow\{0, I, 2, \ldots\}$, is there a value of $z \in\{0, I\}^{n}$ such that $h(z)=0$?
- Alternatively, what z minimizes $h(z)$?
- Example:3SAT. $\left(z_{1} \vee z_{2} \vee \bar{z}_{3}\right) \wedge \cdots \wedge\left(\bar{z}_{17} \vee z_{37} \vee \bar{z}_{42}\right)$

$$
h(z)=\sum_{c} h_{c}(z)
$$

where $h_{c}(z)= \begin{cases}0 & \text { clause } c \text { satisfied by } z \\ 1 & \text { otherwise }\end{cases}$

Adiabatic optimization

- Define a problem Hamiltonian whose ground state encodes the solution:

$$
H_{P}=\sum_{z \in\{0,1\}^{n}} h(z)|z\rangle\langle z|
$$

- Define a beginning Hamiltonian whose ground state is easy to create, for example

$$
H_{B}=-\sum_{j=1}^{n} \sigma_{x}^{(j)}
$$

- Choose $\tilde{H}(s)$ to interpolate from H_{B} to H_{P}, for example

$$
\tilde{H}(s)=(1-s) H_{B}+s H_{P}
$$

- Choose total run time T so the evolution is nearly adiabatic

Please mind the gap

Recall rough estimate:

$$
T \gg \frac{\Gamma^{2}}{\Delta^{2}}, \quad \Gamma^{2}=\max _{s \in[0,1]}\left\|[\dot{\tilde{H}}(s)]^{2}\right\|
$$

For $\tilde{H}(s)=(1-s) H_{B}+s H_{P}$,

$$
\begin{aligned}
\|\dot{\tilde{H}}\| & =\left\|H_{P}-H_{B}\right\| \\
& \leq\left\|H_{B}\right\|+\left\|H_{P}\right\|
\end{aligned}
$$

Crucial question: How big is Δ ?

- $\geq \mathrm{I} /$ poly (n) : Efficient quantum algorithm
- I/exp(n): Inefficient quantum algorithm

Unstructured search

Finding a needle in a haystack: $h(z)=\left\{\begin{array}{ll}0 & z=w \\ 1 & z \neq w\end{array} \quad\right.$ (here $\left.h:\{0, \mathrm{I}, \ldots, \mathrm{N}-\mathrm{I}\} \rightarrow\{0, \mathrm{I}\}\right)$

Unstructured search

Finding a needle in a haystack: $h(z)=\left\{\begin{array}{ll}0 & z=w \\ \\ \text { (here } h:\{0, \mathrm{I}, \ldots, N-\mathrm{I}\} \rightarrow\{0, \mathrm{I}\})\end{array} \quad z \neq w\right.$

Query complexity (given black box for h)

- Classically, $\Theta(N)$ queries
- Quantumly, $O(\sqrt{N})$ queries are sufficient to find w [Grover I996]

$$
(|z\rangle|a\rangle \mapsto|z\rangle|a \oplus h(z)\rangle)
$$

- This cannot be improved: $\Omega(\sqrt{N})$ queries are necessary [Bennett et al. I 997]

Example:Adiabatic unstructured search

$$
h(z)=\left\{\begin{array}{ll}
0 & z=w \\
1 & z \neq w
\end{array} \Rightarrow H_{P}=\sum_{z} h(z)|z\rangle\langle z|=1-|w\rangle\langle w|\right.
$$

$$
\text { Start in }|s\rangle=\frac{1}{\sqrt{N}} \sum_{z}|z\rangle
$$

$$
H_{B}=1-|s\rangle\langle s|
$$

$$
\tilde{H}(s)=(1-s) H_{B}
$$

$$
+s H_{P}
$$

Example:Adiabatic unstructured search

$h(z)=\left\{\begin{array}{ll}0 & z=w \\ 1 & z \neq w\end{array} \Rightarrow H_{P}=\sum_{z} h(z)|z\rangle\langle z|=1-|w\rangle\langle w|\right.$
Start in $|s\rangle=\frac{1}{\sqrt{N}} \sum_{z}|z\rangle$
$H_{B}=1-|s\rangle\langle s|$
$\tilde{H}(s)=(1-s) H_{B}$
$+s H_{P}$

Example:Adiabatic unstructured search

$h(z)=\left\{\begin{array}{ll}0 & z=w \\ 1 & z \neq w\end{array} \Rightarrow H_{P}=\sum_{z} h(z)|z\rangle\langle z|=1-|w\rangle\langle w|\right.$
Start in $|s\rangle=\frac{1}{\sqrt{N}} \sum_{z}|z\rangle$
$H_{B}=1-|s\rangle\langle s|$
$\tilde{H}(s)=(1-s) H_{B}$ $+s H_{P}$

