
Advanced Computer Architecture
—

Part II: Embedded Computing
Digital Signal Processors

Paolo.Ienne@epfl.ch
EPFL – I&C – LAP

© Ienne 2003-05AdvCompArch — Digital Signal Processors2

Embedded Systems

Application-Specific:
Application fixed in advance
Not or very moderately programmable by the user

Reactive:
Reacts on events coming from the environment
Has real time constraints

Efficient:
Cost-reduction must profit from specialisation
Low power, small size,…

© Ienne 2003-05AdvCompArch — Digital Signal Processors3

Embedded Processors

Until recently, embedded processors were almost always simple
lowest-cost devices (8-bit microcontrollers, etc.)

But it is changing!…

So
ur

ce
:

H
en

ne
ss

y
&

 P
at

te
rs

on
, ©

M
K

20
05

© Ienne 2003-05AdvCompArch — Digital Signal Processors4

Processor Sales Per Architecture

So
ur

ce
:

H
en

ne
ss

y
&

 P
at

te
rs

on
, ©

M
K

20
05

© Ienne 2003-05AdvCompArch — Digital Signal Processors5

High-end Embedded Processors

Networking, wireless communication, printer and
disk controllers, DVDs and video, digital
photography, medical devices…
Computing power ever growing

Sometimes products with 5-10 Digital Signal
Processors on a single die (e.g., xDSL, VoIP)
Multimedia, cryptographic capabilities, adaptive signal
processing, etc.

© Ienne 2003-05AdvCompArch — Digital Signal Processors6

Specificities of
Embedded Processors

Cost used to be the only concern; now
performance/cost is at premium and
still not performance alone as in PCs (Intel
model); performance is often a constraint
Binary compatibility is less of an issue
for embedded systems
Systems-on-Chip make processor
volume irrelevant (moderate motivation
toward single processor for all products)

© Ienne 2003-05AdvCompArch — Digital Signal Processors7

General Purpose Processors
Cost and Pricing Policy

So
ur

ce
:

M
ic

ro
pr

oc
es

so
r

R
ep

or
t,

 ©
M

PR
 2

00
2

Intel
List

Prices
vs.

Time

© Ienne 2003-05AdvCompArch — Digital Signal Processors8

General Purpose Processors
Costs and Pricing Policy

So
ur

ce
:

M
ic

ro
pr

oc
es

so
r

R
ep

or
t,

 ©
M

PR
 2

00
2

© Ienne 2003-05AdvCompArch — Digital Signal Processors9

Cost and Performance

Performance is a design constraint
General Purpose: new high-end processor must be
tangibly faster than best in class
Embedded: adequately programmed, must just satisfy
some minimal performance constraints

Cost is the optimisation criteria
General Purpose: must be within some typical range
(e.g., 50-120 USD) profit margin can be as high as
some factor (2-3x)
Embedded: must be minimal economic margin on
the whole product can be as low as a few percent
points

© Ienne 2003-05AdvCompArch — Digital Signal Processors10

Cost Is Not Just the Processor…

Processors have tangible induced costs
Some could require:

Larger memories
More expensive memories (e.g., dual-port)
Caches (I and/or D)
Peripherals and accelerators
Faster clock rate
…

System cost can be extremely influenced
by the architecture of the processor

© Ienne 2003-05AdvCompArch — Digital Signal Processors11

Types of Embedded Processors

Microcontrollers
Relatively slow, microprogrammed, CISC processors
Typically derivates of old or very old general purpose processor
families (68k, 8051, 6502, etc.)

RISC Processors
Pipelined, relatively simple RISCs, often with special architectural
features for the embedded market
Typical representatives: ARM7 and ARM9

Digital Signal Processors
Special family of processors with peculiar architectures for
arithmetic intensive, signal processing applications
Typical representatives: TI C620, DSP56k, etc.

Multimedia Processors…

© Ienne 2003-05AdvCompArch — Digital Signal Processors12

Completely Different Benchmarks

General Purpose (Word, Powerpoint, gcc,…)
SPEC Commercial

Scientific computing
Regular and irregular typical user applications…

DSPs (IIR, FIR, FFT,…)
DSPstone (Aachen Uni) Academic
EEMBC (pronounced “embassy”) Commercial

IIR, FIR, IDCT, FFT, IFFT, PWM,…
Matrix arithmetic, bit manipulation, table lookup,
interpolation,…
Jpeg, RGB-to-CYMK, RGB-to-YIQ, Bezier curves, rotations,…
Viterbi, autocorrelation, convolutional encoders,…

© Ienne 2003-05AdvCompArch — Digital Signal Processors13

Trends in Computing?

