Overview of adiabatic quantum computation

Andrew Childs

Caltech Institute for Quantum Information

Outline

- Quantum mechanical computers
- Quantum computation and Hamiltonian dynamics
- The adiabatic theorem
- Adiabatic optimization
 - Examples of success
 - Example of failure
 - Random satisfiability problems
- Universal quantum computation

A brief history

- Manin, Feynman, early 1980s: Quantum computers should be good at simulating quantum systems
- Deutsch, 1985: Formal model of quantum computers
- Deutsch, Jozsa, Bernstein, Vazirani, Simon, late 1980s/early 1990s: Examples of problems where quantum computers outperform classical ones
- Shor 1994: Efficient quantum algorithms for factoring and discrete log

Quantum bits

• One qubit:
$$\mathcal{H} = \mathbb{C}^2$$

$$|\psi\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle, \quad |\alpha_0^2| + |\alpha_1^2| = 1$$

Quantum bits

• One qubit:
$$\mathcal{H} = \mathbb{C}^2$$

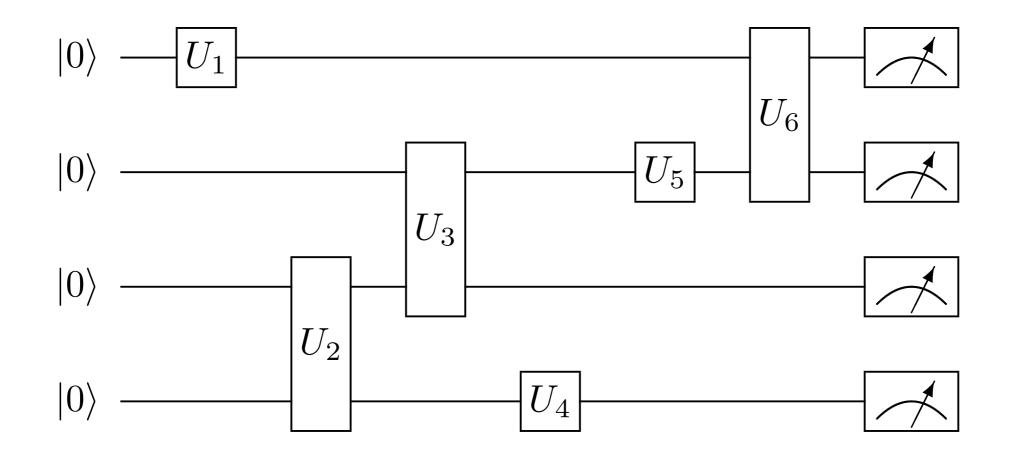
 $|\psi\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$, $|\alpha_0^2| + |\alpha_1^2| = 1$

n qubits:
$$\mathcal{H} = \underbrace{\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2}_{n}$$

 $|\psi\rangle = \sum_{z \in \{0,1\}^n} \alpha_z |z_1\rangle \otimes |z_2\rangle \otimes \cdots \otimes |z_n\rangle$
 $\sum_{z \in \{0,1\}^n} |\alpha_z|^2 = 1$

Quantum circuits

- Prepare *n* qubits in the state $|0 \cdots 0\rangle$
- Apply a sequence of poly(n) unitary operations acting on one or two qubits at a time
- Measure in the computational basis to get the result



Three major questions

- How can we build a quantum computer? (Implementations)
- How useful is an imperfect quantum computer? (Fault tolerance)
- What can we do with a perfect quantum computer? (Algorithms)

Hamiltonian dynamics

$$i\frac{\mathrm{d}}{\mathrm{d}t}|\psi(t)\rangle = H(t)|\psi(t)\rangle$$

In the circuit model, we say a unitary operation can be implemented efficiently if it can be realized (approximately) by a short sequence of one- and two-qubit gates.

What Hamiltonian dynamics can be implemented efficiently?

Hamiltonian dynamics

$$i\frac{\mathrm{d}}{\mathrm{d}t}|\psi(t)\rangle = H(t)|\psi(t)\rangle$$

In the circuit model, we say a unitary operation can be implemented efficiently if it can be realized (approximately) by a short sequence of one- and two-qubit gates.

What Hamiltonian dynamics can be implemented efficiently?

• Hamiltonians we can directly realize in the laboratory

$$H = \sum_{\langle i,j \rangle} H_{ij}$$

Hamiltonian dynamics

$$i\frac{\mathrm{d}}{\mathrm{d}t}|\psi(t)\rangle = H(t)|\psi(t)\rangle$$

In the circuit model, we say a unitary operation can be implemented efficiently if it can be realized (approximately) by a short sequence of one- and two-qubit gates.

