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ABSTRACT 
 
 

FARSI HANDWRITTEN WORD RECOGNITION USING 
CONTINUOUS HIDDEN MARKOV MODELS AND STRUCTURAL 

FEATURES 
 

By: 
 

Mohammad Mehdi Haji 
 
 

  Recognizing handwritten words has been and still is one of the most challenging problems in 

Artificial Intelligence (AI). Words are rather complex patterns, having many variations in handwriting 

style. Despite the considerable progress achieved in recent years, performance of handwriting 

recognition systems is still far from human's both in terms of accuracy and speed. 

  A complete offline recognition system for Farsi handwritten words is presented. To the best of our 

knowledge, this work is the first to use continuous hidden Markov models with structural features to 

recognize Farsi handwritten words. Most parts of a complete recognition system are addressed. A new 

machine learning approach based on the naive Bayes classifier is developed for text segmentation. Four 

different algorithms for document image binarization are compared and contrasted. Different skew and 

slant correction algorithms are surveyed for handwritten documents, and the problem of multiple skews 

is dealt with in a two-stage process. The first stage corrects the global skew, and after extracting text 

lines, in the second stage, the skew of each line is corrected locally. Five different skeletonization 

algorithms are compared and contrasted with the main focus on preserving text characteristics. A 

simple and effective skeleton post-processing technique is also described. Most of the normalization 

methods are adaptive, meaning that they do not use any parameters to be set experimentally. Each word 

image is represented by a sequence of structural features. The features are independent of the baseline 

location, so the difficult and crucial problem of baseline detection is avoided. The recognition is 

performed by continuous hidden Markov models. 

  There is no publicly available dataset for Farsi handwritten word images, and it is not wise to compare 

different systems evaluated on different datasets. The executable version of training, recognition and 

evaluation modules of the system is provided in the thesis webpage, 

http://pasargad.cse.shirazu.ac.ir/~mhaji/handrec, so it can be trained and evaluated on different 

datasets. The proposed method achieves a maximum recognition rate of about 82% on a 100-word 

lexicon. The striking aspect of the recognition system is its excellent generalization performance, as in 

our experiments, the system trained with multi-font machine-printed word images could recognize 

handwriting.  
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CHAPTER 1 

INTRODUCTION 
 

 

1.1 General Characteristics of Farsi Script 
  Farsi and Arabic scripts have minor differences. From recognition point of view, 

Arabic script is a little more complicated, but similarities outweigh differences. Both 

scripts are written from right to left, and most letters are connected to the base line. As 

opposed to English, there is no lower or upper case in Arabic/Farsi. But the more 

distinguishing feature is that Arabic/Farsi texts whether machine-printed or 

handwritten are cursive, i.e. letters belonging to the same word are connected 

whenever possible. More precisely, all but six Farsi letters can be connected from 

both sides; the six letters 'ژ' ,'ز' ,'ر' ,'ذ' ,'د' and 'و' can be joined to the succeeding letter 

from the right side only. Thus, these letters cause discontinuity within the same word. 

This feature is in sharp contrast with Latin scripts in which texts can be written 

whether cursively or discretely. So, it is not surprising that Arabic/Farsi text 

recognition is more difficult than English, and even the problem of machine-printed 

text recognition is not yet completely solved for these two languages.  

  Table of Figure 1.1 depicts that every Arabic/Farsi letter can have up to four 

different shapes depending on the location of the letter within word. Farsi alphabet 

has 32 basic letters, with four letters 'ژ' ,'چ' ,'پ' and 'گ' more than Arabic. In 

Arabic/Farsi there are certain diacritics to indicate a difference in pronunciation and 

meaning from the same word when unmarked. For example, the Farsi word ' رد  has 'م

two different pronunciation/meanings: ' رد رد ' that means died, and 'مُ  .that means man 'مَ

But the diacritics are not usually used in writing because in most cases the exact 

pronunciation/meaning can be inferred from the context. From recognition point of 

view, the diacritics are better not to be presented, because they may raise the 

recognition error. By looking at table of Figure 1.1, you can see that 18 out of the 32 

Farsi letters have dots, appearing on above or below the baseline. More precisely, 10 

letters have one dot, 3 have two dots and 5 have three dots. The number of dots of a 
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certain letter does not change with its different forms, except for the letter 'ی' that has 

two dots in initial and middle forms and no dot in isolated and final forms. The 

Arabic/Farsi alphabet has sets of letters that the letters in each set are almost identical 

in the absence of dots; these sets are {ن ,ث ,ت ,پ ,ب}, {خ ,ح ,چ ,ج}, {ذ ,د}, {ژ ,ز ,ر}, 

 Therefore, any erosion or deletion of .{ق ,ف} and {غ ,ع} ,{ظ ,ط} ,{ض ,ص} ,{ش ,س}

the dots result in a misinterpretation, and so any denoising or skeletonization 

algorithm must take care of dots. 

 

Character Isolated Initial Middle Final Transliteration 
Alef ـا ـا آ آ a 
Beh ـب ـبـ بـ ب b 
Peh ـپ ـپـ پـ پ p 
The ـت ـتـ تـ ت t 
Theh ـث ـثـ ثـ ث Th 
Jeem ـج ـجـ جـ ج j 
Cheh ـچ ـچـ چـ چ ch 
Heh ـح ـحـ حـ ح h 
Kheh ـخ ـخـ خـ خ kh 
Dal ـد ـد د د d 
Thal ـذ ـذ ذ ذ th 
Reh ـر ـر ر ر r 
Zeh ـز ـز ز ز z 
Zheh ـژ ـژ ژ ژ zh 
Seen ـس ـسـ سـ س s 
Sheen ـش ـشـ شـ ش sh 
Sad ـص ـصـ صـ ص s 
Zad ـض ـضـ ضـ ض th 
Tah ـط ـطـ طـ ط t 
Zah ـظ ـظـ ظـ ظ z 
Ain ـع ـعـ عـ ع a 
Ghain ـغ ـغـ غـ غ gh 
Feh ـف ـفـ فـ ف f 
Ghaf ـق ـقـ قـ ق gh 
Kaf ـک ـکـ کـ ک k 
Gaf ـگ ـگـ گـ گ g 
Lam ـل ـلـ لـ ل l 
Meem ـم ـمـ مـ م m 
Noon ـن ـنـ نـ ن n 
Waw ـو ـو و و v 
Heh ـه ـهـ هـ ه h 
Yeh ـی ـيـ يـ ی y  

Figure 1.1. The Farsi character set.  
Each character can have up to four different shapes. 
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  The above characteristics imply that each Arabic/Farsi word image consists of some 

connected components where each one represents a dot, connected dots, one letter or 

some connected letters. For example, the Farsi word 'اران  has 5 letters and 6 'ب

connected component, but the word ' د  has three letters and only one connected 'کم

component.  

  Another aspect of Arabic and Farsi scripts which complicates the segmentation-

based recognition techniques is that usually, and particularly for handwritten texts, 

succeeding letters overlap, and hence no vertical partitioning can exactly separate the 

letters from each other.  

 

1.2 Methodology 
  The methods of handwritten and machine-printed text recognition can be divided 

into two categories (Amin, 1998): 1) Holistic strategies in which the recognition is 

globally performed on the whole representation of a word, so there is no need to 

segment a word to its individual characters. But it is necessary that we can segment 

the text lines into words, which is not always possible, because the intra-word space is 

sometimes greater than inter-word space; 2) Analytical strategies in which words are 

segmented either explicitly or implicitly. In the explicit segmentation, an attempt is 

made to isolate single letters which are then separately recognized (Vinciarelli, 2002); 

but in the implicit segmentation, the text (line or word) image is converted into a 

sequence of small size units (a sequence of observations) and the recognition is 

performed at this intermediate level rather than the word or character level.  

  Every holistic method uses a lexicon, a list of the allowed interpretations of the input 

word image. Usually the error rate of a holistic method increases with the lexicon size 

because the higher number of classes increases the probability of misclassification. 

Having a lexicon, the extracted feature vector of the input word is compared with 

feature vectors of all lexicon entries, and the entry having the maximum score (e.g. 

minimum distance or maximum probability) is assumed as the interpretation of the 

input. Holistic approaches have been successful when the lexicon is small, with a 

maximum size of a few hundred words. When the lexicon size increases, the number 

of compatible words for an input image rise and choosing the correct classification 

becomes difficult. Thus, the holistic approaches have been applied to such problems 

as postal address recognition or bank check reading where lexicon is limited and 
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small. For general text recognition where the lexicon size is usually between 5000 and 

10000, lexicon pruning techniques are effective because they have the double benefit 

of improving the recognition results and speeding up the system. For example when 

the input word image has no dot, all lexicon entries with no dot can be excluded from 

the list of alternatives. In (Zimmermann and Mao, 1999) an effective lexicon 

reduction technique based on key characters and word-length estimation is presented. 

Language models can also be used to reduce the number of alternatives. 

  Analytical methods perform implicit or explicit segmentation on the input image. In 

implicit segmentation, words are segmented into small units which are then 

transformed into a sequence of observation vectors. Each unit is usually a part of a 

letter, so that a number of successive units can belong to a single letter. On the other 

hand, in explicit segmentation, words are segmented directly into the single letters; 

which is usually fulfilled by a dynamic programming technique to find the optimal 

word hypotheses, thus explicit segmentation is more expensive than implicit 

segmentation. It is worth noting that Arabic/Farsi letters of the same font have 

different lengths, so word segmentation based on a fixed size width can't be applied, 

even for machine-printed words. Also according to Sayre's paradox (Vinciarelli, 

2002): "a letter can not be segmented before having been recognized, and can not be 

recognized before having been segmented". It is clear that more segmentation error 

results in less recognition rate, and until now there is no method that is able to 

segment handwritten words exactly into letters. Therefore, explicit segmentation is 

more error prone and almost all successful handwritten recognition systems have used 

implicit segmentation.  

  After explicit segmentation, each letter can be individually recognized by a classifier 

which is usually an Artificial Neural Network (ANN) or Hidden Markov Model 

(HMM). Character recognition has been one of the most successful application areas 

of ANNs. The main advantages of an ANN over other classifiers is that it require less 

knowledge about the problem and being capable of implementing more complex 

partitioning of feature space. However, an ANN usually needs much training, and if a 

new class wants to be added later, the whole training process must be repeated. 

  Implicit segmentation results in a sequence of observations which is usually 

recognized by the HMM approach. HMMs are the prevalent technique in Automatic 

Speech Recognition (ASR), and in recent years they have proved to be very effective 

in handwritten recognition. A HMM can represent probability distribution over the 
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sequence of data which has been used for its training, and it is not only being able to 

work on a sequence of small fragments, not necessarily corresponding to letters, but 

can also deal with noise in the sequence itself. A HMM assigns a probability to a 

sequence of observations which describes how probable the sequence is. Another 

advantage of HMMs is that their powerful theoretic framework limits the amount of 

heuristics to improve the system performance.  

 

1.3 Feature Extraction 
  The extracted features can be either local or global. Global features, either structural 

(topological) or statistical, are usually used in holistic approaches. For example 

number of connected components, holes, ascenders and descenders are global 

structural features; coefficients of Fourier transform and invariant moments are global 

statistical features. Structural features do not depend on the writing style and can 

tolerate a high degree of variability, but they are not robust to noise and their 

extraction may be difficult. Statistical features, on the other hand, are easy to extract 

and robust, but they are not as stable as structural features with respect to cursive 

variability.  

