
Automatic VHDL Model Generation of
Parameterized FIR Filters

E. George Walters III1, John Glossner2, and Michael J. Schulte1

1 Computer Architecture and Arithmetic Laboratory, Computer Science and
Engineering Department, Lehigh University, Bethlehem PA 18015 USA

2 Sandbridge Technologies, 1 N Lexington Ave, 10th Floor, White Plains NY 10601

Abstract. This paper describes a Java-based tool that automatically
generates structural level VHDL models of FIR Filters. Automatic gen-
eration of VHDL models allows the designer to rapidly explore the design
space and test the impact of parameters on the design. The tool is based
on a general purpose computer arithmetic component package developed
at Lehigh University and can easily be extended to enable rapid proto-
typing of other hardware accelerators used in embedded systems. In this
paper, we describe the effects of truncated multipliers in FIR filters. We
show that a 22.5% reduction in area can be achieved for a 24-tap filter
with 16-bit coefficients, and that the reduction error SNR is only 2.4 dB
less than the roundoff error SNR of the same filter with no truncation.
Using the techniques presented in this paper, the average reduction error
of the filter is several orders of magnitude less than the average reduction
error of the individual multipliers.

1 Introduction

The design of hardware accelerators for embedded systems presents many design
tradeoffs that are difficult to quantify without bit-accurate simulation and area
and delay estimates of competing alternatives. Structural level VHDL models
can be used to evaluate and compare designs, but require significant effort to
generate.

This paper presents a tool that was developed to evaluate the tradeoffs in-
volved in using truncated multipliers in FIR filters. The tool is based on a package
of Java classes that models the building blocks of computational systems, such
as adders and multipliers. These classes generate VHDL descriptions, and are
used by other classes in hierarchical fashion to generate VHDL descriptions of
more complex systems. This paper describes the generation of truncated FIR
filters as an example.

Previous techniques for modeling and designing digital signal processing sys-
tems with VHDL are presented in [1–5]. The tool described in this paper differs
from those techniques by leveraging the benefits of object oriented programming
(OOP). By subclassing existing objects, such as multipliers, the tool is easily ex-
tended to generate VHDL models that incorporate the latest optimizations and
techniques.

Sections 1.1 and 1.2 provide background necessary for understanding the
two’s complement truncated multipliers used in the FIR filter architecture, which
is described in Section 2. Section 3 describes the tool for automatically generating
VHDL models of those filters. Synthesis results of specific filter implementations
are presented in Section 4, with concluding remarks given in Section 5.

1.1 Two’s Complement Multipliers

Parallel tree multipliers form a matrix of partial product bits, which are then
added to produce a product. Consider an m-bit multiplicand, A, and an n-bit
multiplier, B. If A and B are integers in two’s complement form, then

A = −am−12m−1 +
m−2∑

i=0

ai2i and B = −bn−12n−1 +
n−2∑

j=0

bj2j . (1)

Multiplying A and B together yields the following expression:

A ·B = am−1bn−12m+n−2 +
m−2∑

i=0

n−2∑

j=0

aibj2i+j

−
m−2∑

i=0

bn−1ai2i+n−1 −
n−2∑

j=0

am−1bj2j+m−1 .

(2)

The first two terms in (2) are positive. The third term is either zero (if bn−1 =
0) or negative with a magnitude of

∑m−2
i=0 ai2i+n−1 (if bn−1 = 1). Similarly, the

fourth term is either zero or a negative number. To produce the product of
A × B, the first two terms are added “as is”. Since the third and fourth terms
are negative (or zero), they are added by complementing each bit, adding ‘1’ to
the LSB column, and sign extending with a leading ‘1’. With these substitutions,
the product is computed without any subtractions as:

P = am−1bn−12m+n−2 +
m−2∑

i=0

n−2∑

j=0

aibj2i+j +
m−2∑

i=0

bn−1ai2i+n−1

+
n−2∑

j=0

am−1bj2j+m−1 + 2m+n−1 + 2n−1 + 2m−1 .

(3)

Figure 1 shows the multiplication of two 8-bit integers in two’s complement
form. The partial product bit matrix is described by (3), and is implemented
using an array of and and nand gates. The matrix is then reduced using tech-
niques such as Wallace [6], Dadda [7], or Reduced Area reduction [8].