What Hamiltonian dynamics can be implemented efficiently?

• Hamiltonians we can directly realize in the laboratory

$$H = \sum_{\langle i,j \rangle} H_{ij}$$

Hamiltonians we can efficiently simulate using quantum circuits

Simulating Hamiltonian dynamics

Definition. A Hamiltonian *H* acting on *n* qubits can be efficiently simulated if for any error $\epsilon > 0$ and time t > 0 there is a quantum circuit *U* consisting of poly(*n*, *t*, $1/\epsilon$) gates such that $\|U - e^{-iHt}\| < \epsilon$.

Simulating Hamiltonian dynamics

Definition. A Hamiltonian *H* acting on *n* qubits can be efficiently simulated if for any error $\epsilon > 0$ and time t > 0 there is a quantum circuit *U* consisting of poly(*n*, *t*, $1/\epsilon$) gates such that $\|U - e^{-iHt}\| < \epsilon$.

Theorem. If H is a sum of local terms, then it can be efficiently simulated. [Lloyd 1996]

Simulating Hamiltonian dynamics

Definition. A Hamiltonian *H* acting on *n* qubits can be efficiently simulated if for any error $\epsilon > 0$ and time t > 0 there is a quantum circuit *U* consisting of poly(*n*, *t*, $1/\epsilon$) gates such that $\|U - e^{-iHt}\| < \epsilon$.

Theorem. If H is a sum of local terms, then it can be efficiently simulated. [Lloyd 1996]

Basic idea: Lie product formula

$$e^{-i(H_1 + \dots + H_k)t} = (e^{-iH_1t/r} \cdots e^{-iH_kt/r})^r + O(kt^2 \max\{\|H_j\|^2\}/r)$$

Theorem. Suppose that for any fixed *a*, we can efficiently compute all the nonzero values of $\langle a|H|b\rangle$. (In particular, there must be only polynomially many such values.) Then *H* can be simulated efficiently. [Aharonov & Ta-Shma 2003, Childs et al. 2003, Ahokas et al. 2005]

Theorem. Suppose that for any fixed *a*, we can efficiently compute all the nonzero values of $\langle a|H|b\rangle$. (In particular, there must be only polynomially many such values.) Then *H* can be simulated efficiently. [Aharonov & Ta-Shma 2003, Childs et al. 2003, Ahokas et al. 2005]

Basic idea: Color the interaction graph with a small number of colors and simulate each color separately

$$H = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix} \overset{1}{1 \qquad 3 \qquad 5}$$

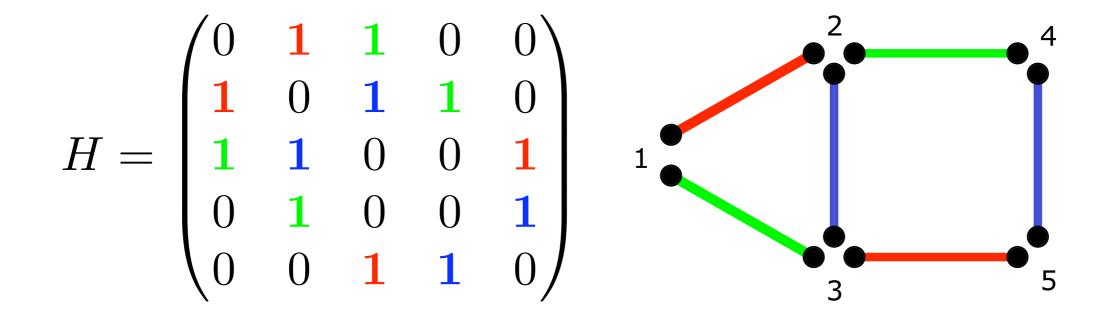
Theorem. Suppose that for any fixed *a*, we can efficiently compute all the nonzero values of $\langle a|H|b\rangle$. (In particular, there must be only polynomially many such values.) Then *H* can be simulated efficiently. [Aharonov & Ta-Shma 2003, Childs et al. 2003, Ahokas et al. 2005]

Basic idea: Color the interaction graph with a small number of colors and simulate each color separately

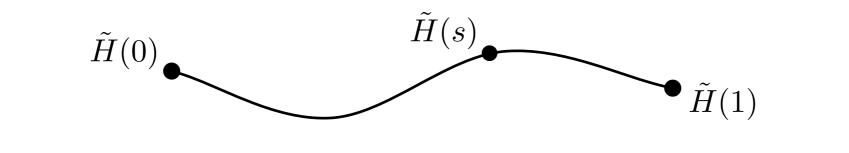
$$H = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix} \overset{2}{1 - \frac{4}{3 - \frac{4$$