CISC

RISC OOO SSC

VLIW

SMT

Pr
oc

es
so

r
re

gu
la

rit
y

Processor complexity

DSP

© Ienne 2003-05AdvCompArch — Digital Signal Processors14

Pressure on the Compilers

Performance
Squeeze out every possible MIPS of performance
from irregular architectures

Code Size
Memory is a key cost factor in embedded systems,
much more than in general purpose systems

Power Consumption
Important metric in embedded systems, hardly of any
relevance in general purpose computing (i.e., not
even considered by compilers)

© Ienne 2003-05AdvCompArch — Digital Signal Processors15

Typical Features of DSPs

Arithmetic and Datapath
Fixed-point arithmetic support
MAC = multiply-accumulate instruction
Special registers, not directly accessible

Memory Architecture
Harvard architecture
Multiple data memories

Addressing Modes
Special address generators
Bit-reversed addressing
Circular buffers

Optimised Control
Zero-overhead loops

Special-purpose peripherals…

© Ienne 2003-05AdvCompArch — Digital Signal Processors16

DSP Arithmetic:
Fixed-Point Vs. Floating-Point

Typical example of embedded processor
economics: much more complexity in designing
the algorithm (NRE cost) and in programming to
get much less complexity in the hardware
(mfg. cost)
Floating-point DSP ~2-4x cost of Fixed-point
DSP and much slower…
Very poor support in automatic tools yet
decisions taken by algorithm analysis,
simulation, and compliance tests (e.g.,
accumulated error over a test set below some
value)

© Ienne 2003-05AdvCompArch — Digital Signal Processors17

Fixed Point

In principle, if one adds a fractional point in a
fixed position, hardware for integers works just
as well and there are no additional ISA needs

It’s just a matter of representation! (I.e, implicit
constant multiplicative coefficient)

2021222324

1210→020110
310→121000+
910→120010

2-32-22-12021

1.50010→02011.0
0.37510→12100.0+
1.12510→12001.0

© Ienne 2003-05AdvCompArch — Digital Signal Processors18

Fixed Point Multiplication

Multiplication typically introduces the need of arithmetic
rescaling with shifts to the right (multiplicative constant
cannot be implicit anymore) Choice of accuracy
depending on how many bits one can keep…

0.23437510→021111000.
0.23437510→12111000.
0.2187510→1211000.

0

1

0
1
1

0.187510→12000.

0. 0 0.23437510→021111
0.37510→02100.×
0.62510→02010.

© Ienne 2003-05AdvCompArch — Digital Signal Processors19

Different Approximation Choices

Truncate: Discard bits Large bias
00.011 00 and 01.011 01
00.100 00 and 01.100 01
00.101 00 and 01.101 01

Round: <.5 round down, >=.5 round up Small bias
00.011 00 and 01.011 01
00.100 01 and 01.100 10
00.101 01 and 01.101 10

Convergent Round: <.5 round down, >.5 round up,
=.5 round to nearest even No bias

00.011 00 and 01.011 01
00.100 00 and 01.100 10
00.101 01 and 01.101 10

© Ienne 2003-05AdvCompArch — Digital Signal Processors20

Fixed-Point Programming
Example

/* an excerpt from adpcm.c */
/* adpcm_coder, mediabench */
/* Step 2 - Divide and clamp */
** This code *approximately* computes:
** delta = diff*4/step;
** vpdiff = (delta+0.5)*step/4;
** but in shift step bits are dropped. The net result of this is
** that even if you have fast mul/div hardware you cannot put it
** into good use since the fixup would be too expensive.
*/
delta = 0; vpdiff = (step >> 3);
if (diff >= step) { delta = 4; diff -= step; vpdiff += step; }
step >>= 1;
if (diff >= step) { delta |= 2; diff -= step; vpdiff += step; }
step >>= 1;
if (diff >= step) { delta |= 1; vpdiff += step; }

© Ienne 2003-05AdvCompArch — Digital Signal Processors21

Fixed-Point Programming
Example

Other classic DSP-
type of operation:
accumulation
with saturation
Also, as in previous
example, post
multiplication
shift

/* an excerpt from adpcm.c */
/* adpcm_coder, mediabench */

int index, delta;
…
index += indexTable[delta];
if (index < 0) index = 0;
if (index > 88) index = 88;

© Ienne 2003-05AdvCompArch — Digital Signal Processors22

DSP Arithmetic Needs

Rather than having full floating-point
support (expensive and slow), one wants
in a DSP some simple and fast ad-hoc
operations:

MUL + ADD in a single cycle (MAC)
Accumulation register after MAC
(precision?)
Approximation mechanisms

Nonuniform precision in the whole
architecture (e.g., 24bit x 24bit + 56bit)

© Ienne 2003-05AdvCompArch — Digital Signal Processors23

Slower Clock Speed but 1-Cycle
Multiply-Accumulate Instruction

MAC operations tend to dominate DSP code (maybe
50% of critical code) highly optimised MAC instruction

RISC:
Typ. 2 cycles: MUL
1 cycle: ADD
1 cycle: SHR
Some more cycles:
Saturation, Rounding,
etc.