  Analytical approaches usually use local features being extracted from small sliding 

windows. For example, percentage of foreground pixels within a window, 

foreground-background transition statistics, percentage of the foreground pixels in 

core, ascenders and descenders regions have been successfully used as local features. 

 

1.4 Literature Survey 
  In (Khorsheed, 2000) two holistic approaches for recognition of handwritten Arabic 

words are presented. The first one, which uses global statistical features, transforms 

the word image into a normalized polar map, and then applies a 2D Fourier transform 

to extract features which are invariant to scaling, rotation and translation 

(displacement), and the recognition is simply based on Euclidean distance, i.e. the 

lexicon entry with minimum Euclidean distance to the input is returned as the answer. 

The second method utilizes structural feature vectors obtained from small strokes of 

the word skeleton. These vectors are then transformed into a sequence of observations 

that is fed to a HMM classifier. Khorsheed has surveyed the two possible models: a 

HMM for each word and a single HMM for all words.  
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  Trenkle et al. (Trenkle et al., 1995) have presented a holistic method based on 

sliding neural networks for Arabic word recognition which scans continuously over a 

word image to search characters. The sliding neural network system uses networks in 

a two-stage approach. The first stage is to detect plausible locations of character 

centers, and at the second stage, the characters are recognized at those detected 

locations. During both stages, the neural network slides across the word image, 

producing a recognition signal at each location. Thus, there is no need to explicitly 

segment a word into its characters. By completing the second stage, the character 

hypotheses are combined by a dynamic programming algorithm which uses a pruned 

list of words to find the most probable word hypothesis. The recognition rate of the 

system is about 70% for a large lexicon of size 50,000 words. 

  In (Erlandson et al., 1996) a holistic approach for recognition of multi-font Arabic 

text is presented. The system computes a vector of structural features for each input 

word image which is then matched against a database of feature vectors of a lexicon 

by a vector matching algorithm. Like other systems of this kind, in the database there 

are several feature vectors corresponding to multiple fonts for each lexicon entry. In 

the training stage (building the database of feature vectors) noise models are also 

applied to word images, before feature extraction, to simulate low quality data, 

making the system robust to noise. The extracted features are dots, holes, junctions, 

endpoints, directional segments, directional cavities, descenders and intra-word gaps. 

By equipping the system with a lexicon pruner, a word recognition rate of 65% for a 

48000 word lexicon was achieved, and the authors conclude that achieving a higher 

performance is very difficult. 

  In (Al-Yousefi and Udpa, 1992) statistical features and a quadratic Bayesian 

classifier are used to recognize Arabic characters. The striking aspect of the system is 

that a character is segmented into primary and secondary parts (dots and zigzags), 

thus reducing the number of classes from 28 (the number of basic letters of Arabic 

alphabet) to 18. The system uses a simple histogram-based method to explicitly 

segment a word into characters. A 9D feature vector extracted from normalized 

moments of the horizontal and vertical projections is used to classify primary 

characters, and a simple procedure classifies secondaries into one of the four classes 

(1 dot, 2 dots, 3 dots and zigzag). As expected, the segmentation method can not deal 

with handwritten text; the authors also didn’t report the performance for machine-
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printed text. However, a recognition rate of 99.5% was reported for isolated forms of 

machine-printed characters of three different fonts and five different sizes.  

  In (Lu et al., 1999) a language-independent OCR system is introduced. Since 

segmentation at character or word level is problematic, the text lines are used as the 

basic unit for training and recognition, so there is no need to perform any 

segmentation. A 14-state left-to-right continuous HMM is employed to model each 

character, and a word model is then obtained by concatenating character models. Sets 

of statistical features are extracted from narrow vertical overlapping windows, and a 

Linear Discriminant Analysis (LDA) is applied to reduce the dimension of feature 

vector from 80 to 15. The system uses the same feature extraction, training and 

recognition modules for different scripts, but obviously, a separate language model is 

utilized for each script. The language models extracted from training corpora can 

improve recognition results of speech and text recognition systems by incorporating 

high level knowledge. The recognition process is a search for the most probable 

sequence of characters, given the input feature vectors, lexicon and language model. 

Since the classical Viterbi algorithm is slow when the language models are large, a 

multi-pass search algorithm is used instead. The system is trained for the Arabic, 

English and Chinese languages. By using character trigram and simple word unigram 

models for Arabic, a character error rate of between 0.8% and 4.7% is obtained for 

different test conditions.  

  In (Ahmed and Ward, 2000) an expert system for analysis and recognition of general 

symbols is introduced. The system uses structural pattern recognition techniques for 

modeling symbols by a set of straight lines, achieving high accuracy for explicitly 

segmented characters. A structural pattern recognition technique, by using a set of 

rules and grammars, describes relations between sub-patterns being able to build 

complex patterns. Their system stores some models for each symbol (an average of 97 

models/symbol) and it is shown to be able to map similar styles of a symbol to the 

same representation. The main advantage of the system over a statistical pattern 

recognition technique is the ability to learn new symbols by simply adding their 

models to the system knowledge base. Generally, each statistical approach needs 

retraining for adding (recognizing) each new symbol (class). 

  In (Arica and Yarman-Vural, 2000) a technique is described to convert 2D 

information into a 1D observation sequence. Although there are 2D-HMMs for image 

analysis, but in practice, they are not as successful as 1D-HMMs, because of the large 
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number of parameters which requires a large amount of training data. Therefore, 1D-

HMMs are usually preferred even for analyzing 2D image data. The Arica's method 

extracts a set of directional skeletons of the binarized character by scanning the image 

matrix in various directions. These directional skeletons are then appended one after 

another to form a 1D observation sequence. By using a left-to-right discrete HMM as 

the recognizer, and about 200 samples per class for training, the system has achieved 

a recognition rate of 87-96% for English handwritten digits and letters.  

  In some systems (Amin and Mari, 1989) the vertical histogram of word image is 

used for explicit segmentation. The basic idea is that the histogram at connectivity 

points of a word has its least values. Thus, the word image separates into a number of 

segments which are then connected together to form the basic characters. Some 

systems extract key feature segments by tracing contour of the sub-words, and then 

identify the cut points in each segment. The baseline is important characteristic of 

Arabic/Farsi scripts; the connection point is where the normal thickness of the 

baseline changes. Based on this fact, Parhami and Taraghi (Parhami and Taraghi, 

1981) have identified connection points of Farsi machine-printed words. In one recent 

study (Motawa et al., 1999), morphological operators have been applied to a word 

image to find singularities and regularities. Singularities represent the start, end or 

transition to another character; while regularities contain the required information for 

connecting a character to its successor, which means that regularities are promising 

candidates for segmentation. The boundary pixels or the contour, which provide 

important information of an object, can also be used for word segmentation. For 

example, a transition from a column having all its black pixels within the baseline 

boundaries to an unlike column corresponds to a connection point. Segmentation can 

also be performed by tracing the outer contour of a word and calculating the distance 

between the extreme points of intersection of the contour with a vertical line (El-

Sheikh and Guindi, 1988).  

  In (Almuallim and Yamaguchi, 1987) a structural recognition method for Arabic 

handwritten words is introduced. The system is composed of four phases. In the first 

step words are thinned and the baseline is detected. Since segmenting a word into 

individual letters is difficult and error-prone, the words are segmented into strokes. 

The extraction of a stroke is done by finding its start point and then following the 

curve until an end point is reached. The first unvisited start point is found by a search 

for a black point from right to left around the baseline. The algorithm attempts to 
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extract the strokes in the same order that have been written. Moreover, adjacent 

strokes which form a loop are also detected, because loops are unique features of 

some letters, simplifying the task of recognition. The strokes are then further 

classified using their topological and geometrical properties. Finally, based on their 

relative positions, strokes are combined in several steps into equivalent character 

string of the input word image. The stroke extraction algorithm can not handle all 

situations, resulting in incorrect segmentation of words, and the system failures. Also, 

like all structural analysis methods, noise can highly degrade the performance; for 

example, spurious branches in the image skeleton, caused by noise, confuse extraction 

and consequently combination of strokes. Another drawback is that their system does 

not utilize any learning method for parameter adjustment; so they have to be manually 

adjusted on a set of test images. The system has been tested on a set of 400 word 

images and a maximum recognition rate of about 91% has been reported. It must be 

Almuallim and Yamaguchi did not use a lexicon, but they evaluated the average word 

rather than character recognition rate. If we have the average character recognition 

rate Rc, a rough estimate of the average word recognition rate Rw is (Rc)5, based on 

the fact that the average length of a word is 5. For example, when Rc is 90%, Rw is 

only about 60%. A better estimate for Rw is made by the following formula: 

 l

l

l )R(
N
N

R c
1

w ∑
=

=  (1.1)

 
where N is the size of language lexicon, and Nl is the number of words of length l.  

  Dehghan et al. (Dehghan et al., 2001) present a holistic system for recognition of 

Arabic/Farsi handwritten words using discrete HMMs and Kohonen self-organizing 

vector quantization. After the preprocessing step which includes binarization, noise 

removal, slant correction, baseline and stroke width estimation, a stroke width 

compensation step is applied to have the stroke width of at least three pixels wide to 

ensure proper contour generation. Then, a word image is represented by the chain-

code, and the histogram of chain-code directions of the image strips, scanned from 

right to left by a sliding window, is used as feature vector. In order to limit the 

number of observation symbols for discrete HMM training, the feature space must be 

quantized into a set of codebook vector; the weights of Kohonen self-organizing 

feature map (SOFM) are used as the codebook vectors. Since without much training 

data, HMM parameters, and specially the observation symbol probabilities, are poorly 
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estimated, they have to be smoothed after training. In this system, a separate HMM is 

trained for each word, and the neighborhood information preserved in the SOFM is 

used for smoothing the observation probabilities of the HMMs, proved to be very 

effective. With a 198-word lexicon, a recognition rate of 65% is achieved by the 

system. 

  Both discrete and continuous HMMs have been successfully used for handwritten 

recognition, but due to their lower computation costs, discrete HMMs are more 

appealing. However, discrete HMMs inherently suffer from some problems (Rabiner, 

1989) such as quantization error caused by quantizing of input vectors into a limited 

set leading to loss of information and recognition deterioration. To obviate these 

problems, Dehghan et al. (Dehghan et al., 2001) used fuzzy vector quantization 

instead of self-organizing vector quantization of the previous system. The fuzzy c-

means clustering (FCM) algorithm is used to generate a fuzzy codebook, so a 

sequence of feature vectors extracted from the input image frames is now mapped to 

an observation sequence of membership vectors instead of a sequence of single values 

in the case of conventional discrete HMMs. Thus, a modified version of Baum-Welch 

re-estimation algorithm is used for training. The system performance is slightly 

improved by using FCM, with a recognition rate of 67.2% on the same dataset (198-

word lexicon). 

 

 10



 

 

 

CHAPTER 2 

TEXT SEGMENTATION 
 

 

2.1 Introduction 
  A text segmentation algorithm aims at detecting text regions in an image. Identifying 

text areas in images have wide applications in document image analysis and 

understanding, image compression and content-based image retrieval. In document 

image binarization (Liu and Srihari, 1997) and skew correction (Avanindra and 

Subhasis Chaudhuri, 1997) algorithms, it is often necessary to remove non-text items 

from the input image because they usually require predominant text area to have an 

accurate estimate of text characteristics. Paper text is still one of the main sources of 

information and it is clear that huge amount of such valuable data in the paper form, 

makes their updating and retrieval much difficult. Thus, there is a need to convert the 

text from paper to electronic format. This task is usually done by an OCR engine and 

text extraction is an essential component in the page segmentation module of the 

engine (Wu et al., 1999). 