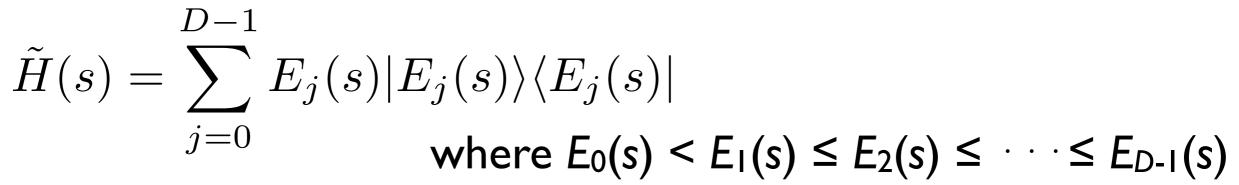
Theorem. Suppose that for any fixed *a*, we can efficiently compute all the nonzero values of $\langle a|H|b\rangle$. (In particular, there must be only polynomially many such values.) Then *H* can be simulated efficiently. [Aharonov & Ta-Shma 2003, Childs et al. 2003, Ahokas et al. 2005]

Basic idea: Color the interaction graph with a small number of colors and simulate each color separately

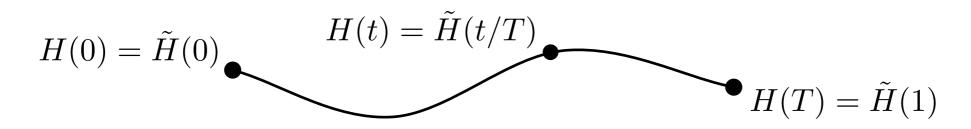


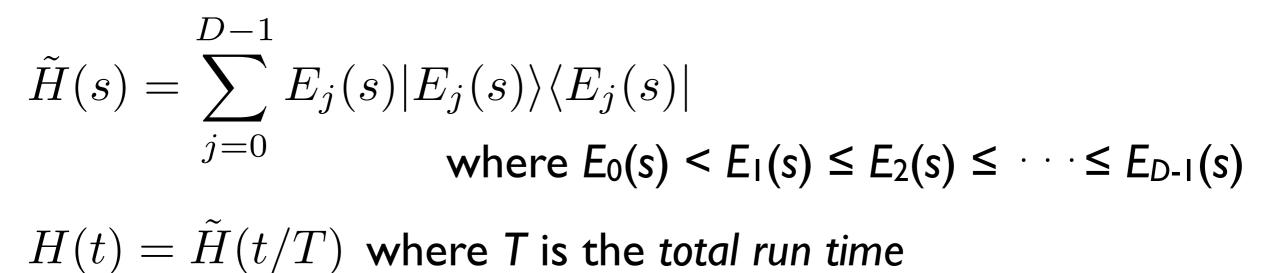
Let $\tilde{H}(s)$ be a smoothly varying Hamiltonian for s \in [0,1]



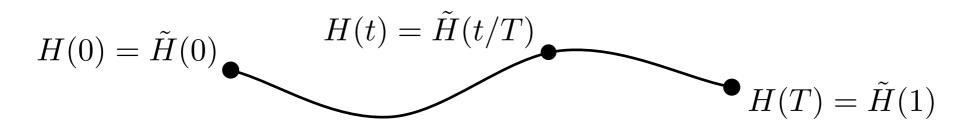


Let $\tilde{H}(s)$ be a smoothly varying Hamiltonian for s \in [0,1]





Let $\tilde{H}(s)$ be a smoothly varying Hamiltonian for s \in [0,1]



$$\tilde{H}(s) = \sum_{j=0}^{D-1} E_j(s) |E_j(s)\rangle \langle E_j(s)|$$

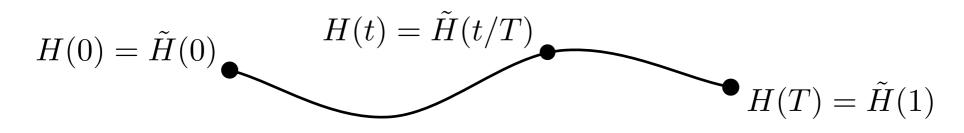
where $E_0(s) < E_1(s) \le E_2(s) \le \cdots \le E_{D-1}(s)$

