Quantum algorithm for a generalized hidden shift problem

Andrew Childs
Caltech

Wim van Dam UC Santa Barbara

Quantum mechanical computers can efficiently solve problems that classical computers (apparently) cannot.

- Manin/Feynman, early 1980s: Simulating quantum systems
- Deutsch 1985, Deutsch-Jozsa 1992, Bernstein-Vazirani 1993, Simon 1994: Black box problems
- Shor 1994: Factoring, discrete logarithm
- Many authors, late 1990s-Present: Some nonabelian hidden subgroup problems
- Freedman-Kitaev-Larsen 2000: Approximating Jones polynomial
- Hallgren 2002: Pell's equation
- van Dam-Hallgren-Ip 2002: Some hidden shift problems (e.g., shifted Legendre symbol)
- van Dam-Seroussi 2002: Estimating Gauss/Jacobi sums
- Childs, Cleve, Deotto, Farhi, Gutmann, Spielman 2003: Black box graph traversal
- van Dam 2004, Kedlaya 2004: Approximately counting solutions of polynomial equations
- Hallgren 2005, Schmidt-Vollmer 2005: Finding unit/class groups of number fields

Quantum mechanical computers can efficiently solve problems that classical computers (apparently) cannot.

- Manin/Feynman, early 1980s: Simulating quantum systems
- Deutsch 1985, Deutsch-Jozsa 1992, Bernstein-Vazirani 1993, Simon 1994: Black box problems
- Shor 1994: Factoring, discrete logarithm
- Many authors, late 1990s-Present: Some nonabelian hidden subgroup problems
- Freedman-Kitaev-Larsen 2000: Approximating Jones polynomial
- Hallgren 2002: Pell's equation
- van Dam-Hallgren-Ip 2002: Some hidden shift problems (e.g., shifted Legendre symbol)
- van Dam-Seroussi 2002: Estimating Gauss/Jacobi sums
- Childs, Cleve, Deotto, Farhi, Gutmann, Spielman 2003: Black box graph traversal
- van Dam 2004, Kedlaya 2004: Approximately counting solutions of polynomial equations
- Hallgren 2005, Schmidt-Vollmer 2005: Finding unit/class groups of number fields

Questions:

Quantum mechanical computers can efficiently solve problems that classical computers (apparently) cannot.

- Manin/Feynman, early 1980s: Simulating quantum systems
- Deutsch 1985, Deutsch-Jozsa 1992, Bernstein-Vazirani 1993, Simon 1994: Black box problems
- Shor 1994: Factoring, discrete logarithm
- Many authors, late 1990s-Present: Some nonabelian hidden subgroup problems
- Freedman-Kitaev-Larsen 2000: Approximating Jones polynomial
- Hallgren 2002: Pell's equation
- van Dam-Hallgren-Ip 2002: Some hidden shift problems (e.g., shifted Legendre symbol)
- van Dam-Seroussi 2002: Estimating Gauss/Jacobi sums
- Childs, Cleve, Deotto, Farhi, Gutmann, Spielman 2003: Black box graph traversal
- van Dam 2004, Kedlaya 2004: Approximately counting solutions of polynomial equations
- Hallgren 2005, Schmidt-Vollmer 2005: Finding unit/class groups of number fields

Questions:

• What is the computational power of quantum mechanics?

Quantum mechanical computers can efficiently solve problems that classical computers (apparently) cannot.

- Manin/Feynman, early 1980s: Simulating quantum systems
- Deutsch 1985, Deutsch-Jozsa 1992, Bernstein-Vazirani 1993, Simon 1994: Black box problems
- Shor 1994: Factoring, discrete logarithm
- Many authors, late 1990s-Present: Some nonabelian hidden subgroup problems
- Freedman-Kitaev-Larsen 2000: Approximating Jones polynomial
- Hallgren 2002: Pell's equation
- van Dam-Hallgren-Ip 2002: Some hidden shift problems (e.g., shifted Legendre symbol)
- van Dam-Seroussi 2002: Estimating Gauss/Jacobi sums
- Childs, Cleve, Deotto, Farhi, Gutmann, Spielman 2003: Black box graph traversal
- van Dam 2004, Kedlaya 2004: Approximately counting solutions of polynomial equations
- Hallgren 2005, Schmidt-Vollmer 2005: Finding unit/class groups of number fields

Questions:

- What is the computational power of quantum mechanics?
- Is public-key cryptography possible in a quantum world? Shor's algorithm breaks RSA, elliptic curve cryptosystems, Diffie-Hellman key exchange, etc.
 - What about, e.g., lattice cryptosystems?

Generalized hidden shift problem

Given: $f(b, x) : \{0, 1, ..., M - 1\} \times \mathbb{Z}_N \to S$

Satisfying: f(0,x) injective

$$f(b+1,x+s) = f(b,x)$$

Find: s (the hidden shift)

$$M=2$$
 (hardest), ..., N (easiest)

Example.
$$N = 7, M = 3, s = 2$$

Classical complexity

Claim. To determine s, a classical, randomized algorithm must make exponentially many queries (in $\log N$) to f.