  Text segmentation also has applications in training-based image compression 

algorithms such as Vector Quantization (VQ), which need to classify the data into 

statistically consistent parts, and thereafter use an appropriate codebook for each part 

(Gersho and Gray, 1992). The text in natural images and video frames such as street 

signs, vehicle license plates, billboards, writing on shirts, sport scores, time and 

location stamps, is a powerful source of knowledge in building image and video 

indexing and retrieval systems (Chen et al., 2001). This kind of text also provides 

useful content information for video understanding and automatic navigation systems. 

  Due to the wide range of applications, numerous methods for text segmentation also 

referred to as text detection have been proposed. Some of them require binary input 

images; which restricts their application when the text is embedded in an image with a 

complex background, because binarization techniques usually produce poor results for 

complicated images (Wu et al., 1997). On the other hand, some methods also use the 
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color information to detect text areas; color information can be helpful, but it is not 

available in all situations. Moreover, for a human observer, intensity information is 

enough to segment the text areas. Therefore, most methods perform text segmentation 

on gray-scale images; even if a color input image is available, it is first converted to 

gray-scale (Wu et al., 1999; Chen et al., 2001). 

  The main text segmentation methods in the literature can be classified into connected 

component-based (Fletcher and Kasturi, 1988), edge-based (Pietikäinen and Okun, 

2001; Jie Xi et al., 2001) and texture-based methods (Li and Gray, 1998). Connected 

component-based ones are bottom-up approaches that work by grouping small 

components satisfying several heuristic constraints into successively larger 

components to form text lines and columns. They are relatively independent of 

changes in text size and orientation, but having difficulties with complex images with 

non-uniform backgrounds, because in such cases thresholding techniques can not 

produce the expected binary image, for example, if a text string touches a graphical 

object in the original image, they may form one connected component in the resultant 

binary image. 

  The basic idea of the edge-based algorithms is that the edges of text symbols are 

typically stronger than those of noise, textured-background and other graphical items 

(Yuan and Tan, 2000; Chen et al., 2001; Jie Xi et al., 2001). In these top-down 

techniques, a binary edge image is first generated using an edge detector, and then 

adjacent edges are connected by applying morphological operations or other 

algorithms such as run-length smoothing (Jie Xi et al., 2001). Connected components 

of the resultant image are the candidate text regions, as each one represents either 

several merged lines or a graphical item. Then, these regions are decomposed into 

smaller regions by analyzing their vertical and horizontal projection profiles, and 

finally each of these small regions satisfying certain heuristic constraints is labeled as 

text. Edge-based methods are fast and can detect text in complex backgrounds but are 

restrictive to detect only horizontally or vertically aligned text strings. 

  Text segmentation can also be taught of as a special case of texture segmentation in 

which characters correspond to texels. By treating text as a distinct texture, a texture 

segmentation algorithm can be applied to separate them. In texture-based methods the 

input image is usually considered as a composite of two (text and non-text) or three 

(text, picture and background) texture classes. Many segmentation algorithms employ 

a classification window (block) of a certain size in the hope that all or majority of 
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pixels in the window belong to the same class (Choi and Baraniuk, 2001). Thereafter, 

a classification algorithm can be used to label each window in the feature space. For 

example, in (Deng and Latifi, 2000) the number of classes is two, and a 2-means 

classification is used to classify each block of the image as text or non-text according 

to its local energy in the wavelet transform domain. By using a 3-means clustering in 

(Wu et al., 1999) each image pixel is labeled as text, picture or background according 

to a 9-D feature vector based on Gaussian filtering. A large number of statistical and 

geometrical features have been proposed for texture segmentation such as features of 

co-occurrence matrix, spatial gray-level dependency matrix (Ohya et al., 1994), the 

Fourier power spectrum, moments of wavelet coefficients (Unser, 1995), Gaussian 

filters (Wu et al., 1999), Gabor filters (Jain and Farrokhnia, 1991), Voronoi 

tessellation (Tuceryan and Jain, 1990). Among these, wavelet based features are of 

most interest. The wavelet transform has become a very effective tool in texture 

segmentation and classification due to its multi-resolution properties. It provides a 

powerful transform domain for modeling images that are well characterized by their 

edges.  

  In texture-based methods, irrespective of the employed features, the size of 

classification window is crucial. A large window results in robust segmentation in 

homogeneous regions but poor segmentation along the boundaries between regions. 

On the other hand, classification using small windows is not reliable because small 

amount of data (pixels) do not provide sufficient statistical information. 

  All of the methods have difficulties with multi-size text strings and text-like texture 

areas. The former causes false negatives, while the latter results in false positives. The 

problem of detecting text strings of different sizes can be addressed by pyramid 

approaches (Wu et al., 1997) to some extent, while reducing false positives needs 

more sophisticated approaches; for example in (Chen et al., 2001) a Support Vector 

Machine (SVM) is utilized for this task. Despite the many efforts spent on the text 

segmentation problem, there is no general method to detect arbitrary text strings; 

because in the most general form, detection must be insensitive to noise, background 

model and lighting conditions. Also, it must be invariant to text language, color, size, 

font and orientation even in a same image. 

  The literature on text segmentation is extensive but there appears to be very little 

appropriate literature on using machine learning techniques on this subject. A text 

segmentation algorithm should have adaptation and learning capability, but a learner 
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usually needs much time and training data to achieve satisfactory results, which 

restricts its practicality. To overcome these problems, a simple procedure for 

generating training data from manually segmented images is presented, and then a 

Naive Bayes Classifier (NBC), which is fast both in training and application phase, is 

applied. It will be shown that surprisingly excellent results can be obtained by this 

simple classifier. 

 

2.2 Naive Bayes Classifier 
  The Naive Bayes Classifier (NBC) is applicable to learning tasks where each 

instance is described by a conjunction of attribute values and a target function which 

takes a value from a finite set V. A set of training examples for the target function is 

provided, a new instance described by the attribute values (a1, a2, …, an) is then 

presented, and the learner is asked to predict the target value or classification. The 

Bayesian approach to classify the new instance is to assign the most probable that is 

the Maximum A Posteriori (MAP) hypothesis, given the attribute values that describe 

the instance (Mitchell, 1997). 

 ),...,,|(maxarg 21MAP nj
Vv

aaavPv
j∈

= (2.1)

where vMAP is the most probable target value. Using Bayes' theorem Equation (2.1) 

can be written as follows: 
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Using training data the two terms in Equation (2.2) must be calculated. It is very easy 

to estimate each P(vj) by counting the frequency of occurrence of each target value  in 

the training data. However, estimating the different P(a1, a2, …, an) terms in this way 

is not possible unless a huge set of training data is available. In order to make the 

classifier much more practical and computationally efficient, the simplifying 

assumption that the attribute values are conditionally independent given the target 

value is used. This independence assumption implies that: 

 )|()|,...,,( 21 ji
i

jn vaPvaaaP ∏= (2.3)

Substituting Equation (2.3) into Equation (2.2) results in the approach used by NBC, 

given by Equation (2.4): 
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where vNB denotes the target value output given by the NBC. 

  Despite the fact that the independence assumption is often violated in practice, NBC 

has shown itself a serious competitor with more sophisticated classifiers. This 

classifier is shown to be very effective in many practical domains such as text 

categorization and medical diagnosis (Mitchell, 1997). NBC has several distinctive 

features which make it suitable for the text segmentation task. First, it is a 

probabilistic classifier, i.e. it outputs posterior probability distribution over classes. In 

this work, text segmentation is treated as a two-class classification task, and a 

probabilistic classifier is appropriate here since it assigns a score to each instance 

expressing the degree to which that instance is thought to be positive. The second 

advantage of NBC is that the learning task is not sensitive to the relative number of 

training instances in the positive (text) and negative (non-text) classes. It is only 

important to have non-zero probability estimates in Equation (2.4). Lastly, in naive 

Bayes methods, learning time is short and actually linear in the number of training 

examples making it suitable for real-time learning. From Equation (2.4) it is clear that 

learning is simply done through counting the frequency of various data combinations 

within the training examples. 

 

2.3 Training Data Generation 
  A large training set facilitate the task of learning, tuning and comparing various 

classifiers. A simple procedure was implemented to generate a large set of training 

data from a small set of hand-segmented images. A set of eight images, selected from 

a wide category, was used for extracting the training data. The images contained both 

English handwritten and machine-printed texts with different fonts, sizes and intensity 

values. Furthermore, since the method is intended to be language-independent, two 

Farsi document images were also included. For each training image a binary mask is 

created manually. The mask contains white rectangles correspond to the text strings 

(Figure 2.1). 

  The proposed algorithm is a block-based segmentation which use features in 

Discrete Cosine Transform (DCT) domain. It is observed that DCT-18 features are 

different for text and non-text textures (Chaddha et al., 1995), so the same features are 

used in this work. These are 18 elements of an 8x8 transformed image block with 
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indices: 4, 5, 6, 12, 13, 14, 20, 21, 22, 44, 45, 46, 52, 53, 54, 60, 61 and 62 when 

counting coefficients at 1 and going line after line, denoted by A1 to A18. The 

procedure used to generate training data file is outlined in Algorithm 2.1, where 

I(i1:i2, j1:j2) notation is used to refer to the sub-image specified by the rectangle with 

(j1,i1) top-left corner and (j2,i2) bottom-right corner. The vertical sampling period, 

denoted by vp, was chosen to be 4 and horizontal sampling period, denoted by hp, 

was set to 8 in this work. 

 
(a) A part of a Farsi document (b) The text mask of (a) 

Figure 2.1. A document image and its corresponding text mask. 
 
 
for each training image I and its corresponding mask M 
{ 
  for i = 0 : vp : ⎣ ⎦ 18/)I(rows*8 −  
  { 
    for j = 0 : hp :  ⎣ ⎦ 18/)I(columns*8 −
    { 
      [A1 A2 A3 … A18] = dct18( I(i:i+7, j:j+7) ) 
      if M(i:i+7, j:j+7) has more white than black pixels 
      { 
        /* it is a positive training instance */ 
        write [A1 A2 A3 … A18 1] to the output file. 
      } 
      else 
      { 
        /* it is a negative training instance */ 
        write [A1 A2 A3 … A18 0] to the output file. 
      } 
    } 
  } 
} 
 
Algorithm 2.1 The procedure for generating training data file for the 'IsText' concept. 
 

  For small squares, such as 8x8, the DCT is more efficiently computed by the DCT 

transform matrix T given by Equation (2.5) for an NxN block. 

 16



 

⎪
⎪
⎩

⎪⎪
⎨

⎧

−≤≤−≤≤
+

−≤≤=

=

10,11
2

)12(cos2

10,01

NqNp
N

pq
N

Nqp
NTpq

π
 

 
 

(2.5)

 

Then, the 2D-DCT of the square matrix A can be computed by T × A × T '. 