 $H(t) = \tilde{H}(t/T)$ where T is the total run time

Suppose $|\psi(0)\rangle = |E_0(0)\rangle$

Then as $T \rightarrow \infty$, $|\langle E_0(1) | \psi(T) \rangle|^2 \rightarrow 1$

Let $\tilde{H}(s)$ be a smoothly varying Hamiltonian for s \in [0,1]



$$\tilde{H}(s) = \sum_{j=0}^{D-1} E_j(s) |E_j(s)\rangle \langle E_j(s)|$$

where $E_0(s) < E_1(s) \le E_2(s) \le \cdots \le E_{D-1}(s)$

 $H(t) = \tilde{H}(t/T)$ where T is the total run time

Suppose $|\psi(0)\rangle = |E_0(0)\rangle$

Then as $T \rightarrow \infty$, $|\langle E_0(1) | \psi(T) \rangle|^2 \rightarrow 1$

For large T, $|\psi(T)\rangle \approx |E_0(1)\rangle$. But how large must it be?

Approximately adiabatic evolution

The total run time required for adiabaticity depends on the spectrum of the Hamiltonian.

Gap:
$$\Delta(s) = E_1(s) - E_0(s)$$
, $\Delta = \min_{s \in [0,1]} \Delta(s)$

Approximately adiabatic evolution

The total run time required for adiabaticity depends on the spectrum of the Hamiltonian.

Gap:
$$\Delta(s) = E_1(s) - E_0(s), \quad \Delta = \min_{s \in [0,1]} \Delta(s)$$

Rough estimates (see for example [Messiah 1961]) suggest the condition

$$T \gg \frac{\Gamma^2}{\Delta^2}, \quad \Gamma^2 = \max_{s \in [0,1]} \left\| \left[\dot{\tilde{H}}(s) \right]^2 \right\|$$

Approximately adiabatic evolution

The total run time required for adiabaticity depends on the spectrum of the Hamiltonian.

Gap:
$$\Delta(s) = E_1(s) - E_0(s)$$
, $\Delta = \min_{s \in [0,1]} \Delta(s)$

Rough estimates (see for example [Messiah 1961]) suggest the condition

$$T \gg \frac{\Gamma^2}{\Delta^2}, \quad \Gamma^2 = \max_{s \in [0,1]} \left\| \left[\dot{\tilde{H}}(s) \right]^2 \right\|$$

Theorem. [Teufel 2003 + perturbation theory]

$$T \geq \frac{4}{\epsilon} \left[\frac{\|\dot{\tilde{H}}(0)\|}{\Delta(0)^2} + \frac{\|\dot{\tilde{H}}(1)\|}{\Delta(1)^2} + \int_0^1 \mathrm{d}s \left(10 \frac{\|\dot{\tilde{H}}\|^2}{\Delta^3} + \frac{\|\ddot{\tilde{H}}\|}{\Delta} \right) \right]$$

Implies $\left\| |\psi(T)\rangle - |E_0(1)\rangle \right\| \leq \epsilon$

Satisfiability problems

- Given $h: \{0, I\}^n \rightarrow \{0, I, 2, ...\}$, is there a value of $z \in \{0, I\}^n$ such that h(z)=0?
- Alternatively, what z minimizes h(z)?
- Example: 3SAT. $(z_1 \lor z_2 \lor \overline{z}_3) \land \cdots \land (\overline{z}_{17} \lor z_{37} \lor \overline{z}_{42})$

$$\begin{split} h(z) &= \sum_{c} h_{c}(z) \\ \text{where } h_{c}(z) = \begin{cases} 0 & \text{clause } c \text{ satisfied by } z \\ 1 & \text{otherwise} \end{cases} \end{split}$$

Adiabatic optimization

 Define a problem Hamiltonian whose ground state encodes the solution:

$$H_P = \sum_{z \in \{0,1\}^n} h(z) |z\rangle \langle z|$$

• Define a beginning Hamiltonian whose ground state is easy to create, for example n

$$H_B = -\sum_{j=1}^{N} \sigma_x^{(j)}$$

• Choose $\tilde{H}(s)$ to interpolate from H_B to H_P , for example

$$\tilde{H}(s) = (1-s)H_B + sH_P$$

• Choose total run time *T* so the evolution is nearly adiabatic [Farhi et al. 2000]

Please mind the gap

Recall rough estimate:

$$T \gg \frac{\Gamma^2}{\Delta^2}, \quad \Gamma^2 = \max_{s \in [0,1]} \left\| \left[\dot{\tilde{H}}(s) \right]^2 \right\|$$

For
$$\tilde{H}(s) = (1 - s)H_B + sH_P$$
,
 $\|\dot{\tilde{H}}\| = \|H_P - H_B\|$
 $\leq \|H_B\| + \|H_P\|$

Crucial question: How big is Δ ?