Classical complexity

Claim. To determine s, a classical, randomized algorithm must make exponentially many queries (in $\log N$) to f.

Proof idea:

- Since the function values are arbitrary, they are not informative until we find two inputs that give the same output.
- The probability of seeing such a collision is very small unless $\# \text{ queries} \gtrsim \sqrt{N}$ (birthday problem). Hence $\Omega(\sqrt{N})$ queries are needed.

Classical complexity

Claim. To determine s, a classical, randomized algorithm must make exponentially many queries (in $\log N$) to f.

Proof idea:

- Since the function values are arbitrary, they are not informative until we find two inputs that give the same output.
- The probability of seeing such a collision is very small unless $\# \text{ queries} \gtrsim \sqrt{N}$ (birthday problem). Hence $\Omega(\sqrt{N})$ queries are needed.

Note: This holds independent of how big M is.

Query f in superposition:

Query f in superposition:

Measure function value: obtain (with equal probability)

or

or ··· or

Query f in superposition:

Measure function value: obtain (with equal probability)

or ··· or

The quantum states for different values of s are far apart, so they can be distinguished using only a few copies $(k \le \operatorname{poly}(\log N)$, again independent of M).

Query f in superposition:

Measure function value: obtain (with equal probability)

or

or ··· or

The quantum states for different values of s are far apart, so they can be distinguished using only a few copies $(k \le \operatorname{poly}(\log N)$, again independent of M).

Main question: Can we do it in poly(log N) time?

M=N: An abelian hidden subgroup problem

Easiest hidden shift problem:

M=N: An abelian hidden subgroup problem

Easiest hidden shift problem:

This is an instance of the *hidden subgroup problem* in the abelian group $G = \mathbb{Z}_N \times \mathbb{Z}_N$. Shor's algorithm ("Fourier transform and measure") finds s efficiently.

M=N: An abelian hidden subgroup problem

Easiest hidden shift problem:

This is an instance of the hidden subgroup problem in the abelian group $G = \mathbb{Z}_N \times \mathbb{Z}_N$. Shor's algorithm ("Fourier transform and measure") finds s efficiently.

The same approach works for any $M \ge N/\operatorname{poly}(\log N)$, but not smaller!

Hardest hidden shift problem:

Hardest hidden shift problem:

This is also a hidden subgroup problem, but now in a nonabelian group, the dihedral group $G = \mathbb{Z}_2 \ltimes \mathbb{Z}_N$.

Hardest hidden shift problem:

This is also a hidden subgroup problem, but now in a nonabelian group, the dihedral group $G = \mathbb{Z}_2 \ltimes \mathbb{Z}_N$.

Regev 2002: Solution to the DHSP can be used to find short vectors in lattices (\sqrt{n} -unique-SVP), which would break, e.g., the Ajtai-Dwork cryptosystem.

Hardest hidden shift problem:

This is also a hidden subgroup problem, but now in a nonabelian group, the dihedral group $G = \mathbb{Z}_2 \ltimes \mathbb{Z}_N$.

Regev 2002: Solution to the DHSP can be used to find short vectors in lattices (\sqrt{n} -unique-SVP), which would break, e.g., the Ajtai-Dwork cryptosystem.

Kuperberg 2003: Algorithm with run time $2^{O(\sqrt{\log N})}$.

Hardest hidden shift problem:

This is also a hidden subgroup problem, but now in a nonabelian group, the dihedral group $G = \mathbb{Z}_2 \ltimes \mathbb{Z}_N$.

Regev 2002: Solution to the DHSP can be used to find short vectors in lattices (\sqrt{n} -unique-SVP), which would break, e.g., the Ajtai-Dwork cryptosystem.

Kuperberg 2003: Algorithm with run time $2^{O(\sqrt{\log N})}$.

Regev's reduction also works for larger M. Is this any easier?

Main result

Theorem. Let $M=N^\epsilon$ for any fixed $\epsilon>0$. Then there is an efficient (i.e., run time $\operatorname{poly}(\log N)$) quantum algorithm for the generalized hidden shift problem, using entangled measurements on $k=\max\{3,\log\frac{1}{\epsilon}\}$ registers.

Main result

Theorem. Let $M=N^{\epsilon}$ for any fixed $\epsilon>0$. Then there is an efficient (i.e., run time $\operatorname{poly}(\log N)$) quantum algorithm for the generalized hidden shift problem, using entangled measurements on $k=\max\{3,\log\frac{1}{\epsilon}\}$ registers.

Note: Unfortunately, this is not good enough to get better-than-classical algorithms for lattice problems. (That seems to require $M = \text{poly}(\log N)$.)

Main result

Theorem. Let $M=N^\epsilon$ for any fixed $\epsilon>0$. Then there is an efficient (i.e., run time $\operatorname{poly}(\log N)$) quantum algorithm for the generalized hidden shift problem, using entangled measurements on $k=\max\{3,\log\frac{1}{\epsilon}\}$ registers.

Note: Unfortunately, this is not good enough to get better-than-classical algorithms for lattice problems. (That seems to require $M = \text{poly}(\log N)$.)