DSP:
1 cycle: “rich” MAC

MUL

ALU

ACC

>>

© Ienne 2003-05AdvCompArch — Digital Signal Processors24

Example of Pipelined MAC Datapath

Chained operations:
“Pipelined” MAC

Many special registers:
Dedicated pipelining
Reduced pressure on
general-purpose register
file
Shorter instruction
length (implicit operand
addressing)

Architecturally visible
pipeline!

TR

MUL

PR

ALU

ACCU

Data Bus

© Ienne 2003-05AdvCompArch — Digital Signal Processors25

Classic FIR Example

Convolution:

∑
−

=

−⋅=
1

0
)()(

N

i
i izxCzy

X

+

1−Z

0C X

+

1−Z

1C X

+

1−Z

2C X

+

3C

)(tx

)(ty

Goal: 1 tap
(= MAC)
per cycle

© Ienne 2003-05AdvCompArch — Digital Signal Processors26

C: X:

Memory Bandwidth

The MAC instruction/unit is not enough…

X(t)

x
+ A

X(t-1)
X(t-2)

© Ienne 2003-05AdvCompArch — Digital Signal Processors27

Multiple Memory Ports

Harvard architecture:
Separate instruction memory
I-Memory at times accessible as another D-Memory (e.g., TI
C2000) to spare memory ports

Multiple data memories:
X-Memory
Y-Memory
Sometimes more…

Multiple buses

©
TI

© Ienne 2003-05AdvCompArch — Digital Signal Processors28

RISC vs. DSP Organisation

RISC:
Von Neumann (Harvard but hidden from the user)
~1 access/cycle
Heavily relies on caches to achieve performance
Complex blend of on-chip SRAM/SRAM/DRAM

DSP:
Harvard (architecturally visible)
1-4 memory accesses per cycle
No caches
SRAM

© Ienne 2003-05AdvCompArch — Digital Signal Processors29

Caches and DSPs

Importance of real-time constraints: no data
caches…
Sometimes caches on the instruction memory,
but determinism is key in DSPs:

Caches under programmer control to “lock-in” some
critical instructions
Turn caches into fast program memory

Once again, one is not after highest
performance but just the guaranteed

minimal performance one needs

© Ienne 2003-05AdvCompArch — Digital Signal Processors30

DSP vs. General Purpose
Memory Systems

I-Mem

X-Mem

Y-Mem

Fast and small SRAM,
Multiple D-Memories,

Multiported D-Memory,…

Only I-Cache
(if at all…)

No Virtual Memory
(direct access to peripherals)

© Ienne 2003-05AdvCompArch — Digital Signal Processors31

Example
Motorola DSP56600

©
M

ot
or

ol
a

© Ienne 2003-05AdvCompArch — Digital Signal Processors32

B
as

eb
an

d
C

hi
p

Co
ur

te
sy

 o
f

M
ot

or
ol

a,
 ©

M
ot

or
ol

a
20

00

© Ienne 2003-05AdvCompArch — Digital Signal Processors33

Addressing Modes

To keep MAC busy all the time, with new data
from memory, one needs to generate memory
addresses
Forget about Load/Store architectures
Complex addressing is now fully welcome if

Allows automatic next address calculation
Does not require usage of the datapath (MAC is
busy…)

MPYF3 *AR0++%, *AR1++%, R0
|| ADDF3 R0, R2, R2

Explicit parallelism/pipelining

© Ienne 2003-05AdvCompArch — Digital Signal Processors34

Address Generation Units

Dedicated simple datapaths to generate meaningful
sequences of addresses—usually 2-4 per DSP

+/-

AR0
AR1
AR2
AR3

MR0
MR1
MR2
MR3

1,2,3…

Immediate
Constant

Address Reg.
Pointer

Modifier Reg.
Pointer

To Memory

© Ienne 2003-05AdvCompArch — Digital Signal Processors35

Typical Addressing Modes

AR can be loaded with:
Immediate load: constant from the instruction field loaded into
the pointed AR
Immediate modify: constant from the instruction field added to
the pointed AR
Autoincrement: small constant (typ. 1 and/or 2) added to the
pointed AR
Automodify: value of the pointed MR added to the pointed AR
Bit Reversing: value of the pointed AR bit-reversed and loaded
into the pointed AR
Modulo/Circular: autoincrement/automodify with modulo
Also decrement/subtract
Sometimes pre- and/or post-modification