1.2 Truncated Multipliers

Truncated m × n multipliers, which produce results less than m + n bits long,
are described in [9]. Benefits of truncated multipliers include reduced area, de-
lay, and power consumption [10]. An overview of truncated multipliers, which

A a7 a6 a5 a4 a3 a2 a1 a0

×B b7 b6 b5 b4 b3 b2 b1 b0

1 a7b0 a6b0 a5b0 a4b0 a3b0 a2b0 a1b0 a0b0

a7b1 a6b1 a5b1 a4b1 a3b1 a2b1 a1b1 a0b1

a7b2 a6b2 a5b2 a4b2 a3b2 a2b2 a1b2 a0b2

a7b3 a6b3 a5b3 a4b3 a3b3 a2b3 a1b3 a0b3

a7b4 a6b4 a5b4 a4b4 a3b4 a2b4 a1b4 a0b4

a7b5 a6b5 a5b5 a4b5 a3b5 a2b5 a1b5 a0b5

a7b6 a6b6 a5b6 a4b6 a3b6 a2b6 a1b6 a0b6

1 a7b7 a6b7 a5b7 a4b7 a3b7 a2b7 a1b7 a0b7

p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

Fig. 1. 8×8 partial product bit matrix (two’s complement)

discusses several methods for correcting the error introduced due to unformed
partial product bits, is given in [11]. The method used in this paper is constant
correction, as described in [9].

Figure 2 shows an 8× 8 truncated parallel multiplier with a correction con-
stant added. The final result is l-bits long. We define k as the number of truncated
columns that are formed, and r as the number of columns that are not formed.
In this example, the five least significant columns of partial product bits are not
formed (l = 8, k = 3, r = 5).

Fig. 2. 8×8 truncated multiplier with correction constant

Truncation saves an and gate for each bit not formed and eliminates the full
adders and half adders that would otherwise be required to reduce them to two
rows. The delay due to reducing the partial product matrix is not improved be-
cause the height of the matrix is unchanged. However, a shorter carry propagate
adder is required, which may improve the overall delay of the multiplier.

The correction constant, Cr, and the ‘1’ added for rounding are normally
included in the reduction matrix. In Figure 2 they are explicitly shown to make
the concept more clear.

A consequence of truncation is that a reduction error is introduced due to
the discarded bits. For simplicity, the operands are assumed to be integers, but
the technique can also be applied to fractional or mixed number systems. With
r unformed columns, the reduction error is

Er = −
r−1∑

i=0

i∑

j=0

ai−jbj2i . (4)

If A and B are random with a uniform probability density, then the average
value of each partial product bit is 1

4 , so the average reduction error is

Er avg = −1
4

r−1∑
q=0

(q + 1)2q = −1
4
((r − 1) · 2r + 1) . (5)

The correction constant, Cr, is chosen to offset Er avg. After rounding,

Cr = −round(2−rEr avg) · 2r = round
(
(r − 1) · 2−2 + 2−(r+2)

)
· 2r , (6)

where round(x) indicates x is rounded to the nearest integer.

2 FIR Filter Architecture

This section describes the architecture used to study the effect of truncated
multipliers in FIR filters. Little work has been published in this area, and this
architecture incorporates the novel approach of combining all constants for two’s
complement multiplication and correction of reduction error into a single con-
stant added just prior to computing the final filter output. This technique reduces
the average reduction error of the filter by several orders of magnitude, when
compared to the approach of including the constants directly in the multipliers.
Section 2.1 presents an overview of the architecture, and Section 2.2 describes
components within the architecture.

2.1 Architecture Overview

An FIR filter with T taps computes the following difference equation [12],

y[n] =
T−1∑

k=0

b[k] · x[n− k] , (7)

where x[] is the input data stream, b[k] is the kth tap coefficient, and y[] is
the output data stream of the filter. Since the tap coefficients and the impulse
response, h[n], are related by

h[n] =
{

b[n], n = 0, 1, . . . , T − 1
0, otherwise, (8)

Equation (7) can be recognized as the discrete convolution of the input stream
with the impulse response [12].