Tools:

- "Pretty good measurement" on hidden shift states, à la Bacon, Childs, van Dam 2005.
- Integer programming in constant dimensions (Lenstra 1983).

PGM: A particularly nice, and often optimal, measurement for distinguishing members of an ensemble of quantum states.

PGM: A particularly nice, and often optimal, measurement for distinguishing members of an ensemble of quantum states.

PGM: A particularly nice, and often optimal, measurement for distinguishing members of an ensemble of quantum states.

PGM: A particularly nice, and often optimal, measurement for distinguishing members of an ensemble of quantum states.

PGM: A particularly nice, and often optimal, measurement for distinguishing members of an ensemble of quantum states.

The algebraic problem

Given: random $x \in \mathbb{Z}_N^k$ random $w \in \mathbb{Z}_N$

Find: $b \in \{0, 1, \dots, M-1\}^k$ such that $b \cdot x = w \bmod N$

The algebraic problem

Given: random $x \in \mathbb{Z}_N^k$ random $w \in \mathbb{Z}_N$

Find: $b \in \{0, 1, \dots, M-1\}^k$ such that $b \cdot x = w \bmod N$

Key observation: This is a k-dimensional integer program.

- ullet Solutions of $b \cdot x = w$ over $\mathbb Z$ form a shifted integer lattice
- ullet " $\operatorname{mod} N$ " can be enforced by adding a component
- $0 \le b_j \le M-1$ is a pair of linear constraints

The algebraic problem

Given: random
$$x \in \mathbb{Z}_N^k$$
 random $w \in \mathbb{Z}_N$

Find:
$$b \in \{0, 1, \dots, M-1\}^k$$
 such that $b \cdot x = w \bmod N$

Key observation: This is a k-dimensional integer program.

- ullet Solutions of $b \cdot x = w$ over $\mathbb Z$ form a shifted integer lattice
- ullet " $\operatorname{mod} N$ " can be enforced by adding a component
- $0 \le b_j \le M-1$ is a pair of linear constraints

Lenstra 1983: $2^{O(k^3)}$ time algorithm for integer programming in k dimensions (using LLL lattice basis reduction)

 $b \cdot x = w \bmod N$

$$b \cdot x = w \bmod N$$

Expected number of solutions:

$$\frac{M^k}{N} \leftarrow \text{# of } b$$
's # of values of u

$$b \cdot x = w \bmod N$$

Expected number of solutions:
$$\frac{M^k \, \smile \, ^{\text{\# of } b\text{'s}}}{N} \, \smile \, _{\text{\# of values of } w}$$

So we expect to need
$$k pprox \frac{\log N}{\log M}$$
 copies. $(M = N^{\epsilon} \leftrightarrow k = \frac{1}{\epsilon})$

$$b \cdot x = w \bmod N$$

Expected number of solutions:
$$\frac{M^k \, \smile \, ^{\text{\# of } b\text{'s}}}{N} \, \smile \, _{\text{\# of values of } w}$$

So we expect to need
$$k pprox \frac{\log N}{\log M}$$
 copies. $(M = N^\epsilon \leftrightarrow k = \frac{1}{\epsilon})$

Proof idea: Second moment method.

$$b \cdot x = w \bmod N$$

Expected number of solutions:
$$\frac{M^k \, \stackrel{\text{\# of b's}}{\textstyle \sim}}{N} \, \stackrel{\text{\# of vilues of w}}{\textstyle \sim}$$

So we expect to need
$$k pprox \frac{\log N}{\log M}$$
 copies. $(M = N^\epsilon \leftrightarrow k = \frac{1}{\epsilon})$

Proof idea: Second moment method.

Lemma. (used to bound variance)

For any fixed b, the number of solutions $x \in \mathbb{Z}_N^k$ to the equation $b \cdot x = 0 \mod N \text{ is } N^{k-1} \gcd(b_1, \dots, b_k, N).$

$$b \cdot x = w \bmod N$$

Expected number of solutions:
$$\frac{M^k \, \stackrel{\text{\# of b's}}{\textstyle \sim}}{N} \, \stackrel{\text{\# of b's}}{\textstyle \sim} \, _{\text{\# of values of w}}$$

So we expect to need
$$k pprox \frac{\log N}{\log M}$$
 copies. $(M = N^\epsilon \leftrightarrow k = \frac{1}{\epsilon})$

Proof idea: Second moment method.

Lemma. (used to bound variance)

For any fixed b, the number of solutions $x \in \mathbb{Z}_N^k$ to the equation $b \cdot x = 0 \mod N \text{ is } N^{k-1} \gcd(b_1, \dots, b_k, N).$

Questions

- Is the quantum solvability of the generalized hidden shift problem with $M=\Omega(N^\epsilon)$ useful for any problems going beyond factoring/discrete log?
- ullet Can we solve the problem efficiently for smaller M? Can we at least interpolate with Kuperberg's algorithm?
- What if we replace \mathbb{Z}_N by a nonabelian group? (Then even $M\!=\!2$ is not a hidden subgroup problem.) Can we solve this even for very large M?