 

continuous discrete 
(-inf,-15.8] S2 
(-15.8,-0.7] S1 
(-0.7,0.8] CE 
(0.8,16.1] B1 

 
 

 A1

(16.1 nf) ,i B2  

continuous discrete 
(-inf,-13.1] S2 
(-13.1,-0.4] S1 
(-0.4,0.3] CE 
(0.3,11.3] B1 

 
 
 A2 

(11.3 nf) ,i B2  

continuous discrete 
(-inf,-9.5] S2 
(-9.5,-0.3] S1 
(-0.3,0.4] CE 
(0.4,11.4] B1 

 
 

 A3

(11.4 nf) ,i B2  
continuous discrete 
(-inf,-11.5] S2 
(-11.5,-0.5] S1 
(-0.5,0.4] CE 
(0.4,11.3] B1 

 
 

 A4

(11.3 nf) ,i B2  

continuous discrete 
(-inf,-10] S2 
(-10,-0.3] S1 
(-0.3,0.2] CE 
(0.2,9.4] B1 

 
 

 A5

(9.4,inf) B2  

continuous discrete 
(-inf,-6.3] S2 
(-6.3,-0.3] S1 
(-0.3,0.2] CE 
(0.2,6.6] B1 

 
 

 A6

(6.6,inf) B2  
continuous discrete 
(-inf,-10.6] S2 
(-10.6,-0.4] S1 
(-0.4,0.3] CE 
(0.3,8.5] B1 

 
 

 A7

(8.5,inf) B2  

continuous discrete 
(-inf,-7.3] S2 
(-7.3,-0.2] S1 
(-0.2,0.2] CE 
(0.2,6.2] B1 

 
 

 A8

(6.2,inf) B2  

continuous discrete 
(-inf,-5.2] S2 
(-5.2,-0.2] S1 
(-0.2,0.2] CE 
(0.2,4.8] B1 

 
 
 A9

(4.8,inf) B2  
 

continuous discrete 
(-inf,-4.6] S2 
(-4.6,-0.2] S1 
(-0.2,0.2] CE 
(0.2,4.3] B1 

 
 

A10

(4.3,inf) B2  

continuous discrete 
(-inf,-3.3] S2 
(-3.3,-0.1] S1 
(-0.1,0.2] CE 
(0.2,3.7] B1 

 
 
A11

(3.7,inf) B2  

continuous discrete 
(-inf,-3.4] S2 
(-3.4,-0.2] S1 
(-0.2,0.2] CE 
(0.2,2.9] B1 

 
 
A12

(2.9,inf) B2  
Continuous discrete 
(-inf,-3.4] S2 
(-3.4,-0.1] S1 
(-0.1,0.1] CE 
(0.1,3.3] B1 

 
 

A13

(3.3,inf) B2  

continuous discrete 
(-inf,-2] S2 
(-2,-0.1] S1 
(-0.1,0.1] CE 

(0.1,2] B1 

 
 

A14

(2,inf) B2  

continuous discrete 
(-inf,-2] S2 
(-2,-0.1] S1 
(-0.1,0.1] CE 

(0.1,2] B1 

 
 

A15

(2,inf) B2  
Continuous discrete 

(-inf,-2] S2 
(-2,-0.2] S1 
(-0.2,0.2] CE 

(0.2,3] B1 

 
 

A16

(3,inf) B2  

continuous discrete 
(-inf,-2.3] S2 
(-2.3,-0.1] S1 
(-0.1,0.1] CE 
(0.1,2.4] B1 

 
 

A17

(2.4,inf) B2  

continuous discrete 
(-inf,-2.2] S2 
(-2.2,-0.1] S1 
(-0.1,0.2] CE 
(0.2,2.3] B1 

 
 
A18

(2.3,inf) B2   
 
Figure 2.2. The discretization rules for the DCT-18 features. 

 

  Using the above procedure, about 100,000 training instances were generated from 

the eight images, but there was no need for such a large amount of data because it was 
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observed that only a small fraction of these data provides reasonable estimates for   

the terms of Equation (2.4). So in order to reduce the computational cost, 10,000 

instances were selected randomly and used for the purpose of learning.  

  The NCB is a discrete classifier, and hence each attribute value must be converted to 

discrete form. For this purpose, each continuous attribute value was converted to only 

five discrete values: ‘S2’, ‘S1’, ‘ZE’, ‘B1’ or ‘B2’ (respectively for ‘very small’, 

‘small’, ‘around zero’, ‘big’ and ‘very big’). The discretization rules were set in such 

a way to have approximately 2000 instances in each of the 5 bins for each attribute 

value. Therefore a different set of rules is used for each of the 18 attributes as given in 

Table of Figure 2.2. 

 

2.4 Training 
  For the 'IsText' concept, let v1 = 'Yes' and v2 = 'No'. The evaluation of conditional 

probabilities is carried out on the discretized training data and the results are given in 

Table of Figure 2.3. Since all estimated probabilities are non-zero, no attempt is made 

to smooth them. When NBC is used, no conditional probability is allowed to be zero 

because only a zero value causes the estimate of zero in Equation (2.3) which is a 

biased underestimate of the probability. The m-estimate of probability (Mitchell, 

1997) is simple and effective technique to avoid zero probability estimates. 

  It must be mentioned that the probability estimates of a NBC can also be acceptable 

if some of the underlying independence assumptions are violated. It is well-known 

that NBC is the optimal classifier when the independence assumptions are satisfied, 

but Rish (Rish, 2001) has shown that NBC also works well for functionally dependent 

features. The optimality of NBC has proved for some problems that have a high 

degree of feature dependencies such as disjunctive and conjunctive concepts 

(Domingos and Pazzani, 1997). By analyzing the impact of distribution entropy on the 

classification error, Rish has demonstrated that NBC is a good performer for low-

entropy (almost deterministic) feature distributions. 

 

2.5 Classification 
  No prior information about the source image is assumed, and so P(v1) = P(v2) = 0.5. 

Therefore, according to Bayes' rule: 
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  The usual decision criterion (Equation (2.4)) suggests selecting the class with the 

highest posterior probability, or if P(Text) exceeds 0.5 the input block should be 

labeled as text.  

V  
P(A1|V) Yes  No 

S2 0.3199 0.0938 
S1 0.1496 0.2496 
CE 0.0687 0.3212 
B1 0.1369 0.2462 

 
 
 A1

B2 0.3250 0.0893  

V  
P(A2|V) Yes  No 

S2 0.3116 0.0821 
S1 0.1656 0.2458 
CE 0.0490 0.3475 
B1 0.1428 0.2274 

 
 
  A2

B2 0. 309 3 0.0972  

V  
P(A3|V) Yes  No 

S2 0.3228 0.1018 
S1 0.1513 0.2661 
CE 0.0566 0.3112 
B1 0.1654 0.2329 

 
 
 A3

B2 0.3038 0.0881  
V  

P(A4|V) Yes  No 
S2 0.3454 0.0635 
S1 0.1384 0.2568 
CE 0.0442 0.3333 
B1 0.1291 0.2869 

 
 
 A4 

B2 0.3429 0.0595  

V  
P(A5|V) Yes  No 

S2 0.3459 0.0684 
S1 0.1344 0.2390 
CE 0.0416 0.3576 
B1 0.1304 0.2674 

 
 
  A5

B2 0. 478 3 0.0677  

V  
P(A6|V) Yes  No 

S2 0.3323 0.0771 
S1 0.1386 0.2522 
CE 0.0448 0.3191 
B1 0.1403 0.2822 

 
 
 A6

B2 0.3440 0.0694  
V  

P(A7|V) Yes  No 
S2 0.3342 0.0584 
S1 0.1359 0.2464 
CE 0.0473 0.3578 
B1 0.1166 0.2666 

 
 
 A7 

B2 0.3659 0.0709  

V  
P(A8|V) Yes  No 

S2 0.3387 0.0572 
S1 0.1367 0.2585 
CE 0.0395 0.3655 
B1 0.1209 0.2515 

 
 
  A8

B2 0. 643 3 0.0673  

V  
P(A9|V) Yes  No 

S2 0.3412 0.0578 
S1 0.1318 0.2795 
CE 0.0452 0.3174 
B1 0.1314 0.2733 

 
 
 A9

B2 0.3503 0.0720  
 

V  
P(A10|V) Yes  No 

S2 0.3537 0.0610 
S1 0.1359 0.2941 
CE 0.0450 0.3212 
B1 0.1221 0.2608 

 
 
A10

B2 0. 433 3 0.0629  

V  
P(A11|V) Yes  No 

S2 0.3697 0.0553 
S1 0.1287 0.3015 
CE 0.0404 0.3358 
B1 0.1192 0.2505 

 
 
A11

B2 0. 421 3 0.0569  

V  
P(A12|V) Yes  No 

S2 0.3473 0.0623 
S1 0.1285 0.2623 
CE 0.0570 0.3667 
B1 0.1206 0.2445 

 
 
A12

B2 0. 465 3 0.0642  
V  

P(A13|V) Yes  No 
S2 0.3543 0.0618 
S1 0.1295 0.3151 
CE 0.0334 0.2672 
B1 0.1380 0.2952 

 
 
A13 

B2 0. 448 3 0.0606  

V  
P(A14|V) Yes  No 

S2 0.3609 0.0457 
S1 0.1177 0.2782 
CE 0.0385 0.3523 
B1 0.1143 0.2738 

 
 
A14

B2 0. 687 3 0.0500  

V  
P(A15|V) Yes  No 

S2 0.3571 0.0584 
S1 0.1105 0.2994 
CE 0.0408 0.2738 
B1 0.1280 0.3047 

 
 
A15

B2 0. 636 3 0.0637  
V  

P(A16|V) Yes  No 
S2 0.3719 0.0853 
S1 0.0968 0.2168 
CE 0.0570 0.3597 
B1 0.1344 0.2714 

 
 
A16 

B2 0. 400 3 0.0669  

V  
P(A17|V) Yes  No 

S2 0.3495 0.0661 
S1 0.1280 0.2894 
CE 0.0427 0.3057 
B1 0.1346 0.2818 

 
 
A17

B2 0. 452 3 0.0570  

V  
P(A18|V) Yes  No 

S2 0.3355 0.0669 
S1 0.1361 0.3142 
CE 0.0488 0.3324 
B1 0.1354 0.2265 

 
 
A18

B2 0. 442 3 0.0601   
 
Figure 2.3. The conditional probabilities for the 'IsText' concept. 
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  However, there is no justification for such a decision criterion, and especially when 

the probability estimates are inaccurate. In (Lachiche and Flach, 2003) it is shown that 

if the NBC decision criterion is treated as an additional model parameter, which has to 

be learned from the training data, rather than a fixed threshold, significant 

improvements will result. 

  After classification, the image is post-processed by morphological operations to fill 

small black (non-text) holes within white (text) areas in order to reduce false 

negatives. In the classification phase, if a high decision threshold is selected (rather 

than 0.5) for the text class, the number of false positives (the block mistakenly marked 

as text) is obviously reduced, because only almost confident text blocks are classified 

as text. The threshold of 0.8 has worked well in our experiments, so to classify an 8x8 

block of image, the DCT-18 features by Equation (2.5) is evaluated, and then their 

nominal equivalents are computed according to the rules of Table of Figure 2.2. 

Lastly, P(Text) is evaluated using Equation (2.6) and the conditional probabilities of 

Figure 2.3; if P(Text) exceeds 0.8, the input block is classified as text. This way a 

binary image is formed, with white pixels for text and black pixels for non-text areas. 