Figure 3 shows the block diagram of the FIR filter architecture used in this
paper. This architecture has two data inputs, x in and coeff, and one data out-
put, y out. There are two control inputs which are not shown, clk and loadtap.

Fig. 3. Proposed FIR filter architecture with T taps and M multipliers

The input data stream enters at the x in port. When the filter is ready to
process a new sample, the data at x in is clocked into the register labeled x[n]
in the block diagram. The x[n] register is one of T shift registers, where T is
the number of taps in the filter. When x in is clocked into the x[n] register, the
values in the other registers are shifted right in the diagram, with the oldest
value, x[n− T + 1] being discarded.

The tap coefficients are stored in another set of shift registers, labeled b[0]
through b[T−1] in Figure 3. Coefficients are loaded into the registers by applying
the coefficient values to the coeff port in sequence and cycling the loadtap
signal to load each one.

The filter is pipelined with four stages: operand selection, multiplication,
summation, and final addition.

Operand Selection: The number of multipliers in the architecture is config-
urable. For a filter with T taps and M multipliers, each multiplier performs

dT/Me multiplications per input sample. The operands for each multiplier
are selected each clock cycle by an operand bus and clocked into registers.

Multiplication: Each multiplier has two input operand registers, loaded by an
operand bus in the previous stage. Each pair of operands is multiplied, and
the final two rows of the reduction tree (the product in carry-save form) are
clocked into a register where they become inputs to the multi-operand adder
in the next stage. Keeping the result in carry-save form, rather than using
a carry propagate adder (CPA), reduces the overall delay.

Summation: The multi-operand adder has carry-save inputs from each mul-
tiplier, as well as a carry-save input from the accumulator. After each of
the dT/Me multiplications have been performed, the output of the multi-
operand adder (in carry-save form) is clocked into the CPA operand register
where it is added in the next pipeline stage.

Final Addition: In the final stage, the carry-save vectors from the multi-
operand adder and a correction constant are added by a specialized carry
save adder and a carry propagate adder to produce a single result vector.
The result is then clocked into an output register, which is connected to the
y out output port of the filter.

The clk signal clocks the system. The clock period is set so that the mul-
tipliers and the multi-operand adder can complete their operation within one
clock cycle. Therefore, dT/Me clock cycles are required to process each input
sample. The final addition stage only needs to operate once per input sample,
so it has dT/Me clock cycles to complete its calculation and is generally not on
the critical path.

2.2 Architecture Components

This section discusses the components of the FIR filter architecture.

Multipliers. In this paper, two’s complement parallel tree multipliers are used
to multiply the input data by the filter coefficients. When performing truncated
multiplication, the constant correction method [9] is used. The output of each
multiplier is the final two rows remaining after reduction of the partial product
bits, which is the product in carry-save form [13]. Rounding does not occur at
the multipliers, each product is (l + k)-bits long. Including the extra k bits in
the summation avoids an accumulation of roundoff errors. Rounding is done in
the final addition stage.

As described in Section 1.1, the last three terms in (3) are constants. In
this architecture, these constants are not included in the partial product matrix.
Likewise, if using truncated multipliers, the correction constant is not included
either. Instead, the constants for each multiplication are added in a single op-
eration in the final addition stage of the filter. This is described later in more
detail.

Multi-operand Adder and Accumulator. As shown in (7), the output of an
FIR filter is a sum of products. In this architecture, M products are computed
per clock cycle. In each clock cycle, the carry-save outputs of each multiplier
are added and stored in the accumulator register, also in carry-save form. The
accumulator is included in the sum, except with the first group of products for
a new input sample. This is accomplished by clearing the accumulator when the
first group of products arrives at the input to the multi-operand adder.

The multi-operand adder is simply a counter reduction tree, similar to a
counter reduction tree for a multiplier, except that it begins with operand bits
from each input instead of a partial product bit matrix. The output of the multi-
operand adder is the final two rows of bits remaining after reduction, which is
the sum in carry-save form. This output is clocked into the accumulator register
every clock cycle, and clocked into the CPA Operand Register every dT/Me
cycles.

Correction Constant Adder. As stated previously, the constants required
for two’s complement multipliers and the correction constant for unformed bits
in truncated multipliers are not included in the reduction tree but are added
during the final addition stage. A ‘1’ for rounding the filter output is also added
in this stage. All of these constants for each multiplier are precomputed and
added as a single constant, CTOTAL.

