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ABSTRACT 
In order to improve the testabilities and power consumption, a 
new state assignment technique based on m-block partition is 
introduced in this paper. The length and number of feedback 
cycles are reduced with minimal switching activity on the state 
variables. Experiment shows significant improvement in power 
dissipation and testabilities for benchmark circuits. 

Categories and Subject Descriptors 
B.8.1 [Performance and Reliability]: Reliability, Testing and 
Fault-Tolerance. 
J.6 [Computer-Aided Engineering]: Computer-aided design (CAD) 

General Terms 
Algorithm, Logic Synthesis, Design. 

Keywords 
State Encoding, Fault Coverage, Low power, Scan design. 

1. Introduction 
As the density of the SoC(System-on-a-Chip) becomes extensively 
high, the testing and power consumption are of great concerns for 
various applications. In order to alleviate the expense of the SoC 
design especially for the testability and low power consumption, 
the optimization has to be considered at the very early stage of the 
design such as logic synthesis level. A number of state encoding 
techniques have been developed for testable design [1,2]. Instead 
of analyzing only the gate level circuit information, implicit 
techniques for FSM (Finite State Machine) traversal is used to 
identify non controllable state registers to be included in partial 
scan flip-flops [1]. State bi-partitioning technique is introduced to 
minimize the dependencies among state variables and thus 
hopefully to reduce the number of partial scan flip-flops [2]. An 
m-block state partitioning technique, which is more general than 
bi-partitioning technique, has been developed to maximize the 
testabilities and reduce the area overhead [3]. A few state 
encoding  techniques have been addressed to minimize the power 

consumption [4-6]. Testability was considered in re-encoding the 
states for the low power [5], however no paper has tried to 
optimize the testability and low power simultaneously at the state 
assignment stage, although it is inherently contradictory problem. 
In this paper we introduce m-block state partitioning technique, 
which is more general and efficient than bi-partitioning technique 
in [2], to maximize the testabilities and minimize the power 
consumption. State transition probability is extensively adopted in 
partitioning the states while preserving the dependencies of the 
state variables minimal.  

This paper is organized as follows: After introducing the state 
encoding for testability technique in section 2, state encoding for 
low switching transitions is described in section 3. Our new state 
encoding techniques targeted to improve both testability and 
power consumption is presented in section 4 followed by 
experimental results and conclusions. 

2. State Encoding for Testability Technique 
One of the important issues in the logic synthesis for sequential 
circuits is to assign binary code values to each state of a state 
table extracted from a state diagram.  
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Figure 1. State Transition Table and Assignment 

 

Figure 2. Circuit structure and Scan Graph by State Assignment α 
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At first we will apply the conventional random state encoding 
algorithm and check the dependencies among state variables. The 
state table shown in figure 1, where PS and NS represent present 
states and next states respectively, can be synthesized to the 
figure 2 circuit by taking the state assignment α of the figure 1(b). 
It is noted that three flip-flops Y1(y1), Y2(y2), Y3(y3) (Y: next 
state, y: current state) in figure 2 have complete dependencies 
among themselves.  

On the other hand, if the circuit is implemented as figure 3 using 
the different state assignment β of the figure 1(b), the 
dependencies among three state variables Y1(y1), Y2(y2), Y3(y3) 
are unidirectional, and it is more efficient for partial scan design 
than the previous state assignment β. Since no simple cycle exist 
in figure 3 circuit, we may not need any scan flip-flop for testing.  
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Figure 3.  Circuit structure and Scan Graph by State  
Assignment β                              β  

A few terms are defined as followings for detailed description of 
optimal state assignment for high testability and low power 
consumption [3].  

Definition 1] A partition consists of blocks such that there is no 
common state symbol among the blocks and the union of all 
blocks constitutes the state set S of a FSM. 

Definition 2] Partition pair (p1,p2) is an ordered pair of partitions 
p1 and p2 in which any state in a block of the partition p1 is 
transited to the same block of the partition p2. 

Definition 3] Closed partition: A partition P on the set of states 
of a sequential machine is said to be closed if, for every two states 
s1 and s2 which are in the same block of P and any input I, the 
next states for s1 and s2 are in common block of P.  

Definition 4] π(0): every block in the product contains only a 
single state.  

Definition 5] m-partition: the smallest partition containing all the 
successors of the blocks of predecessor partition.  

Definition 6] M-partition: the largest partition the successors 
whose blocks are contained in the blocks of m-partition.  

Definition 7] Mm pairs: an ordered pair of partitions such that, if 
states s1 and s2 are in the same block of M-partition, then for 
every input I, the next states for s1 and s2 are in the same block of 
m-partition.  

Theorem 1] Let M be a sequential machine with K state variables, 
y1, y2, . . ., yk. If there exists a closed partition ∏  on the states of 
M and if r state variables, where r = [log2#(∏ )], are assigned to 

the blocks of ∏ , so that all the states contained in each block are 
assigned the same values of y1, y2, . . .,yr, then the next state 
vaiables, Y1, Y2, . . ., Yr are independent of the remaining k-r 
variables.  

Proof] Please refer to the [3].  