- ≥I/poly(*n*): Efficient quantum algorithm
- I/exp(n): Inefficient quantum algorithm

Unstructured search

Finding a needle in a haystack: $h(z) = \begin{cases} 0 & z = w \\ 1 & z \neq w \end{cases}$ (here $h: \{0, 1, ..., N-1\} \rightarrow \{0, 1\}$)

Unstructured search

Finding a needle in a haystack: $h(z) = \begin{cases} 0 & z = w \\ 1 & z \neq w \end{cases}$ (here $h: \{0, 1, ..., N-1\} \rightarrow \{0, 1\}$)

Query complexity (given black box for h)

- Classically, $\Theta(N)$ queries
- Quantumly, $O(\sqrt{N})$ queries are sufficient to find w [Grover 1996] $(|z\rangle|a\rangle \mapsto |z\rangle|a \oplus h(z)\rangle)$
- This cannot be improved: $\Omega(\sqrt{N})$ queries are necessary [Bennett et al. [997]

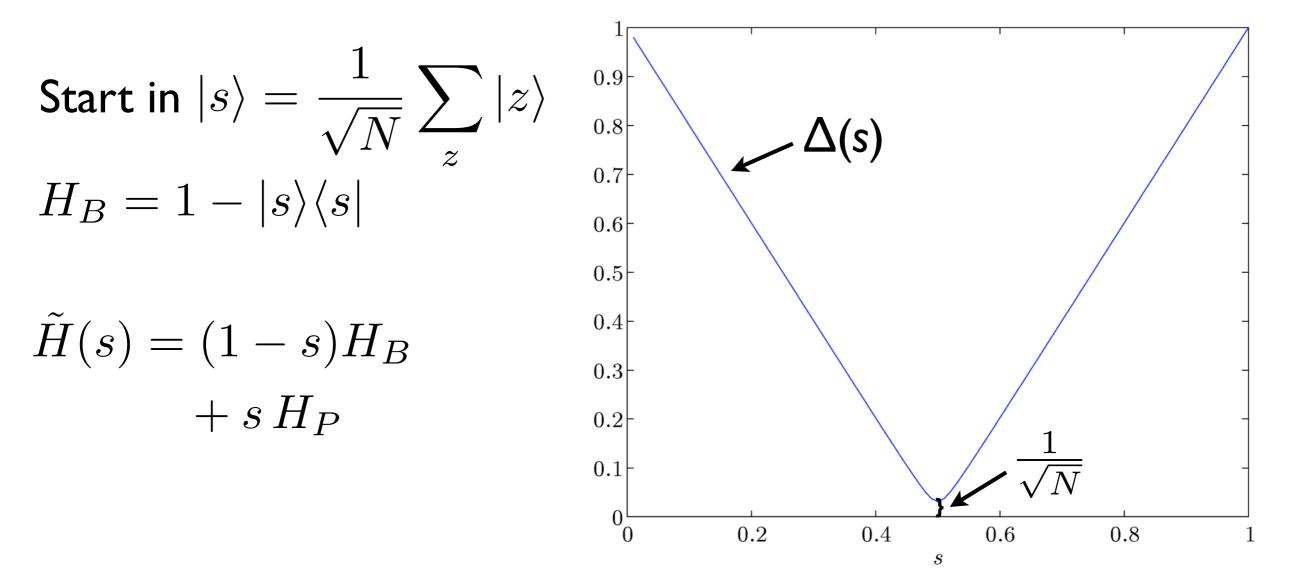
$$h(z) = \begin{cases} 0 & z = w \\ 1 & z \neq w \end{cases} \Rightarrow H_P = \sum_z h(z) |z\rangle \langle z| = 1 - |w\rangle \langle w|$$