All multipliers used in this paper operate on two’s complement operands.
From (3), the constant which must be added for an m×n multiplier is 2m+n−1 +
2n−1+2m−1. With T taps, there are T multiply operations (assuming T is evenly
divisible by M), so a value of

CM = T (2m+n−1 + 2n−1 + 2m−1) (9)

must be added in the final addition stage.
The multipliers may be truncated with unformed columns of partial product

bits. If there are unformed bits, the total average reduction error of the filter is
T · Er avg. The correction for this is

CR = round
(
T · (r − 1) · 2−2 + T · 2−(r+2)

)
· 2r . (10)

To round the filter output to l bits, the rounding constant that must be used is

CRND = 2r+k−1 . (11)

Combining these constants, the total correction constant for the filter is

CTOTAL = CM + CR + CRND . (12)

Adding CTOTAL to the multi-operand adder output is done using a special-
ized carry-save adder (SCSA) which is simply a carry-save adder optimized for
adding a constant bit vector. A carry-save adder uses full adders to reduce three

bit vectors to two. SCSA’s differ in that half adders are used in columns where
the constant is a ‘0’ and specialized half adders are used in columns where the
constant is a ‘1’. A specialized half adder computes the sum and carry-out of
two bits plus a ‘1’, the logic equations being

si = ai ⊕ bi and ci+1 = ai + bi . (13)

The output of the SCSA is then input to the final carry propagate adder.

Final Carry Propagate Adder. The output of the specialized carry-save
adder is the filter output in carry-save form. A final carry propagate adder (CPA)
is required to compute the final result. The final addition stage has dT/Me clock
cycles to complete, so for many applications a simple ripple-carry adder will be
fast enough. If additional performance is required, a carry-lookahead adder may
be used. Using a faster CPA does not increase throughput, but does improve
latency.

Control. A filter with T taps and M multipliers requires dT/Me clock cycles
to process each input sample. The control circuit is a state machine with dT/Me
states, implemented using a modulo-dT/Me counter. The present state is the
output of the counter and is used to control which operands are selected by each
operand bus. In addition to the present state, the control circuit generates four
other signals: 1) shiftData, which shifts the input samples, 2) clearAccum,
which clears the accumulator, 3) loadCpaReg, which loads the multi-operand
adder output into the CPA operand register, and 4) loadOutput, which loads
the final sum into the output register.

3 Filter Generation Software
(FGS)

The architecture described in Section 2 provides a great deal of flexibility in terms
of operand size, the number of taps, and the type of multipliers used. This implies
that the design space is quite large. In order to facilitate the development of a
large number of specific implementations, a tool was designed that automatically
generates synthesizable structural VHDL models given a set of parameters. The
tool, which is named FGS, also generates test benches and files of test vectors
to verify the filter models.

FGS is written in Java and consists of two main packages. The arithmetic
package, discussed in Section 3.1, is suitable for general use and is the foundation
of FGS. The fgs package, discussed in Section 3.2, is specifically for generating
the filters described previously. It uses the arithmetic package to generate the
necessary components.

3.1 The arithmetic Package

The arithmetic package includes classes for modeling and simulating digital com-
ponents. The simplest components include D flip-flops, half adders, and full
adders. Larger components such as ripple-carry adders and parallel multipliers
use the smaller components as building blocks. These components in turn are
used to model complex systems such as FIR filters.

Common Classes and Interfaces. Figure 4 shows the classes and interfaces
which are used by arithmetic subpackages. The most significant of these are
VHDLGenerator, Parameterized, and Simulator.

Fig. 4. The arithmetic package

VHDLGenerator is an abstract class. Any class that represents a digital compo-
nent and can generate a VHDL model of itself is derived from this class. It
defines three abstract methods which must be implemented by all subclasses.
genCompleteVHDL() generates a complete VHDL file describing the compo-
nent. This file includes synthesizable entity-architecture descriptions of all
subcomponents used. genComponentDeclaration() generates the component
declaration which must be included in the entity-architecture descriptions of
other components which use this component. genEntityArchitecture() gener-
ates the entity-architecture description of this component.