It can be observed from the theorem 1 that if the states can be 
partitioned into m-block satisfying closed partitioning condition, 
the dependencies among state variables can be greatly simplified. 
Since the number of partial scan flip-flops are highly dependent 
on the complexity of the dependencies among state varibles[1], 
the partial scan testabilities can be also highly improved. In figure 
4 state transition diagram, let us consider two partitions 

}:::{p' fcebad=  and }:{p" bdcfae= , where each block 
is separated by ":" symbol. The p' and p" are 4-block and 2-block 
partitions respectively, and an ordered pair (p',p") is a partitioning 
pair.  
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Figure 4. State Assignment and Circuit Structure 

The relation between partition and state assignment can be 
explained through the figure 4. From the state assignment, each 
state variable generates a 2-block partition, that is, y1 variable 
produces }:{p1 cefabd= partition, y2 produces 

}:{p2 bfacde= , and y3 produces }:{p' bdcfae= . 
Furthermore more than one variables can generate m-block 
partitions such as y1 and y2 produce }:::{p12 fcebad=  4-
block partition. Hence state assignment and block partitioning can 
be considered as a similar problem, and possibly the dependencies 
among memory elements of a sequential circuit may be estimated 
from the block partition. In figure 4, it can be seen that next state 
variable Y3 depends on the current state variables y1 and y2, and 
two memory element pairs of (FF3, FF2) and (FF3, FF1) do not 
include any feedback loop among flip-flops in each pair. By 
assigning state codes through the block partitioning, not only the 
great reduction in area is achievable but also the plagued test 
generation problem for sequential circuits can be drastically 
simplified. In contrast to the method in [2], which is for selecting 
an optimal set of flip-flops for partial scan at gate-level, our 
method considers m-block partition to find an optimal state 
encoding, which could keep the number of non-controllable flip-
flops minimal during the state assignment. 

Example: By applying our state assignment algorithm based on 
m-block partitioning to the figure 4 state machine, we have found 
that the state machine includes a few different state partitioning 
pairs as shown in figure 5. If the partition results in similar 
dependencies among state variables, which pair will be better 
choice for low power consumption? The following section will 
describe a solution for this question.  
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Figure 5. Different partitioning pairs 

3. State Encoding for Low Switching  
     Transitions 
In order to reduce the power consumption, it is very crucial to 
assign the states so that the transitions among state variables 
occur least frequently. First of all, the transition relations 
according to inputs need to be expressed as transition probabilities. 
The Markov Chain used as a probability model has a relation to 
dynamic variations in sequential characteristics. Given the 
information on a system and probabilities for inputs, the transition 
probabilities for state transition diagram can be calculated. The 
transition condition from the current state to the next state shall be 
decided only by the current state. Figure 6(a) is a state transition 

diagram based on a state transition table. 
 The conditional transition probability(CTP) from the current state 
to the next state is defined as: 

 ( )ijji NsNsPP |, =  (1)

For example, the CTP from s2 to s3 is 3/4 since the state 
transition occurs on 01, 00, 10 of 4 possible inputs. The CTPs 
among all the states are shown in figure 6(b). However the CTP 
itself, which only considers the input values, is not enough to 
show switching variations precisely. To extract more accurate 
switching variations, the equation is augmented as follows 
considering current state probability. 

 

ijiji PspGp •= ,,  PBP T •=  1
0

=∑
=

n

i
iPs  (2)

Here, iPs is the current state probability of Si and can be 
calculated with Markov chain characteristics. The conditional 
transition probability  is expressed as a matrix B. 

 Figure 7 shows the calculation procedure of the current state 
probabilities and all of the transition probabilities. The power 
consumption can be reduced by assigning the states so that the 

variation of the state values are minimized among the states with 
high residency and transitions [6].  

The highest transition probability from the current state si to the 
next state sj implies that the switching variation between si and sj 
occurs most frequently.  
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Figure 7. Global Transition Probability of STD 

To reduce the power, the remaining job is only to assign the states 
to keep the rate of the flip-flop switching very low looking at the 
normalized integer values of the figure 7. In this example the 
most frequent transition occurs between s3 and s4 with integer 
value of 27, thus they must be encoded to minimize the Hamming 
Distance among them. Next consideration must go to the states 
pair (s2, s3) and (s2,s4) of which the transition is equally 9. 

4. New State Encoding Technique for 
     Testability and Low Power 
Observation: In partitioning the states into m-blocks, the power 
can be saved by taking the states with high transition probability 
into the same block. 

Justification: Since the states within the same block are likely to 
get more same bits than the states in different blocks, the flip-flop 
transitions can be reduced while the dependencies are kept low. 
Therefore this m-block partition considering state transition 
probability can improve both the testability and power 
consumption.   

The state assignment for m-block partition pairs satisfying the 
condition for assigning unique value for each state is carried out 
by 2 stages. At the first stage, the upper bits of states belong to the 
same block of current states are assigned by the same value and in 
the same way the lower bits of states belong to the same block of 
next states are assigned by the same value. At the second stage, 
state values are partly reassigned so that Hamming Distance 
among states with the highest weight transition probability in state 
transition diagram can be the minimum. In the state which keeps 
low dependencies by m-block partition, selecting block partition 
pairs and assigning state values can cause the cost and power 
consumption for testing to be minimized. Formula(3) is a function 
measuring the cost of weight transition probabilities in the blocks 
with π(0) partitions. 