In order to improve the segmentation accuracy, this image should be post-processed. 

 

2.6 Postprocessing 
  The post-processing step is based on the following assumptions: 1) the input image 

has more false negatives than false positives and 2) text areas are usually large and do 

not contain non-text areas (holes). In the first step, all isolated white pixels (without 

any white 8-neighbor) are removed, and then the morphological closing (dilation 

followed by erosion) with a 3x3 rectangular structuring element is applied. 

  In order to show its capabilities, the proposed text segmentation and post-processing 

algorithm is applied to the gray-scale image of Figure 2.4(a) which contains two texts 

of different colors and other textures. The output of naive Bayes classification is given 

in the image of Figure 2.4(b); each small square shows the probability that the 

corresponding square in the input image is thought to be text. Thresholding this image 

at 0.8 results in the binary image of Figure 2.4(c) having less false positives. The final 

text mask obtained by the post-processing step is given in the image of Figure 2.4(d). 

  The above experiment shows that the proposed method is not very sensitive to non-

uniform background and works well if the text is darker or lighter than the 
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background. In contrast, many existing approaches assume that background is 

uniform, showing poor performance when this assumption is not satisfied. 

 

 

  
(a) input image (b) text probabilities 

  
(c) image (b) thresholded at 0.8  

 

(d) image (c) after post-processing 
Figure 2.4. Applying the proposed text segmentation and postprocessing  
algorithm to an image with complex background. 
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CHAPTER 3 

BINARIZATION 
 

 

3.1 Introduction 
  Since many vision algorithms and operators only handle two-level (binary) images, 

binarization (thresholding) is a major step in such algorithms to convert gray-scale 

images into binary images. In binarization algorithms, a threshold or a threshold surface 

is usually computed first and then if a pixel has a higher intensity than that threshold or 

value of the threshold surface in that point, it is labeled as foreground (object); otherwise 

it is labeled as background. Due to the fact that binarization is usually applied in primary 

steps of a vision algorithm, say a recognition problem, and its result greatly influences the 

performance of the whole system, from the early days of automatic image processing 

much attention is devoted to this task. Binarization is challenging for gray-level images 

with poor contrast, strong noise and variable modalities in histograms, and it is still a 

difficult problem in vision. 

  Thresholding methods are divided into two classes: global and local. In global methods 

a single threshold is computed and applied to the whole image. Among many proposed 

global thresholding algorithms, Otsu's statistical method (Otsu, 1979), Tsai's moment-

preserving method (Tsai, 1985) and Kapur et al.'s entropy method (Kapur et al., 1985) are 

satisfactory, and since Otsu's method is fast and easy to implement, perhaps it is the most 

widely used. Obviously global techniques can not produce satisfactory result when the 

gray-scale input image has non-uniform shading or its histogram is multi modal. Local 

(adaptive) thresholding algorithms, in contrast, use a separate threshold for each pixel or 

a small group of neighboring pixels based on the information contained in a 

neighborhood. In comparison with global methods, local algorithms usually involve more 

computation and so they are slower when running on a single-processor computer. A 
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local algorithm is better suited for parallel processing and dealing with large and high 

resolution images which can not be completely kept in memory; they are usually superior 

in extracting characters with uneven gray-levels because of adaptation to local image 

properties, but do not necessarily yield better recognition results because they often do 

not preserve character stroke connectivity. Of the local algorithms, Niblack's method 

(Niblack, 1989) is simple and very effective and according to one experiment (Trier and 

Taxt, 1995) it is the best operator when the goal is character recognition. 

  General purpose thresholding methods such as Otsu's and Niblack's are not aware of the 

fact that the image being processed is a document image that has some special features, 

and they can not use this valuable information. Therefore researchers have developed 

algorithms specially designed for document image binarization. In (Liu and Srihari, 

1997) a texture feature based thresholding algorithm is introduced to cope with images 

with complex patterns; In (Wu and Matmatha, 1998) a simple and effective method is 

proposed to separate text from textured, hatched or shaded background. A document 

binarization method for low-quality camera images is proposed in (Seeger and Dance, 

2001). 

 

3.2 The Otsu's Method 
  This is one the most widely used global thresholding techniques in machine vision. 

Although this method is not specially designed for document image binarization, for 

clean document image with simple backgrounds, it produces satisfactory results. As 

opposed to some algorithms which need a priori knowledge about the number of peaks in 

histogram, Otsu's method is completely automatic and it does not need any user defined 

parameter. It can also be used in more sophisticated binarization algorithms. This method 

selects the threshold based on the minimization of the within-group variance of the two 

groups of pixels separated as a result of a global threshold. In order to evaluate the 

threshold, the probabilistic histogram of the image must be computed first. In the 

probabilistic histogram P, the value of P(i) represents the probability of i'th gray level in 

that image. For ordinary 8-bit gray level images, obviously there are 256 levels, so the 

values of P(0), P(1), …, P(255) must be evaluated. This is performed using the following 

formula: 
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P(i) = (number of pixels with gray level value of i) / (total number of pixels). (3.1) 
 

  If the histogram is bimodal, the best threshold is the value that separates the two modes 

of P from each other. If so, each threshold t determines a variance for the group of values 

that are less that or equal to t and a variance for the group of values greater than t. Otsu 

suggested that best threshold is that one which minimizes the weighted sum of within-

group variances. Variance is a measure of homogeneity. A group with high variance will 

have low variance and a group of low homogeneity will have high variance. Therefore 

the criterion suggested by Otsu emphasizes high group homogeneity. An equal criterion 

is a dividing that maximizes the resulting squared differences between the group means 

which is related to the between-group variances. Due to the fact that the sum of within-

group variances and between-group variances is a constant, both criteria cause the same 

result. 

  Having evaluated P, the best threshold is obtained as follows. Let 2
Wσ  be the weighted 

sum of group variances, that is, the within-group variance. Let )(2
1 tσ be the variance for 

the group with values less than or equal to t, and )(2
2 tσ be the variance for the group with 

values greater than t. Let )(1 tq be the probability for the group with values less than or 

equal to t and )(2 tq be the probability for the group with values greater than t. Let 

)(1 tµ be the mean of first group and )(2 tµ be the mean of second group. The within-

group variance is defined by: 
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  Now the best threshold can be determined by a simple sequential search through all 

possible values of t to find the threshold that minimizes )(2 tWσ . From the statistical point 

of view, however, in many cases it is not necessary to try all possible 256 values, and 

computational time can be reduced. The interested reader can refer to the original paper 

(Otsu, 1979). 

  In Figure 3.1 the Otsu's algorithm is applied to a bimodal gray-level image. The selected 

threshold is 97 and the resultant binary image is useful since the original image has a 

bimodal distribution. 

 

 

 
(a) Original image  (b) Binarized image 

 
(c) Histogram of original image 

Figure 3.1. Applying the Otsu's algorithm to a bimodal image. 
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3.3 The Niblack's Method 
  As mentioned before, global thresholding techniques are not sufficient for binarizing 

document images with complex backgrounds; local methods in such cases are more 

useful and of them Niblack's local average method is selected because it is frequently 

cited to be promising. This method operates on the following threshold: 

 ),(.),(),( yxVkyxMyxT +=  (3.9) 
 

Where M(x,y) is the local mean and V(x,y) is the local variance computed in a 

moving ww×  window. As seen, Niblack's method, like other local methods, has some 

user-defined parameters: w and k; which must be fine tuned by the user. The 

recommended value for w is 15 and a typical value for k is -1. These parameters are 

image-dependent; generally small values of w lead to noisy results and inconsistent stroke 

width and large values cause some characters to merge or split. 

  In Figure 3.2 the Niblack's algorithm is applied to a 120 by 275 gray-level image; as 

shown in Figure 3.2(b) the resultant binary image for default values of w and k is not 

useful because of split characters. The method becomes considerably slower as the 

window size becomes larger; in the experiments carried out in this work, for example, the 

computation time of  Figure 3.2(c) was five times as much as that of Figure 3.2(b). Also, 

for large windows, it acts just like a global method. 

 

 

 
(a) Original image  (b) Binarized image with w=15 and k=-1 

 

 

 
(c) Binarized image with w=30 and k=-1  (d) Binarized image with w=30 and k=-0.5 

Figure 3.2. Applying the Niblack's algorithm to a bimodal image. 
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3.4 The Wu and Manmatha's Method 
  This is a simple and global method to binarize complex documents with text over 

textured/shaded backgrounds, poor contrast or considerable noise. The algorithm consists 

of two basic steps. First, the input image is smoothed using a Gaussian low-pass filter, 

causing text enhancement against background texture. Since many images do not have 

well-separated foreground and background, this step is necessary. Because the text has 

normally lower frequency than the shading, the smoothing operation affects the 

background more than foreground, and actually it tends to clean up the background. 

Second, the threshold is selected from the intensity histogram of smoothed image. Since 

the text is normally darker than other image objects, the threshold is set to the first valley 

counted from the left side of the histogram. To extract text against darker background, the 

last valley is selected instead. In both cases, the intensity histogram must be smoothed 

before threshold selection since it usually contains many local minima. This can be done 

by convolving the histogram again with a Gaussian kernel. This method is also effective 

when the bimodal histogram assumption is not valid. 

  To compare this technique with the other implemented methods, it is applied to the 

same bimodal image as shown in Figure 3.3. The smoothed image obtained by a 5 by 5 

Gaussian kernel with the variance of 1.44 is given in Figure 3.3(b). Figure 3.3(c) shows 

the histogram of smoothed image and Figure 3.3(d) depicts the smoothed histogram 

obtained by a Gaussian kernel of length 15. The selected threshold is 77 and the resultant 

binary image shown in Figure 3.3(e) is useful. This method is faster than Niblack's, but 

due to convolution which is a time consuming process, it is rather slower that Otsu's. 

 

3.5 The Liu and Srihari's Method 
  Like Wu and Manmatha's algorithm, this method belongs to the global category and 

specially designed for document image binarization. This method uses two fundamental 

features of document images to select a reasonable threshold. First, characters normally 

occupy a separable gray-level range in the histogram. Second, text images contain highly 

structured-stroke units. In this method the Otsu's algorithm is iteratively applied to the 

image histogram to find a limited number of (usually two) candidate thresholds. For each 
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threshold value, the input image is binarized accordingly and some texture features are 

extracted from run-length histogram; the threshold for which these features have better 

values is considered best and applied as the global threshold. 

  To select the candidate thresholds, the entire histogram of the gray-level input image is 

first split using Otsu's algorithm, and in each subsequent iteration the part of the 

histogram with lower mean is further divided. This is because of the assumption that the  

 

 

 
(a) Original image  (b) Smoothed image with a  

5 by 5 Gaussian kernel 

 

 

 
(c) Histogram of smoothed image  (d) Smoothed histogram of smoothed image 

 

 
(e) Binarized image 

Figure 3.3. Applying the Wu and Manmatha's algorithm to a bimodal image. 
 

text is usually darker than other image items, and hence occupies the lower part of the 

histogram. This iterative strategy can handle an unknown number of histogram peaks. 

According to experiments, however, it is sufficient that Otsu's algorithm is only applied 

twice. Therefore the next step of the algorithm is to choose between just two candidate 

thresholds 1T  and 2T , ( 1T > 2T ). 