Parameterized is an interface implemented by classes whose instances can be
defined by a set of parameters. The interface includes get and set methods
to access those parameters. Specific instances of Parameterized components
can be easily modified by changing these parameters.

Simulator is an interface implemented by classes that can simulate their opera-
tion. The interface has only one method, simulate, which accepts a vector of
inputs and returns a vector of outputs. These inputs and outputs are vectors
of IEEE VHDL std logic vectors [14].

The arithmetic.smallcomponents Package. The arithmetic.smallcomponents
package provides fundamental components including D flip-flops and full adders
which are used as building blocks for larger components such as registers, adders,
and multipliers. Each class in this package is derived from VHDLGenerator, en-
abling each to generate VHDL for use in larger components.

The arithmetic.adders Package. The classes in this package model various
types of adders including carry propagate adders, specialized carry-save adders,
and multi-operand adders. All components in these classes handle operands of
arbitrary length and weight. This flexibility makes automatic VHDL generation
more complex than it would be if operands were constrained to be the same
length and weight. However, this flexibility is often required when an adder is
used with another component such as a multiplier.

Figure 5 shows the arithmetic.adders package, which is typical of many of
the arithmetic subpackages. CarryPropagateAdder is an abstract class from which
carry propagate adders such as ripple-carry adders and carry-lookahead adders
are derived. CarryPropagateAdder is a subclass of VHDLGenerator and implements
the Simulator and Parameterized interfaces. Using interfaces and an inheritance
hierarchy such as this help make FGS both straightforward to use and easy to
extend. For example, a new type of carry propagate adder could be incorporated
into existing complex models by subclassing CarryPropagateAdder.

Fig. 5. The arithmetic.adders package

The arithmetic.matrixreduction Package. This package provides classes that
perform matrix reduction, typically used by multi-operand adders and parallel
multipliers. These classes perform Wallace, Dadda, and Reduced Area reduction
[6–8]. Each of these classes are derived from the abstract class ReductionTree.

The arithmetic.multipliers Package. A ParallelMultiplier class was implemented
for this paper and is representative of how FGS functions.

Parameters can be set to configure the multiplier for unsigned, two’s comple-
ment, or combined operation. The number of unformed columns, if any, and the
type of reduction, Wallace, Dadda, or Reduced Area, may also be specified. A
BitMatrix object, which models the partial product matrix, is then instantiated
and passed to a ReductionTree object for reduction. Through polymorphism (dy-
namic binding), the appropriate subclass of ReductionTree reduces the BitMatrix
to two rows. These two rows can then be passed to a CarryPropagateAdder object
for final addition, or in the case of the FIR filter architecture described in this
paper, to a multi-operand adder.

The architecture of FGS makes it easy to change the bit matrix, reduction
scheme, and final addition method. New techniques can be added seamlessly by
subclassing appropriate abstract classes.

The arithmetic.misccomponents Package. This package includes classes that
provide essential functionality but don’t logically belong in other packages. This
includes Bus, which models the operand busses of the FIR filter, and Register
which models various types of data registers. Implementation of registers is done
by changing the type of flip-flop objects which comprise the register.

The arithmetic.firfilters Package. This package includes classes for model-
ing ideal FIR filters as well as FIR filters based on the truncated architecture
described in Section 2.

The “ideal” filters are ideal in the sense that the data and tap coefficients
are double precision floating point. This is a reasonable approximation of infinite
precision for most practical applications. The purpose of an ideal FIR filter
object is to provide a baseline for comparison with practical FIR filters and
allow measurement of calculation errors.

The FIRFilter class models FIR filters based on the architecture shown in
Figure 3. All operands in FIRFilter objects are considered to be two’s comple-
ment integers, and the multipliers and the multi-operand adder use Reduced
Area reduction. There are many parameters that can be set including the tap
coefficient and data lengths, the number of taps, the number of mulipliers, and
the number of unformed columns in the multipliers.

The arithmetic.testing Package. This package provides classes for testing com-
ponents generated by other classes, including parallel multipliers and FIR filters.
The FIR filter test class generates a test bench and an input file of test vectors.
It also generates a .vec file for simulation using Altera Max+Plus II.