Example:Adiabatic unstructured search

$h(z)=\left\{\begin{array}{ll}0 & z=w \\ 1 & z \neq w\end{array} \Rightarrow H_{P}=\sum_{z} h(z)|z\rangle\langle z|=1-|w\rangle\langle w|\right.$
Start in $|s\rangle=\frac{1}{\sqrt{N}} \sum_{z}|z\rangle$ $H_{B}=1-|s\rangle\langle s|$

$$
\tilde{H}(s)=[1-f(s)] H_{B}
$$

$$
+f(s) H_{P}
$$

[Roland, Cerf 2002; van Dam et al. 200 I]

Example:Transverse Ising model

$H_{P}=\sum_{j \in \mathbb{Z}_{n}} \frac{1}{2}\left(1-\sigma_{z}^{(j)} \sigma_{z}^{(j+1)}\right) \quad$ "agree"
$H_{B}=-\sum_{j=1}^{n} \sigma_{x}^{(j)}$ with ground state

$$
\begin{aligned}
|s\rangle & =|+\cdots+\rangle \\
& =\sum_{z \in\{0,1\}^{n}}|z\rangle
\end{aligned}
$$

$\tilde{H}(s)=(1-s) H_{B}+s H_{P}$
Diagonalize by fermionization (Jordan-Wigner transformation)
Result: $\Delta \propto \frac{1}{n}$ (at critical point of quantum phase transition)
$\left|E_{0}(s \approx 0)\right\rangle \approx|+\cdots+\rangle$
$\left|E_{0}(s \approx 1)\right\rangle \approx \frac{1}{\sqrt{2}}(|0 \cdots 0\rangle+|1 \cdots 1\rangle)$

Example:The Fisher problem

$$
\begin{aligned}
H_{P} & =\sum_{j \in \mathbb{Z}_{n}} \frac{J_{j}}{2}\left(1-\sigma_{z}^{(j)} \sigma_{z}^{(j+1)}\right) \quad J_{j}=1 \text { or } 2, \text { chosen randomly } \\
H_{B} & =-\sum_{j=1}^{n} \sigma_{x}^{(j)}
\end{aligned}
$$

Then typically $\Delta \approx \exp (-c \sqrt{n})$

Example:The Fisher problem

$$
\begin{aligned}
& H_{P}=\sum_{j \in \mathbb{Z}_{n}} \frac{J_{j}}{2}\left(1-\sigma_{z}^{(j)} \sigma_{z}^{(j+1)}\right) \quad J=1 \text { or 2, chosen randomly } \\
& H_{B}=-\sum_{j=1}^{n} \sigma_{x}^{(j)}
\end{aligned}
$$

Then typically $\Delta \approx \exp (-c \sqrt{n})$

[Fisher I992; Reichardt 2004]

Random satisfiability problems

Consider random instances of some satisfiability problem (e.g. 3SAT, Exact cover, ...) with a fixed ratio of clauses/bits.
Few clauses: underconstrained. Many solutions, easy to find.
Many clauses: overconstrained. No solutions, easy to find a contradiction.

Random satisfiability problems

Consider random instances of some satisfiability problem (e.g. 3SAT, Exact cover, ...) with a fixed ratio of clauses/bits.
Few clauses: underconstrained. Many solutions, easy to find.
Many clauses: overconstrained. No solutions, easy to find a contradiction.
Simulation results for random exact cover instances with unique satisfying assignments:

Universal quantum computation

Adiabatic evolution with linear interpolation between local beginning and ending Hamiltonians can simulate arbitrary QC.

Universal quantum computation

Adiabatic evolution with linear interpolation between local beginning and ending Hamiltonians can simulate arbitrary QC.
[Feynman 1985]: $H=\sum_{j=1}^{k}\left[U_{j} \otimes|j+1\rangle\langle j|+U_{j}^{\dagger} \otimes|j\rangle\langle j+1|\right]$

Universal quantum computation

Adiabatic evolution with linear interpolation between local beginning and ending Hamiltonians can simulate arbitrary QC.
[Feynman 1985]: $H=\sum_{j=1}^{k}\left[U_{j} \otimes|j+1\rangle\langle j|+U_{j}^{\dagger} \otimes|j\rangle\langle j+1|\right]$
Basic idea [Aharonov et al. 2004]: Use this as $-H_{p}$.
Final ground state: $\frac{1}{\sqrt{k}} \sum_{j=1}^{k} U_{j} U_{j-1} \cdots U_{1}|0\rangle \otimes|j\rangle$
H_{B} enforces correct initial state.
Add energy penalties to stay in an appropriate subspace.

Universal quantum computation

Adiabatic evolution with linear interpolation between local beginning and ending Hamiltonians can simulate arbitrary QC.
[Feynman 1985]: $H=\sum_{j=1}^{k}\left[U_{j} \otimes|j+1\rangle\langle j|+U_{j}^{\dagger} \otimes|j\rangle\langle j+1|\right]$
Basic idea [Aharonov et al. 2004]: Use this as $-H_{p}$.
Final ground state: $\frac{1}{\sqrt{k}} \sum_{j=1}^{k} U_{j} U_{j-1} \cdots U_{1}|0\rangle \otimes|j\rangle$
H_{B} enforces correct initial state.
Add energy penalties to stay in an appropriate subspace.
Note:This is adiabatic, but not adiabatic optimization.