  Liu and Srihari concluded that the horizontal run-length histogram of a binarized image 

contains the essential information for evaluating quality of document image binarization. 
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The horizontal run-length histogram will then be denoted by R which is a one-

dimensional array R(i), Li1 ≤≤ , where L is the longest horizontal run to be counted. 

The maximum possible length of a horizontal run-length is equal to or less than the 

number of columns of the binarized image C, so in implementation L is set to be C. In the 

histogram, R(i) is the count of the horizontal run-lengths of length i. Having the 

histogram, five texture features is extracted: Stroke Width (SW), Stroke-Like Pattern 

Noise (SPN), Unit-Run Noise (URN), Long-Run Noise (LRN) and Broken Character 

(BC). A detailed description about these features is found in the original paper, but for 

completeness, the definitions are given here (based on the assumption that in the input 

image the text is darker than other image items): 

 R(i)maxargSW
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where 1R  is the histogram obtained with 1T  and 2R  is the histogram obtained with 2T ; 

M is a constant that in this implementation was set to 3. 

  To select the best threshold from 1T  and 2T , the following scheme is applied. Let 1B  is 

the binarized image obtained with 1T , and 2B  is the binarized image obtained with 2T . 

First, the SW feature is checked, and the threshold with larger SW is selected. This is 

usually 1T , and the associated binarized image is the same as Otsu's. Hence, the next step 

is applied to verify and correct this selected threshold. In the second step the SPN, URN 

and LRN features are checked. If selected threshold (from the previous step) is 1T  and 

SPN is low (less than 2.25 in this implementation) and URN and LRN features of 1B  are 
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less than URN and LRN features of 2B , the overall quality of 1B is better than 2B and the 

selected threshold is 1T . Otherwise, if the BC feature of 2B  is low (less than 0.8 in this 

implementation) the selected threshold will be 2T ; otherwise, neither 1T nor 2T  leads to an 

acceptable binary image, and the selected threshold is set to the average of 1T and 2T . 

  The second step of this implementation is a little different from the original decision 

procedure (Liu and Srihari, 1997). By the following decision method, only three pre-

specified values for M, low SPN and acceptable BC range are required; automatic tuning 

of these parameters seems difficult because of the lack of ground truth data, so the 

algorithm must be calibrated using a limited number of experiments and visual 

judgments. In this study, a set of ten images was used to determine them experimentally, 

and now they seem to be adequate for a broad range of images. The flowchart of the 

implemented method is presented in Figure 3.4. 

  Although this method is able to deal with images with complex backgrounds, for 

comparison, it is applied to the same bimodal image of Figure 3.1. The first selected 

threshold is 97 (Otsu's threshold) and the second is 64. For 97 the SW feature is 7, and 

for 64 it is 5; and since other features associated with 97 have acceptable values, it is 

selected as the final threshold, and the output binarized image is the same as Otsu's result. 

Liu and Srihari's method is about two times slower that Otsu's but faster than Wu and 

Manmatha's. All of these global techniques, however, are fast enough so that can be used 

in any real-time application. 

  In order to show the superiority of Liu and Srihari's algorithm over others', it is applied 

to the rather complex image of Figure 3.5(a). The histogram of this image is presented in 

Figure 3.5(b), and as shown in Figure 3.5(c), Otsu's method fails to find the true 

threshold. But Liu and Srihrari's method successfully binarize the image; in this case, T1 

= 153 (which results in binary image of Figure 3.5(c)) and T2 = 97. For T1, SW1 = 2, 

URN1 = 0.05, LRN1 = 0.26 and BC1 = 0.05, and for T2, SW2 = 4, URN2 = 0.08, LRN2 = 

1.32 and BC2 = 0.009; since SW2 is larger SW1 and BC2 is smaller than 0.8, the algorithm 

rejects T1 in the favor of T2 and the associated binary image is depicted in Figure 3.5(d) 

in which the small dots are due to the input image noise, and can be removed by a post-

processing step. 
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Figure 3.4. The flowchart of Liu and Srihari's method. 

 
  The Wu and Manmatha's method for the same image selects the threshold of 78 which 

yields the nicely binarized image of Figure 3.5(e).  By inspection of Figure 3.5(f) in can 

be seen that  the outcome of Niblack's adaptive method is useless because the background 

is left and there are broken characters; for both images of Figures (d) and (e), in contrast, 

stroke connectivity is maintained.  

  In further experiments, images with various size characters and images containing both 

machine-printed and handwritten text were processed; in each case, the overall quality of 

the Liu and Srihari's returned image was quite acceptable. 
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(a) The input image  (b) Histogram of (a) 

 

 

 
(c) Otsu's result  (d) Liu and Srihari's result 

 

 

 
(e) Wu and Manmatha's result  (f) Niblack's result 

Figure 3.5. Applying the four binarization methods to a non bimodal image. 
 

3.6 Preprocessing 
  The outcome of binarization algorithms for low-resolution images sometimes can be 

enhanced by a preprocessing step termed "super-resolution" (Taylor and Dance, 1998); 

which is trading of gray-scale intensity resolution for spatial resolution. The block 

diagram of a binarization algorithm equipped with super-resolution is presented in Figure 

3.6. In the first step, the input image is sharpened. There are several ways for this purpose 

(Jain, 1989), the simplest one, however, is to convolve the image with the negative of a 

Laplacian kernel. Next, this image upsampled (usually by a factor of 3), and then the 

binarization algorithm is applied as usual. Finally, the binarized image is downsampled to 

have the same size as input. 

 
 

Figure 3.6 The block diagram of a binarization algorithm equipped with super-resolution. 
 

Sometimes, this preprocessing step can be effective as shown in Figure 3.7. 
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(a) Low-quality input image  (b) Binarized image without preprocessing 

 

 

 
(c) Unsharpened version of (a)  (d) Binarized image with preprocessing 

Figure 3.7. Preprocessing can enhance the binarized output of low-quality images. 
 

3.7 Postprocessing 
  The binarized output of a binarization algorithm often needs a postprocessing step 

particularly when the input image is noisy, and so causing noisy output. This was already 

shown in Figure 3.5(d). Usually binarized image contains some extra connected-

components which are due to sudden intensity changes of in noisy regions of the input. A 

simple median filtering is not sufficient to remove this type of noise; since an extra 

component can be larger than one pixel in size, and so not removed by one pass. 

Moreover, the median filtering adversely affects other components by smoothing their 

corners (Figure 3.8) which may lead to higher recognition errors. 

  One of the effective postprocessing techniques, which can be incorporated into any 

thresholding algorithm, is surveyed in (Trier and Taxt, 1995) and its modified version is 

given below: 

 

1. Smooth the original image by a 3 by 3 mean filter to reduce noise. 

2. Calculate the gradient magnitude image G of the smoothed image using , e.g., 

Sobel's edge detector (Shapiro and Stockman, 2001). 

3. Remove all isolated pixels (connected-components of size 1) of the binarized 

image. 
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4. For each remaining connected-component Ci of the binarized image, calculate 

the average gradient magnitude of its border pixels, using corresponding 

pixels in G, and call it Mi. 

5. Compute the average of Mi 's and call it T, it is a criterion for the average 

strength of the connected-components. 

6. Remove all connected-components of the binarized image having an average 

border pixels gradient below kT, where k is an image-dependent parameter; 

the value of 0.9 is a good choice for low amount of noise, but it must be 

increased for the input images containing more noise.  

  Figure 3.9 illustrates quality improvement gained by this postprocessing step. From 

Figure 3.9(c), it is clear that the median filter has caused broken characters, and thereby 

can not be used as a postprocessor. In contrast, Figure 3.9(d) shows that the mentioned 

postprocessing method has improved the quality of the noisy binarized image. 

 

 

 

 
(a) A binary image containing noise and a shape  (b) The image after applying a 3 by 3 median filter 
Figure 3.8. A median filter can not remove all noise, and adversely affects corners of 
shapes. 
 

 

 

 
(a) Noisy input image  (b) Binarized image before postprocessing 

 

 

 
(c) Image (b) after median filtering  (d) Image (b) after postprocessing 

Figure 3.9. Quality improvement of a binarized image by postprocessing. 
 



 

 

CHAPTER 4 

SKEW CORRECTION 
 

 

4.1 Introduction 
  Document skew is a distortion that is often introduced during scanning or copying of a 

document and it is unavoidable. The skew angle is the angle that text lines deviate from 

the x-axis. Since page decomposition techniques require properly aligned images as 

input, document skew must be corrected in advance; otherwise, serious performance 

degradations will result. 

  In general there can be three types of skew within a page (Okun et al., 1999): 1) a global 

skew, when all text lines have the same orientation; 2) multiple skews, when some text 

lines have a different orientation than the others; and 3) non-uniform skew, when the 

orientation fluctuates within a text line. It must be noticed that a handwritten document 

image is usually expected to have multi-skew or even worse, non-uniform skew. A 

number of methods have been proposed for global skew detection. Nevertheless, it is 

assumed that even if there are multiple skews, they belong to a limited range, and hence 

we find the dominant global skew. Once the global orientation is detected, the document 

skew can be corrected by a rotation at this angle. In other words, "skew correction" is 

applied after "skew detection". Global skew detection algorithms can be divided into 

seven categories based on the underlying techniques: 1) projection profile (Shridhar and 

Kimura, 1995; Postl, 1986); 2) Hough transform (Jiang et al., 1997); 3) Fourier transform 

(Postl, 1986); 4) nearest-neighbor clustering (Yue Lu and Chew Lim Tan, 2003); 5) 

correlation (Avanindra and Subhasis Chaudhuri, 1997); 6) mathematical morphology 

(Najman, 2004); and 7) Artificial Neural Networks (Rondel and Burel, 1995). Some of 

these algorithms can detect a limited range of skew angles (usually varying from 5±  to 

), while others are able to find and correct any skew angle (Okun et al., 1999). Some 45±

 35



methods are designed for specific image formats, low-resolution or compressed images 

(Spitz, 1998). Some are designed to work with machine-printed documents (Changming 

Sun and Deyi Si, 1997), such methods can not deal with documents containing 

handwritten or non-Latin scripts. Most methods assume that text has already separated 

from graphics; otherwise it is often required that text is predominant in the image to have 

accurate estimates. 

  In projection profile based methods, histograms of foreground pixels or other features of 

connected-components (such as center of mass) are computed for a number of 

orientations close to the expected skew angle, and for each histogram a variation measure 

,for example mean square deviation, is evaluated. The histogram that maximizes the 

variation corresponds to the global skew angle. The histogram at is called horizontal 

projection profile; for a document without skew, the horizontal projection profile must 

have the maximum variation, and for skewed documents the histogram at skew angle has 

the maximum variation. The histogram with maximum variation has peaks whose widths 

are approximately equal to the average character height, and its valleys have minimum 

heights in comparison with other histograms. These methods are simple, robust and easy 

to implement; they can also work with gray-scale documents, tolerate noise and do not 

require predominant text area in the input image, but since the computation of histograms 

at different angles needs many image rotations which is a time-consuming operation, the 

range and resolution of detectable angles are restricted. Moreover, a projection profile 

based method may not find a good estimate in a multi-column document. 