The arithmetic.gui Package. This package provides graphical user interface
(GUI) components for setting parameters and generating VHDL models for all of
the larger components such as FIRFilter, ParallelMultiplier, etc. The GUI for each
component is a Java Swing JPanel, which can be used in any Swing application.
These panels make setting component parameters and generating VHDL files
simple and convenient.

3.2 The fgs Package

Whereas the arithmetic package is suitable for general use, the fgs package is
specific to the FIR filter architecture described in Section 2. fgs includes classes
for automating much of the work done to analyze the use of truncated multipliers
in FIR filters. For example, this package includes a driver class that automatically
generates a large number of different FIR filter configurations for synthesis and
testing. Complete VHDL models are then generated, as well as Tcl scripts to
drive the synthesis tool. The Tcl script commands the synthesis program to write
area and delay reports to disk files, which are are parsed by another class in the
fgs package that summarizes the data and writes it to a CSV file for analysis by
a spreadsheet application.

4 Results

Table 1 presents some representative synthesis results that were obtained from
the Leonardo synthesis tool and the LCA300K 0.6 micron CMOS standard cell
library. Additional data can be found in [15], which also also provides a more
detailed analysis of the FIR filter architecture presented in this paper, including
reduction and roundoff error. The main findings are:

1. Using truncated multipliers in FIR filters results in significant improvements
in area. For example, the area of a 16-bit filter with 4 multipliers and 24
taps improves by 22.5% with 12 unformed columns and by 36.4 % with 16
unformed columns. We estimate substantial power savings would be realized
as well. Truncation has little impact on the overall delay of the filter.

2. The computational error introduced by truncation is tolerable for many ap-
plications. For example, the reduction error SNR for a 16-bit filter with 24
taps is 86.7 dB with 12 unformed columns and 61.2 dB with 16 unformed
columns. In comparison, the roundoff error for an equivalent filter without
truncation is 89.1 dB [15].

3. The average reduction error of a filter is independent of r (for T > 4),
and much less than that of a single truncated multiplier. For a 16-bit filter
with 24 taps and r = 12, the average reduction error is only 9.18 × 10−5

ulps, where an ulp is a unit of least precision in the 16-bit product. In
comparison, the average reduction error of a single 16-bit multiplier with
r = 12 is 1.56 × 10−2 ulps, and the average roundoff error of the same
multiplier without truncation is 7.63× 10−6 ulps.

Filter Synthesis Results Improvement Reduction Error
Total A ·D

Area Delay Product Total A ·D SNRR σR EAV G

T M r (gates) (ns) (gates·ns) Area Delay Product (dB) (ulps) (ulps)

12 2 0 16241 40.80 662633 — — — ∞ 0 0
12 2 12 12437 40.68 505937 23.4% 0.3% 23.6% 89.70 0.268 -4.57E-5
12 2 16 10211 40.08 409257 37.1% 1.8% 38.2% 64.22 5.040 -4.57E-5
16 2 0 17369 54.40 944874 — — — ∞ 0 0
16 2 12 13529 54.24 733813 22.1% 0.3% 22.3% 88.45 0.310 -6.10E-5
16 2 16 11303 53.44 604032 34.9% 1.8% 36.1% 62.97 5.820 -6.10E-5
20 2 0 19278 68.00 1310904 — — — ∞ 0 0
20 2 12 15475 67.80 1049205 19.7% 0.3% 20.0% 87.48 0.346 -7.60E-5
20 2 16 13249 66.80 885033 31.3% 1.8% 32.5% 62.00 6.508 -7.60E-5
24 2 0 20828 81.60 1699565 — — — ∞ 0 0
24 2 12 17007 81.36 1383690 18.3% 0.3% 18.6% 86.69 0.379 -9.18E-5
24 2 16 14781 80.16 1184845 29.0% 1.8% 30.3% 61.21 7.143 -9.18E-5