Start in
$$|s\rangle = \frac{1}{\sqrt{N}} \sum_{z} |z\rangle$$

 $H_B = 1 - |s\rangle\langle s|$

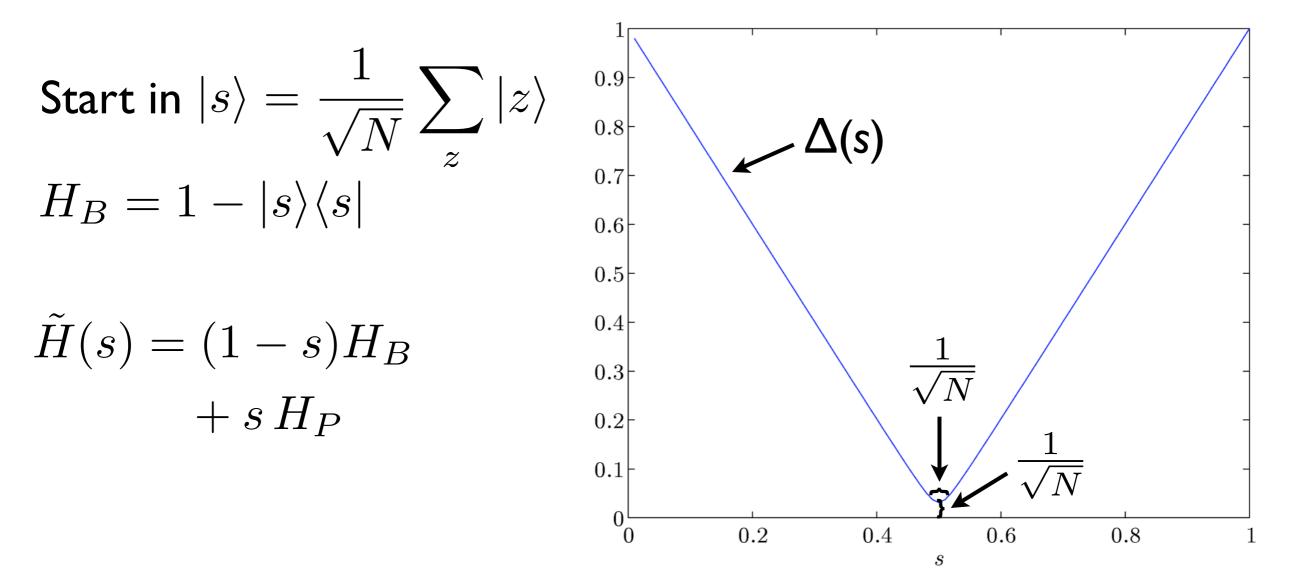
 $\tilde{H}(s) = (1-s)H_B + sH_P$

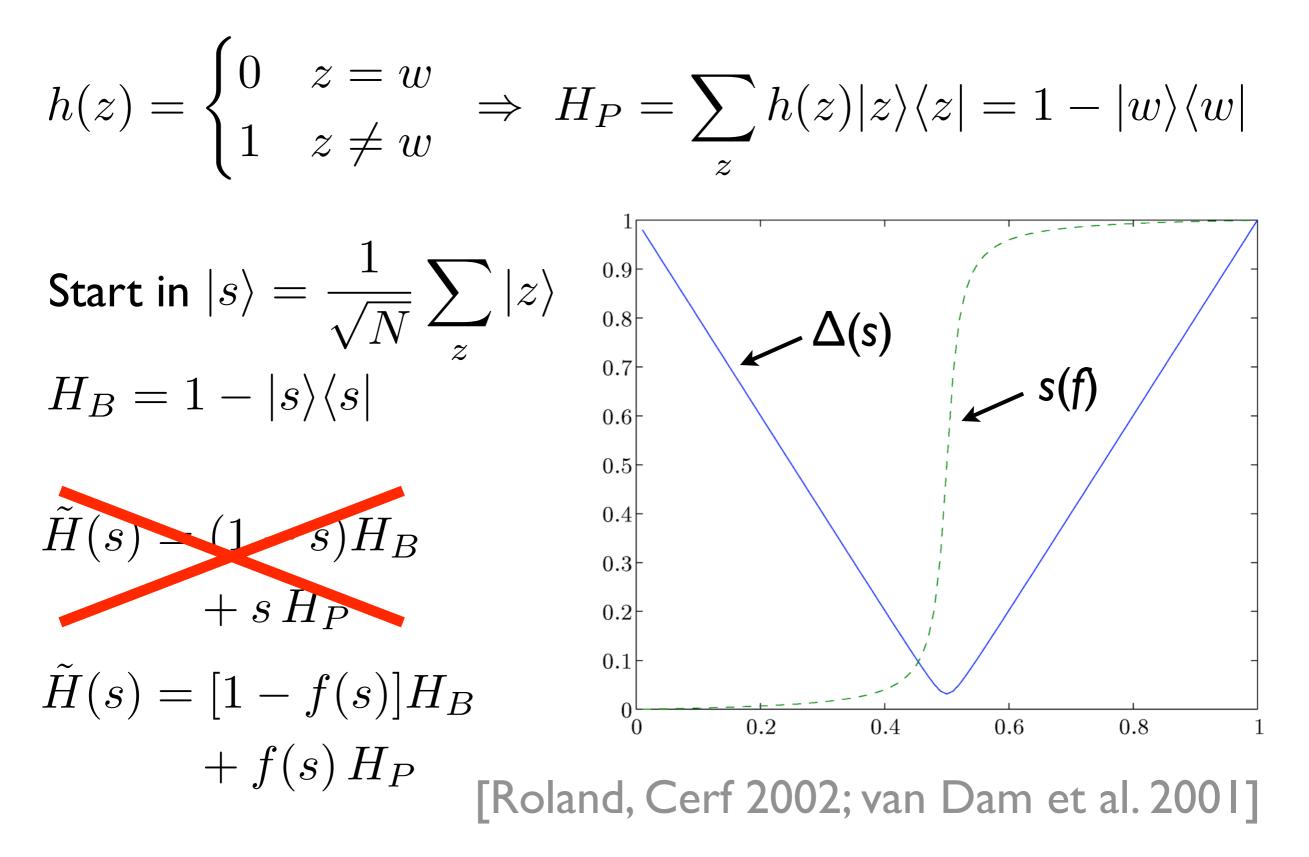
$$h(z) = \begin{cases} 0 & z = w \\ 1 & z \neq w \end{cases} \Rightarrow H_P = \sum_z h(z) |z\rangle \langle z| = 1 - |w\rangle \langle w|$$