© Ienne 2003-05AdvCompArch — Digital Signal Processors36

Radix-2 FFT

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

© Ienne 2003-05AdvCompArch — Digital Signal Processors37

Circular Buffers

DSPs deal with continuous I/O flows, often organised in
circular buffers

All DSPs generate “modulo” or “circular” addresses

Buffer
Size

Buffer Start

Pointer

Increment

© Ienne 2003-05AdvCompArch — Digital Signal Processors38

Remove Control Bottlenecks

Remember typical goal: FIR with MAC
busy 100% of the time…
DSP code made essentially of tight loops,
often with a statically determined number
of iterations (coefficients of a filter, etc.)
How can one make the branches “cost
nothing”?

Repeat instructions
Zero-overhead loops

© Ienne 2003-05AdvCompArch — Digital Signal Processors39

Repeat/Loop Instructions

For loops made of a single instruction:
RPTS N-1 ; repeat next
MPYF3 *AR0++%, *AR1++%, R0

|| ADDF3 R0, R2, R2
Zero-overhead Loop instruction:

Configures the Program Control Unit to
generate the appropriate next address
depending on a condition (e.g.,
autodecrement of an AR)

© Ienne 2003-05AdvCompArch — Digital Signal Processors40

DSP World Is Slowly Changing

Need of a fast development turnaround
Compilers!

In a sense DSPs have already the main
features of VLIWs: explicit parallelism,
static scheduling, no “dynamic” low
predictability behaviour…

Convergence?

© Ienne 2003-05AdvCompArch — Digital Signal Processors41

TI TMC320C64x

So
ur

ce
:

M
ic

ro
pr

oc
es

so
r

R
ep

or
t,

 ©
M

PR
 2

00
0

© Ienne 2003-05AdvCompArch — Digital Signal Processors42

Infineon Carmel

Sort of VLIW but not all possible instructions are available: only 2048
via Configurable Long Instruction Words with compact coding

©
In

fin
eo

n
20

00

© Ienne 2003-05AdvCompArch — Digital Signal Processors43

Direct Carmel Translation for
G.723.1 DC Filter

repeat(Frame) block
{
a4 = *r0++ * *r1;
a5 = (unsigned)a0l * *r1;
a5 = (a5 >> 16) + a0h * *r1--;
a0 = a4 + a5;
*r4++ = round(a0);

}

repeat(Frame) block
{
a4 = *r0++ * *r1;
a5 = (unsigned)a0l * *r1;
a5 = (a5 >> 16) + a0h * *r1--;
a0 = a4 + a5;
*r4++ = round(a0);

}

5 cycles

zero-overhead loop
©

In
fin

eo
n

20
00

© Ienne 2003-05AdvCompArch — Digital Signal Processors44

Optimal Carmel Code for G.723.1
DC Filter

repeat(Frame) block
{
cliw dcf1(r0++)
{

a4 = *ma1 * ff1
|| a0 = a4 + a5
|| a5 = (unsigned)a0l * ff2
|| a1h = a0h;

}
cliw dcf2(r0, r4++)
{

a4 -= *ma1 * ff1
|| *ma2 = round(a0)
|| a5 = (a5 >> 16) + a1h * ff2;

}
}

repeat(Frame) block
{
cliw dcf1(r0++)
{

a4 = *ma1 * ff1
|| a0 = a4 + a5
|| a5 = (unsigned)a0l * ff2
|| a1h = a0h;

}
cliw dcf2(r0, r4++)
{

a4 -= *ma1 * ff1
|| *ma2 = round(a0)
|| a5 = (a5 >> 16) + a1h * ff2;

}
}

2
cycles

1 CLIW™ instruction

1 CLIW™ instruction

©
In

fin
eo

n
20

00

© Ienne 2003-05AdvCompArch — Digital Signal Processors45

Summary

DSPs are very different from general-purpose
computers

Dedicated to embedded applications
Cost and power consumption come into the picture
(and cost is fundamental)

Relatively narrow variety of applications
More application specialisation possible

Development cost (programming) relatively
irrelevant when compared to per-unit cost

The most awkward and hard-to-program solutions are
ok if they bring enough savings
Compilers? Useful for 90% of the code, but the rest…

