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Fixed Point Effects in Digital 
Filters

Cimarron Mittelsteadt
David Hwang

Finite-precision Problems

� Quantizers are nonlinear devices
� Characteristics may be significantly 

different from the ideal linear filter

� Overflow
� Coefficient quantization 
� Limit-Cycle Oscillations
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Quantizers

� Nonlinear effects make it extremely 
difficult to precisely analyze the filter’s 
performance.

� How do we model a fixed-point filter 
then?
� Adopt a statistical model of the 

quantization effects
� Results in a linear model for the filter

Statistical Characterization

v(n) = Q[av(n-1)]+x(n)

Q[av(n-1)] = av(n-1)+e(n)

v(n) = av(n-1)+x(n)+e(n)

� We can now view the 
response of the filter as 
coming from two inputs.

e(n)

x(n) v(n)

a
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Basic Assumptions

� The noise source is stationary white 
noise.
� The sequence e(n) is uncorrelated with the 

sequence e(m) for n≠m.
� Sequence is mean ergodic and correlation 

ergodic.

� The error sequence e(n) is uncorrelated 
with the input sequence x(n).

� The mean of the output generated by 
the filter with impulse response h(n) 
when excited by e(n) is

equivalently put
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Autocorrelation

The autocorrelation is computed to be

This reduces to 
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Types of Quantization
b fractional bits

� Rounding

� Truncation

� Magnitude Truncation
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� Example

Where

and their corresponding impulse responses 
are given by h(n), h1(n) and h2(n)

Section Ordering is Important
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Realization 1

With rounding
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Realization 2

With rounding
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Section Ordering Comparison

� The overall noises were found to be

� Thus, the second realization leads to 
9% more noise power than the first.
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Overflow
� Wrap Around

� Ex.
7 (0111) + 1 (0001) = 

-8 (1000)

� Saturation
� Ex.
5 (0101) + 4 (0100) = 

7 (0111)

Scaling to Prevent Overflow
� Pessimistic Scaling � Narrowband Scaling
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Practical Round-Off Effects on 
Digital Filters

� Coefficient Quantization
� Frequency Response Characteristics

� Internal Wordlength Quantization
� Dynamic Range
� Signal-to-Noise Ratio
� Limit Cycles

Coefficient Quantization
• Coefficient quantization alters the values of 

the coefficients => changes your 
frequency response 

• A filter designed in floating point arithmetic 
to meet certain specs may not meet those 
specifications after coefficient quantization 
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Coefficient Quantization 
Example

• We used the Parks-McClellan optimal FIR filter 
algorithm to design a 21-tap filter

• Designed the filter in floating point format
• Took each of the coefficients and rounded to 

the nearest 8-bit two’s complement number
• Ex: 

0.2011929 => .2031250 
(00011010 two’s complement) 

• Lesson: Over-design the filter and/or use an 
optimization algorithm to meet the spec

Frequency Response
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Floating Point
-Passband Ripple: .003 dB
-Stopband Attenuation: 48 dB

Fixed Point
-Passband Ripple: .14 dB
-Stopband Attenuation: 36 dB

Coefficient Quantization => Frequency Response Degradation
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Internal Wordlength 
Quantization

� Quantization of internal wordlength 
leads to finite-wordlength effects

x(n)

y(n)

Z-1 Z-1 Z-1 1) Dynamic Range

2) Signal-to-Noise Ratio

3) Limit Cycles

internal wordlength b

Q Q Q Q

Dynamic Range Constraints
� Dynamic Range is defined as:

20 log10        | range of representable numbers |

| smallest non-zero representable number |

� The larger the dynamic range specification, 
the larger internal wordlength b required
� Ex. b-bit number (x0. x1 x2 x3 x4….xb-1)
� DR: 20 log |2 – 2-(b-1)| / | 2-(b-1) | 

= 20 log (2-b – 1)
~ 6 dB / bit
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Dynamic Range (cont’d)
� b = 8 => DR ~ 48 dB
� b = 12 => DR ~ 72 dB
� b = 16 => DR ~ 96 dB

Nowadays, most hi-fi audio systems have a DR 
in the range of 80-100 dB

Signal-to-Noise Ratio
� The signal-to-noise ratio is defined as:

SNR  = 10 log10 signal power / noise power
= 10 log10 σx

2=/= σe
2=

� For our system (wordlength b):
SNR  = 10 log10 σx

2=/=(2-(b-1)/12)
= 10 log10 σx

2=+ 6.02b + 4.77

� Ex. x(n) = .75 sin (ωn) => SNR = 6.02b - .739 
b = 8 => SNR = 47 dB
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Signal-to-Noise Ratio (cont’d)
� Thus, SNR increases by ~ 6 dB / bit
� To maximize SNR, you want to scale the 

signal x(n) as large as possible (to increase 
σx

2 )
� However, there is a tradeoff—you need to 

keep all internal signals small enough to 
prevent overflow / saturation (use 
normalization and scaling techniques)

Limit Cycles
� Limit cycles occur when the output of a 

digital filter does not decay to zero when 
the input goes to zero

� Limit cycles occur only in IIR filters and 
never occur in FIR filters

� They are caused by quantizing the data 
after a feedback multiplier in a recursive 
loop
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Limit-Cycle Example

y(n)

Z-1

Q

x(n)
b

2bb

• let M = -.96, y(-1) = 14, x(n) 
= 0 and rounding to the 
nearest integer

M

1211.523

-12-11.522

1212.481

-13-13.440

y(n)-.96 * 
y(n-1)

n

=> Limit cycle puts energy at Fs/2 which is detrimental

Limit Cycles in Matlab

OUTPUTINPUT
…causes a spike at DC
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Eliminating Limit Cycles
� Use magnitude truncation (which 

always decreases the energy of the 
signal)

� Use a filter for which a Lyapunov 
function exists 

� Use controlled rounding
� Use novel filter structures designed to 

eliminate limit cycles
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