12 4 0 25355 20.40 517242 — — — ∞ 0 0
12 4 12 18671 20.34 379768 26.4% 0.3% 26.6% 89.70 0.268 -4.57E-5
12 4 16 14521 20.04 291001 42.7% 1.8% 43.7% 64.22 5.040 -4.57E-5
16 4 0 26133 27.20 710818 — — — ∞ 0 0
16 4 12 19413 27.12 526481 25.7% 0.3% 25.9% 88.45 0.310 -6.10E-5
16 4 16 15264 26.72 407854 41.6% 1.8% 42.6% 62.97 5.820 -6.10E-5
20 4 0 28468 34.00 967912 — — — ∞ 0 0
20 4 12 21786 33.90 738545 23.5% 0.3% 23.7% 87.48 0.346 -7.60E-5
20 4 16 17636 33.40 589042 38.0% 1.8% 39.1% 62.00 6.508 -7.60E-5
24 4 0 29802 40.80 1215922 — — — ∞ 0 0
24 4 12 23101 40.68 939749 22.5% 0.3% 22.7% 86.69 0.379 -9.18E-5
24 4 16 18950 40.08 759516 36.4% 1.8% 37.5% 61.21 7.143 -9.18E-5

Table 1. Synthesis results for 16-bit operands, output rounded to 16-bits (optimized
for area)

5 Conclusions

This paper presents a tool used to rapidly prototype parameterized FIR filters.
The tool is used to study the effects of using truncated multipliers in those fil-
ters. It is based on a package of arithmetic classes that are used as components
in hierarchical designs, and are capable of generating structural level VHDL
models of themselves. Using these classes as building blocks, FirFilter objects
generate complete VHDL models of specific FIR filters. The arithmetic package
is extendable and suitable for use in other applications, enabling rapid proto-
typing of other computational systems. As a part of ongoing research at Lehigh
University, the tool is being expanded to study other DSP applications, and will
be made available to the public in the near future.

References

1. Lightbody, G., Walke, R., Woods, R.F., McCanny, J.V.: Rapid System Prototyping
of a Single Chip Adaptive Beamformer. (In: Proceedings of Signal Processing
Systems) 285–294

2. McCanny, J., Ridge, D., Yi, H., Hunter, J.: Hierarchical VHDL Libraries for DSP
ASIC Design. In: Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing. (1997) 675–678

3. Pihl, J., Aas, E.J.: A Multiplier and Squarer Generator for High Performance
DSP Applications. In: Proceedings of the 39th Midwest Symposium on Circuits
and Systems. (1996) 109–112

4. Richards, M.A., Gradient, A.J., Frank, G.A.: Rapid Prototyping of Application
Specific Signal Processors. Kluwer Academic Publishers (1997)

5. Saultz, J.E.: Rapid Prototyping of Application-Specific Signal Processors (RASSP)
In-Progress Report. Journal of VLSI Signal Processing Systems for Signal, Image,
and Video Technology (1997) 29–47

6. Wallace, C.S.: A Suggestion for a Fast Multiplier. IEEE Transactions on Electronic
Computers EC-13 (1964) 14–17

7. Dadda, L.: Some Schemes for Parallel Multipliers. Alta Frequenza 34 (1965)
349–356

8. Bickerstaff, K.C., Schulte, M.J., Swartzlander, Jr., E.E.: Parallel Reduced Area
Multipliers. IEEE Journal of VLSI Signal Processing 9 (1995) 181–191

9. Schulte, M.J., Swartzlander, Jr., E.E.: Truncated Multiplication with Correction
Constant. In: VLSI Signal Processing VI, Eindhoven, Netherlands, IEEE Press
(1993) 388–396

10. Schulte, M.J., Stine, J.E., Jansen, J.G.: Reduced Power Dissipation Through Trun-
cated Multiplication. In: IEEE Alessandro Volta Memorial Workshop on Low
Power Design, Como, Italy (1999) 61–69

11. Swartzlander, Jr., E.E.: Truncated Multiplication with Approximate Rounding. In:
Proceedings of the 33rd Asilomar Conference on Signals, Circuits, and Systems.
(1999) 1480–1483

12. Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing, 2nd edition.
Prentice Hall, Upper Saddle River, NJ (1999)

13. Koren, I.: Computer Arithmetic and Algorithms. Prentice Hall, Englewood Cliffs,
NJ (1993)

14. : IEEE Standard Multivalue Logic System for VHDL Model Interoperability (Std-
logic1164): IEEE Std 1164-1993 (26 May 1993)

15. Walters III, E.G.: Design Tradeoffs Using Truncated Multipliers in FIR Filter
Implementations. Master’s thesis, Lehigh University (2002)