 ( ) )(', ∑=
block

i
iii mWeightCost ττ  (3)

 Example: Figure 4 can be reconstructed as 8 partition pairs of  
figure  5 and m-block state assignment graph of figure 8. Of the 
partition pairs, (r2, r2

’ ), (r3, r3
’ ), (r6, r6

’ ), (r8, r8
’ ) satisfy π(0) 

condition and their costs are 42, 18, 23, and 23, respectively. Thus 
(r2, r2

’ ) of the highest cost is selected and the states are assigned 
by the block partition algorithm. 
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In the first stage, the current state partitions }:::{ FDEBAC  are 
encoded by Ya and Yb bits and the next state partitions 

}:::{ EDFBCA  are by Yb and Yc bits. Initial values assigned to 
6 states can be {001, 100, 000, 111, 110, 011} respectively. 
Although the states within the same block get the same upper or 
lower bits, the discrepancy among states in different blocks can be 
too high. For example, the B and F states with weight transition 
probability of 14 are assigned as 100 and 011 respectively, hence 
the Hamming Distance(HD) becomes 3 which is the worst case. 
The augmenting algorithm, shuffling subset of state codes 
keeping the basic rule of the first stage, is applied in the second 
stage. In this example the state values of B, C and A are changed 
into 101, 001, 000, thus {000, 101, 001, 111, 110, 011} are finally 
assigned to each states. Note that the HD between state B and F is 
reduced to 2 from 3, and globally bit transitions are reduced as 
well. 
To evaluate a new state assignment technique proposed in this 
paper a Minimum Transition Function(MTF) is defined as 
follows: 

 )(
1

ii

Sn

i
i NsPsHDWeightMTF •∗=∑

=

 (4)

This equation of summing the state transitions on each 
connectivity is used to evaluate the switching frequency of a state 
assignment. In the above example, the MTF equals to 172 for the 
dependencies only and goes down to 168 for both the 
dependencies and transition probabilities. 

5. Experimental Results 
For the experiments, synthesis tool SIS from U.C. Berkeley, Blif-
to-Bench script, and automatic test pattern generation tool HITEC 
from U.C. Illinois have been extensively used with our new state 
encoding algorithm. The new m-block in the table is the algorithm 
proposed in this paper adding HD heuristics among states for low 
power to the m-block algorithm. The single stuck-at fault 
coverages for the sequential circuits synthesized by applying one-
hot, random, Jedi, and our method are compared in table 1, where 
Ns and Nb represent the number of states and flip-flops 
respectively. Although our new m-block does not guarantee the 
highest fault coverages for all the benchmarks, it has shown that 
comparable coverages can be achievable. However, as far as the 
power consumption is concerned, the table 2 shows that our new 
m-block method produces the least power consumption for most 
of the benchmark circuits. Both tables show that our approach 

shown the 5th columns achieves almost highest average fault 
coverage and power consumption at the same time 

Table 1. Fault Coverage(FC) upon different State Assignments 

fault coverage(%) 
Circuit Ns/Nb

Jedi Random 2- 
block 

m- 
 block

New
m-block One-hot

bbsse   16/4 98.24 90.66 98.12 98.85 99.13 97.80
mark1   16/4 98.10 94.47 98.85 98.85 98.85 97.12
keyb   19/5 91.50 95.04 93.66 96.88 92.03 97.62
s832   25/5 97.56 98.88 45.61 97.92 98.66 86.43
tbk   32/5 96.97 98.59 98.98 98.98 99.14 97.38

s1494   48/6 96.81 96.34 98.26 94.87 95.98 59.77
Average FC 96.42 88.37 90.16 97.58 97.14 90.60

 

Table 2. Power Consumption(PC) upon Different State Assignments 

power(㎼) 
Circuit Ns/Nb

Jedi Random 2- 
block 

m- 
 block

New
m-block One-hot

bbsse   16/4 551.0 527.5 568.1 572.9 519.8 823.9
mark1   16/4 360.8 436.6 383.0 383.0 383.0 600.1
keyb   19/5 824.2 1030.7 620.5 765.5 531.1 1362.2
s832   25/5 1161.4 1381.1 1181.0 1189.1 1071.4 2147.0
tbk   32/5 711.9 721.1 717.8 717.8 676.1 1051.4

s1494   48/6 2039.9 2698.2 2143.8 2043.3 1899.4 3683.7
scf 121/7 2451.4 2550.1 2473.8 2440.5 2286.1 4263.9
Average PC 1157.2 1335.0 1155.4 1158.9 1052.4 1990.3

6. Conclusion 
In this paper a new m-block partitioning technique for the state 
assignment is proposed to reduce the number of feedback cycles 
and keep low switching activities among state variables. 
Experiment shows significant improvement in power dissipation 
and testabilities for benchmark circuits. By synthesising SoC 
cores with our state encoding technique it is expected that the test 
power can also be highly saved. 
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