0

  The Hough transform has been widely used for skew detection. This transformation 

maps each point in the original (x,y) plane to all points in the ( , )θ ρ  parameter plane that 

is the Hough space of lines through (x,y) with slope θ  and distance ρ  from the origin. A 

line in the original image forms a cluster in the parameter plane. Once the locations of the 

clusters are determined, the skew of each line and the average skew are easily evaluated 

by searching for a peak in the transformation space. The Hough transformation is useful 

not only in the detection of solid lines but also broken lines and even text lines. The high 

computational complexity of the Hough transform confines the detectable skew range. In 

order to reduce processing time, instead of applying the transform to entire the 

foreground pixels, it can be applied to other representative points such as edge points or 
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center of mass of connected-components. The Hough transform is computed in O(n2) 

time; also it needs a 2D accumulator. Therefore, methods based on this transform are 

usually slower than others. Another drawback is that when the text becomes sparse 

choosing a peak in the transform space is difficult, i.e., it can not be done by searching 

for the maximum value; because it is possible that the angle giving maximum value does 

not correspond to the skew angle. But as an advantage, it must be cited that the presence 

of graphics in the input image does not drastically degrade the accuracy. Just as the 

projection profile based methods can operate faster when the detectable skew range is 

limited, so the Hough transform based algorithms will benefit when the input document 

image is known to have a limited skew. 

  The basic idea of the methods based on nearest-neighbor clustering (NNC) is that the 

points belonging to the same line can not significantly deviate from that line. Generally, 

an algorithm based on this idea has the following steps. First, connected-components of 

the binarized input image are obtained. Then, the direction vector of all k-nearest-

neighbors of connected-components are computed and accumulated in a histogram, and 

finally, the angle corresponding to the peak of histogram is returned as the document 

skew angle. It must be noticed that the presence of ascenders, descenders (i.e., upper and 

lower parts of characters) or dots cause connections that are not parallel to the text lines, 

thus reducing the accuracy. To remedy this problem, in some algorithms (Yue Lu and 

Chew Lim Tan, 2003; Okun, 1999) only connected-components satisfying certain size 

and/or positional conditions are taken into account, thereby, these algorithms must be 

tuned for their parameters. The main advantage of a method utilizing NNC is that it does 

not limit the detectable skew range; also it does not require predominant text area in the 

input image and can also deal with multi-column document images and even multiple 

skews. But, an algorithm of this type can only work with clean binarized images, and as 

mentioned before needs fine tuning. An accurate NNC based algorithm is presented in 

(Yue Lu and Chew Lim Tan, 2003); in this work connected-component chains with the 

largest possible number of nearest neighbor pairs are selected, and their slopes are 

computed to give the global skew angle.  

  The correlation function has also been used in skew estimation (Avanindra and Subhasis 

Chaudhuri, 1997). The basic idea is that the correlation between two columns (vertical 
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lines) of the document image is maximized when one column is shifted relatively to the 

other such that character levels are aligned. The correlation based methods require 

predominant text area in the input image; otherwise, a prior text/graphics separation is 

necessary to have good estimates. But the major limitation is that such a method gives a 

true estimate only when the skew range is limited (usually from  to ), and fails 

to detect a high amount of skew angle, but it does not mean that correlation methods are 

not practical; because for ordinary scanned document the actual skew angle is quite 

small. These methods can deal with handwritten and non-Latin scripts as well, but text 

lines of different sizes degrade the accuracy, and as a further disadvantage, any 

correlation based algorithm use some parameters (usually two) which must be set for 

different types of documents beforehand. A fast correlation based method is presented in 

(Avanindra and Subhasis Chaudhuri, 1997), in which instead of finding the correlation 

for the entire image, it is calculated over randomly selected small windows to increase 

speed, and since these windows can be processed independently, as a further advantage, 

the algorithm can be implemented on a parallel hardware. It is a Monte Carlo 

probabilistic algorithm that needs at least half the input image area is occupied by text to 

ensure that the probability of a randomly selected window is higher than 0.5.  

10− 10

  In the methods based on the Fourier transform (Postl, 1986) the direction having 

maximum density in transform space is regarded as the skew angle. These methods are 

not implemented in this study, but it is clear that a vertical line in the input image will 

have the maximum density direction. Thus, generally, finding the true skew angle in the 

transform space is not easy and straightforward. Also, it is often said that the Fourier 

transform is computationally expensive for large methods (Changming Sun and Deyi Si, 

1997). The Fast Fourier Transform (FFT) was first used in (Postl, 1986); in this method 

The coefficients of the power spectrum are calculated and stored in a buffer. Then, 

directional criteria for a number of angles are calculated. Last, the angle that maximizes 

the directional criterion is taken as the document skew angle. 

  Artificial Neural Networks (ANN) have been widely used for document analysis and 

recognition, but not much work is dedicated to the problem of skew detection. In (Rondel 

and Burel, 1995) two neural networks are used to detect the global skew; the first one 

gives a rough estimate which is used to initialize the weights of the second network. 
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Then, the second network outputs the document skew angle. No ANN based method is 

implemented in this study, but due to numerous advantages of ANNs, they are worthy of 

study for the skew detection problem. 

  A typical method based on mathematical morphology iteratively applies special 

morphological operators (modified versions of opening and closing) to the input image to 

form one connected-component (blob) from each text line. Then, a line is fitted to each 

blob and its slope is accumulated in an angle histogram; finally, the angle corresponding 

to the histogram peak is returned as the skew angle. It must be mentioned that there are 

fast implementations for the two basic morphological operators (i.e., erosion and 

dilation), for example, the Fourier transform can be used for this purpose. Advanced 

operators can be derived by the combination of erosion and dilation, and used in skew 

estimation. All morphological operators are applicable to both binary and gray-scale 

images, but there exist faster implementations for binary images (Nadadur and Haralick, 

2000). 

In the rest of this chapter, the Hough transform is surveyed and its basic algorithm for 

skew detection is given, and due to the importance of this transform and lack of visual 

examples in the literature, a number of examples are presented to illustrate how this 

transform can be useful in skew detection. Then, the basic idea of the projection profile 

technique is clarified, and finally, a simple skew detection procedure, satisfying script-

independency, is proposed in detail, and it will be shown that this projection profile based 

procedure is robust enough to be used in a real recognition system. 

 

4.2 The Hough Transform for Skew Detection 
  Hough transform is a general method for detecting arbitrary curves (lines, ellipses, etc.) 

in gray-scale images. Hough Line Transform (HLT), as it is clear from the name, aims to 

detect straight lines and is a popular method for skew detection. In HLT, conceptually, all 

possible lines (at all orientations and positions) are placed into the image and the number 

of pixels on each line are counted and stored in the corresponding position of the Hough 

space.  

  The simple version of HLT for skew detection is given in Algorithm 4.1. It must be 

mentioned that since the ordinary line equation y = mx + b does not work for vertical 
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lines, d = c.cos(θ) – r.sin(θ) is used as an alternative, where d is the perpendicular 

distance from the origin of the image (upper left corner) to the line, and θ is the angle this 

perpendicular makes with horizontal (column) axis. In order to compute gradient 

magnitude and direction of the input image, any edge detector can be used. The constant 

gradient_threshold in the algorithm is used to only take strong enough edge points, and it 

is reasonable to set its value to the average gradient magnitude of the input image. An 

alternative approach is to use the binary edge map BM instead of M, with 1's representing 

strong edge points and 0's representing background, and now the if command must be 

changed accordingly: 
 
  if BM[r,c] > 0 
  { 
    d = round(absolute(c×cos(D[r,c]) - r×sin(D[r,c]))); 
    A(d,D[r,c]) = A(d,D[r,c]) + 1; 
  } 
Once the execution have been completed and the accumulator array has been filled, the 

angles corresponding to the local peaks of the Hough space (accumulator array) represent 

the dominant skew angles of the input document image. So theoretically, a Hough 

transform based method is also able to detect multiple skews. The accumulator array does 

tell us about where the line segments begin and end, and in the skew detection there is no 

need for this information. 
 
Let I[r,c] be the input gray-scale image having R rows and C columns. 
Let M[r,c] be the gradient magnitude of I[r,c]. 
Let D[r,c] be the gradient direction of I[r,c]. 
Let A[ρ,θ] be the accumulator array (the Hough space). 
 
A = 0; // initialize the accumulator to zero. 
for r = 0 to R-1 
{ 
  for c = 0 to C-1 
  { 
    if M[r,c] > gradient_threshold 
    { 
      d = round(absolute(c×cos(D[r,c]) - r×sin(D[r,c]))); 
      A(d,D[r,c]) = A(d,D[r,c]) + M[r,c]; 
    } 
  } 
} 
  
Algorithm 4.1 HLT for skew detection 
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(a)  (b) Hough space of (a) (c) (d) Hough space of (c) 

 

 

  
(e)  (f) Hough space of (e) (g) (h) Hough space of (g) 

 

 

  
(i)  (j) Hough space of (i) (k) (l) Hough space of (k) 

 

 

  
(m)  (n) Hough space of (m) (o) (p) Hough space of (o) 

 

 

  
(q)  (r) Hough space of (q) (s) (t) Hough space of (s) 

 

 

  
(u)  (v) Hough space of (u) (w) (x) Hough space of (w) 

Figure 4.1. Applying HLT to simple binary images. 
 

  In Figure 4.1, HLT is applied to twelve images, containing one to four rectangles of 

different sizes and at various directions and positions; for each case the Hough space is 

depicted; it is clear that the relative position of the objects does not change the angles 
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corresponding to the Hough space peaks, and as mentioned before, the objects at different 

directions will form different clusters in the Hough space, so HLT may be used to correct 

multiple skews. 

  Figure 4.2 shows the Hough space of two handwritten document images. Figure 4.2(b) 

has no peak corresponding to the document skew angle, and for this non-Latin document 

image the HLT technique fails. By further experiments, we found out that the method 

also fails for low resolution images. 

 

 

 
(a) A handwritten Farsi document  (b) The Hough space of (a) 

 

 

 
(c) A handwritten English document  (d) The Hough space of (c) 

Figure 4.2. Applying HLT to handwritten document images. 
 

4.3 The Projection Profile Method for Skew Detection 
  It is expected that the projection profile at the global skew angle of the document has 

narrow peaks and deep valleys, depending on weather the projection passes through a text 

line or between text lines. Figure 4.3, for example, shows a document image at two 

different directions and the associative horizontal projection profiles. Obviously, at this 

point we need a criterion to select the better projection profile. Let f be a function 

returning its maximum value for the horizontal projection profile at the global skew 

angles, then the global skew angle of the gray-scale image I is: 

θ)))(I,(( max arg
maxmin

rotaten_profile_projectiohorizontalfw_angleglobal_ske
θθθ ≤≤

=  (4.1)
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  It may seem, at first sight, that variance or autocorrelation are good choices for f, but as 

noted by Bloomberg (Bloomberg et al., 1995) neither can be a good measure. The 

variance function usually results in a broad peak, being difficult to choose the global 

skew from; the autocorrelation function is more computationally demanding, and giving a 

large oscillating signal for the projection at the global skew angle. In that reference the 

goodness measure is taken as the sum of the squares of the successive differences of the 

projection profile (histogram). Formally, if the histogram is denoted by h, SD is given by: 

 ∑ −−=
i

ihihSD 2))1()((  (4.2)

  This function has a very sharp peak at the global skew angle, leading to very accurate 

results, but on the other hand, such a narrow peak restricts the use of the binary search to 

find the maximizing angle. There are three modifications which can speed up the basic 

method. 