1

$$h(z) = \begin{cases} 0 & z = w \\ 1 & z \neq w \end{cases} \Rightarrow H_P = \sum_z h(z) |z\rangle \langle z| = 1 - |w\rangle \langle w|$$





Example: Transverse Ising model

$$egin{aligned} H_P &= \sum_{j \in \mathbb{Z}_n} rac{1}{2} ig(1 - \sigma_z^{(j)} \sigma_z^{(j+1)} ig) & ext{``agree''} \ H_B &= -\sum_{j \in \mathbb{Z}_n} n \sigma_x^{(j)} & ext{with ground state} & |s
angle = |+ \dots +
angle \end{aligned}$$

$$\tilde{H}(s) = (1-s)H_B + sH_P$$

j=1

$$= \sum_{z \in \{0,1\}^n} |z\rangle$$

Diagonalize by fermionization (Jordan-Wigner transformation)

Result: $\Delta \propto \frac{1}{n}$ (at critical point of quantum phase transition) $|E_0(s \approx 0)\rangle \approx |+\cdots+\rangle$ $|E_0(s \approx 1)\rangle \approx \frac{1}{\sqrt{2}}(|0\cdots0\rangle + |1\cdots1\rangle)$ [Farhi et al. 2000]

Example: The Fisher problem

$$H_P = \sum_{j \in \mathbb{Z}_n} \frac{J_j}{2} \left(1 - \sigma_z^{(j)} \sigma_z^{(j+1)} \right) \qquad J_j = 1 \text{ or } 2, \text{ chosen randomly}$$
$$H_B = -\sum_{j=1}^n \sigma_x^{(j)}$$

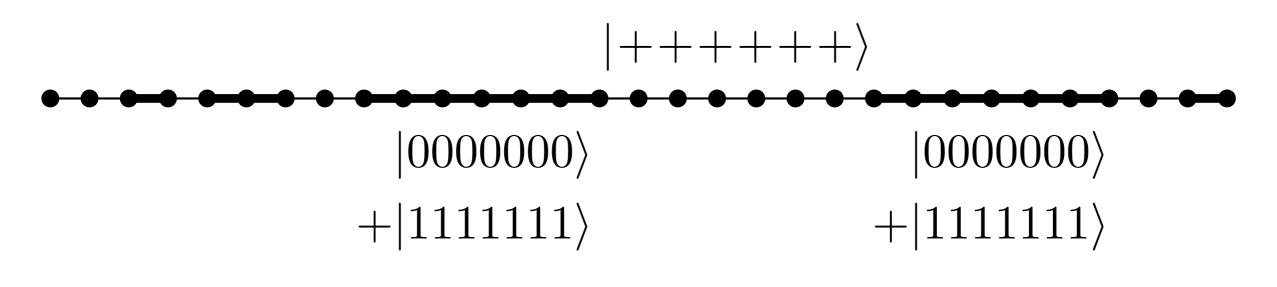
Then typically $\Delta \approx \exp(-c\sqrt{n})$

[Fisher 1992; Reichardt 2004]

Example: The Fisher problem

$$H_P = \sum_{j \in \mathbb{Z}_n} \frac{J_j}{2} \left(1 - \sigma_z^{(j)} \sigma_z^{(j+1)} \right) \qquad J_j = 1 \text{ or } 2, \text{ chosen randomly}$$
$$H_B = -\sum_{j=1}^n \sigma_x^{(j)}$$

Then typically $\Delta \approx \exp(-c\sqrt{n})$



[Fisher 1992; Reichardt 2004]

Random satisfiability problems

Consider random instances of some satisfiability problem (e.g. 3SAT, Exact cover, ...) with a fixed ratio of clauses/bits.

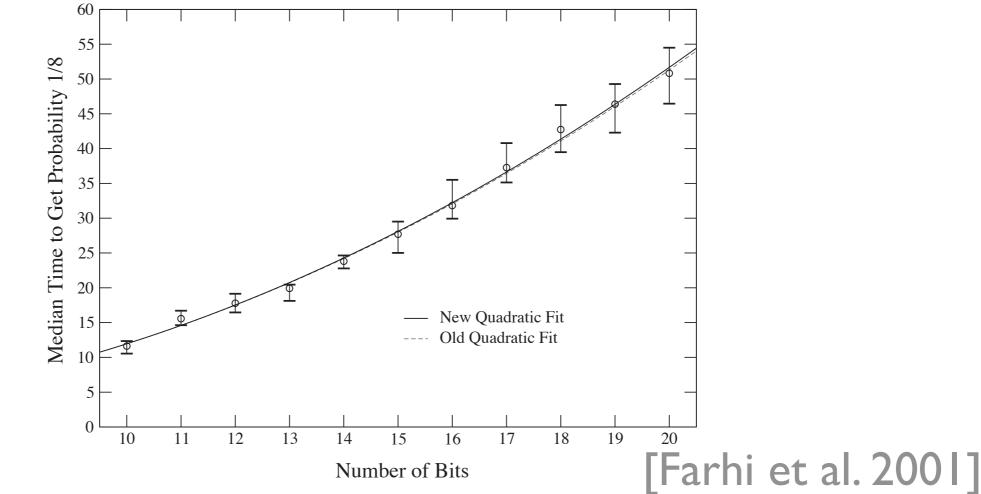
Few clauses: underconstrained. Many solutions, easy to find. Many clauses: overconstrained. No solutions, easy to find a contradiction.

Random satisfiability problems

Consider random instances of some satisfiability problem (e.g. 3SAT, Exact cover, ...) with a fixed ratio of clauses/bits.

Few clauses: underconstrained. Many solutions, easy to find. Many clauses: overconstrained. No solutions, easy to find a contradiction.

Simulation results for random exact cover instances with unique satisfying assignments:



Adiabatic evolution with linear interpolation between local beginning and ending Hamiltonians can simulate arbitrary QC.

Adiabatic evolution with linear interpolation between local beginning and ending Hamiltonians can simulate arbitrary QC.

[Feynman 1985]:
$$H = \sum_{j=1}^{k} [U_j \otimes |j+1\rangle \langle j| + U_j^{\dagger} \otimes |j\rangle \langle j+1|]$$

Adiabatic evolution with linear interpolation between local beginning and ending Hamiltonians can simulate arbitrary QC.

[Feynman 1985]:
$$H = \sum_{j=1}^{k} [U_j \otimes |j+1\rangle \langle j| + U_j^{\dagger} \otimes |j\rangle \langle j+1|]$$

Basic idea [Aharonov et al. 2004]: Use this as $-H_P$.

Final ground state:
$$\frac{1}{\sqrt{k}} \sum_{j=1}^{k} U_j U_{j-1} \cdots U_1 |0\rangle \otimes |j\rangle$$

 H_B enforces correct initial state.

Add energy penalties to stay in an appropriate subspace.

Adiabatic evolution with linear interpolation between local beginning and ending Hamiltonians can simulate arbitrary QC.

[Feynman 1985]:
$$H = \sum_{j=1}^{k} [U_j \otimes |j+1\rangle \langle j| + U_j^{\dagger} \otimes |j\rangle \langle j+1|]$$

Basic idea [Aharonov et al. 2004]: Use this as $-H_P$.

Final ground state:
$$\frac{1}{\sqrt{k}} \sum_{j=1}^{k} U_j U_{j-1} \cdots U_1 |0\rangle \otimes |j\rangle$$

 H_B enforces correct initial state.

Add energy penalties to stay in an appropriate subspace.

Note: This is adiabatic, but not adiabatic optimization.