 

 

 
(a) A skewed document  (b) horizontal histogram of (a) 

 

 

 
(c) The same document with more skew  (d) horizontal histogram of (c) 

Figure 4.3. The projection profile technique for skew detection. 
 

  First, for computing the projection profile at a certain angle, it is not necessary to rotate 

the image by the angle, and then compute the horizontal projection profile. One 

possibility is to shear the image in vertical direction which is faster than rotation, and as 

proved in (Slavik and Govindaraju, 2001): "correcting first for skew by rotation and then 
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for slant by a shear transformation in the horizontal direction is equivalent to first 

correcting for slant by a shear transformation in the horizontal direction and then for 

skew by a shear transformation in vertical direction". The other possibility is to compute 

the sum of pixels along parallel lines at an angle; Algorithm 4.2 is for this purpose. 

  
(a) variance is used as the goodness measure (b) SD is used as the goodness measure 

Figure 4.4. Plotting goodness measure of projection profiles of Figure 4.3(c) against 
angles -45o to 45o. 
 

  Second, if in (4.1) f has only one maximum, it can be found by a binary (Algorithm 4.3) 

rather than the exhaustive search in the range [ minθ , maxθ ], thus reducing the runtime. 

Bloomberg has suggested performing the binary search on the variance of the projection 

values, which has a sufficiently wide peak, but it may also fail because as you see in 

Figure 4.4(a) the function has local maxima. But, it seems that when the skew range is 

limited (e.g., -5o to 5o) the function has only one maximum, and so the binary search is 

possible. 

  Third, another advantage of projection profile based methods is that they actually don’t 

need high resolution input images. Obviously, any image operation such as rotation or 

shear transformation is done faster for smaller images. Therefore, reducing the size of 

input image, as much as structure of text lines is preserved, leads to faster processing. 

This can be done by a MIN or MAX downsampling technique depending on whether the 

background is lighter than text or darker. These two techniques are faster than the 

ordinary downsampling methods, because the latter usually perform interpolation and 

smoothing to achieve better visual quality, which is not necessary for skew detection. In 

the MIN downsampling technique, the minimum of each M × N rectangle (when non-

overlapping rectangles are considered) of the original gray-scale image is chosen as the 

value of output image in that location; as opposed to the MAX technique in which 
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"maximum" performs the same job. For a binary image, MIN and MAX correspond to 

logical AND and OR, thus even a faster processing will result. 

  Figure 4.5 shows the downsampled versions of the 260 × 580 gray-scale image of 

Figure 4.3(c). It is clear that for ordinary document images with lighter background, the 

MIN method must be used; and as shown in Figure 4.5(a), a rough estimate of the skew 

angle can be made in the low-resolution image as well. Having a coarse estimate, the 

angle range [ minθ , maxθ ] can be restricted, because the actual skew angle is somewhere 

around it, and a more accurate result can be found in a higher resolution. This is a coarse-

to-fine search strategy in which the approximate location of a solution is found quickly in 

a large and low-resolution space. Then, this estimate is refined successively in smaller 

spaces with higher resolutions. 

  
(a) MIN downsampled by factor 4 × 4 (b) MAX downsampled by factor 4 × 4 

  
(c) MIN downsampled by factor 3 × 3 

 

(d) MAX downsampled by factor 3 × 3 
Figure 4.5. Image downsampling using MIN and MAX techniques. 

 
 
 
Let I[r,c] be the input gray-scale image having R rows and C columns. 
 
projection_profile = 0; // initialize all elements to zero. 
for r1 = 0 to R-1 
{ 
  for c1 = 0 to C-1 
  { 
    r2 = r1.cos(θ) + c1.sin(θ); // new row after rotation 
    projection_profile[r2] = projection_profile[r2] + I[r1,c1]; 
  } 
} 
 
Algorithm 4.2 Computing the projection profile at angle θ 
 
  As mentioned before, any projection profile based method tends to fail with unaligned 

text lines in multiple columns, however, according to experiments carried out in this 

work, for any other type of document image, whether machine-printed or handwritten, of 
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any size and script, the method is able to correct the global skew angle. Figure 4.6 show 

that the method works well in the presence of considerable amount of noise. It seems that 

no other algorithm is so robust to noise. For such a noisy image with many broken 

characters, it is not surprising that any method, relying on structural information, fails. 

 
 
Let f be the function, assumed to have only one maximum in the range [xmin, 
xmax]. 
 
x1 = xmin; 
x3 = x ; max
x2 = (x1 + x3) / 2; 
 
while |x2-x1| > error 
{ 
  x12 = (x1 + x2) / 2; 
  x  = (x  + x ) / 2; 23 2 3
  maximizer = arg max (f(x1), f(x12), f(x2), f(x23), f(x3)); 
   
  if maximizer == x1
  { 
    x3 = x ; 12
    x2 = (x1 + x3) / 2; 
  } 
  else if maximizer == x12
  { 
    x3 = x2; 
    x2 = x12; 
  } 
  else if maximizer == x2
  { 
    x1 = x12; 
    x3 = x23; 
  } 
  else if maximizer == x23
  { 
    x1 = x2; 
    x2 = x23; 
  } 
  else 
  { 
    x1 = x ; 23
    x2 = (x1 + x3) / 2; 
  } 
} 
 
return arg max (f(x1), f(x2), f(x3)); 
 
Algorithm 4.3 Binary search for finding the maximizer of a function 
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(a)  (b) 
Figure 4.6. A noisy image before (a) and after (b) skew correction using the projection 
profile based method. 
 

4.4 Dealing with Multiple Skews 
  It is often expected that handwritten text lines slightly deviate from the global skew 

angle. In such cases, global skew correction followed by page segmentation result in a 

number of line (or word) images to be processed. Therefore, it is useful to perform a local 

skew correction in each line (or word) image. 

  A simple method for local skew detection is to fit a line to all text pixels in the line (or 

word) image. Due to its wide range of applications, line fitting a well-studied problem in 

statistics. The basic least square method for 2D space, which assumes y as the dependant 

variable, is not appropriate for vision tasks, partly because the mathematical definition of 

error as a difference along y-axis is not a true geometrical distance (Shapiro and 

Stockman, 2001); the disadvantage is more pronounced when the points are arranged in a 

near vertical direction. As mentioned in (Yuan and Tan, 2000), a better approximation is 

acquired by treating x and y not as statistical variables but as locations of points, and in 

this case, the error is defined as the sum of distances perpendicular to the orientation of 

the fitted line. Algorithm 4.4, based on evaluation of eigenvalues, is for this purpose, and 

skew correction by line fitting is illustrated by Figure 4.7. 

 
(a) a binarized line image before skew correction 

 
(b) and after skew correction 

Figure 4.7. Skew correction by line fitting. 
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It is clear that, by fitting a line to text pixels (black pixels for ordinary document images) 

using Algorithm 4.4, tan-1(m) gives the skew angle. 

This method is very fast, but as mentioned before, it can not be applied to the whole 

document. For example, it fails when the image has more columns than rows; even if it 

does not fail, its estimate is not as accurate as other skew detection methods. 

Nevertheless, this method can be applied to the whole document image to find an 

estimate θR of the actual skew angle θA and reducing the search space from [θmin, θmax] to 

[θR - E, θR + E], where E must be selected so that θA falls within [θR - E, θR + E]. 

According to our experiments, E = 3o is a reasonable choice. 

 
 
Let {(xi,yi)} be the set of points to be fitted by mx+y0
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Algorithm 4.4 Line fitting by evaluation of eigenvalues 
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CHAPTER 5 

SLANT CORRECTION 
 

 

5.1 Introduction 
  Slant is the deviation of average near-vertical strokes from the vertical direction. 

Slant correction is an attempt to reduce the range of variations of handwritten and 

machine-printed texts. In handwritten text, slant is due to the specific writing style, 

and in machine-printed text it is an innate feature of certain fonts. It is clear that slant 

is non-informative, but slanted words may considerably degrade the performance of 

the whole system (Kavallieratou et al., 2000), so another normalization step which 

must be performed before segmentation, feature extraction, training and recognition is 

to remove or reduce the slant influence as much as possible. 

  The literature includes a number of methods for uniform slant correction (Shridhar 

and Kimura, 1995; Changming Sun and Deyi Si, 1997; Kavallieratou et al., 2000) and 

some of them are robust, script-independent and applicable to both handwritten and 

machine-printed texts. The uniform slant correction techniques perform successfully 

when all near-vertical strokes have the same slant angle, which is usually the case for 

machine-printed words. So as far as the recognition of machine-printed text is 

concerned, there is no room for further study about slant removal methods. On the 

contrary, in handwritten text, the slant angle usually varies within each word (Figure 

5.1), and hence a uniform slant correction is not optimum. 

  In all uniform slant correction techniques, the average slant angle is estimated first 

and then a shear transformation in horizontal direction is applied to the word (or line) 

image to correct its slant. The most effective methods are based on the analysis of 

vertical projection profiles (histograms) at various angles (Shridhar and Kimura, 

1995; Kavallieratou et al., 2000); actually these techniques are identical to the 

projection profile based methods for skew correction, except that here the histograms 

are computed in vertical rather than horizontal direction and shear transformation is 

used instead of rotation. 

 49



  Some method use statistics of chain-coded stroke contours; for example in (Shridhar 

and Kimura, 1995) the chain elements at 45o, 90o and 135o are counted, then a simple 

formula is used to estimate the slant angle; according to our experiments, this method 

does not produce accurate result for handwritten words. In (Changming Sun and Deyi 

Si, 1997) two methods has proposed; the first one computes the histogram of gradient 

orientation of the input word image and returns the histogram peak as the slant angle; 

the second method fits a minimum bounding parallelogram to each connected-

component of the binarized image, such that top and bottom sides of each 

parallelogram are parallel to x-axis, then the slant angle is chosen as the median value 

of all parallelogram angles. In the handwritten recognition system described in 

(Procter et al., 2000), two methods are used in combined, and the overall slant 

estimate is taken as the mean of the two estimates. 

  To the best of our knowledge, the only survey on non-uniform slant correction is 

presented in (Uchida et al., 2001), in which the problem is formulated as the optimal 

estimation of local slant angles at all horizontal positions. The optimal local slant 

angles which maximize a cost function, while satisfying several constraint for the 

global and local validity, are efficiently searched for a by a dynamic programming 

(DP) technique. Unfortunately, this method sometimes over-corrects slants of some 

alphabets such as the Latin 'X' or Farsi/Arabic letter 'ر' (Reh). So it can sometimes 

degrade the performance of recognition system, and this non-uniform technique can 

not be used. 

 

 

 
(a) Non-uniform slant  (b) Uniform Slant 

Figure 5.1. Examples of slanted handwritten words. 
 

5.2 Horizontal Shear Transformation 
  In this linear transformation, each pixel (x,y) is transformed to new coordinate (xs,ys) 

by Equation (5.1), where yc is the y-coordinate of the center and θ is the angle of 

transformation; for slant correction, yc is set to half the number of image rows. 
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  By this transformation, the height of the image is not changed, while the width of the 

image will probably change. Figure 5.2 shows the results of shear transformation to a 

word image at two different angles. 

 

 

  

(a) original slanted word  (b) transformed by θ = -10o  (c) transformed by θ = -25o

Figure 5.2. Shear transforming a word image at different angles. 
 
5.3 Projection Profile Technique for Slant Detection 
  Like skew detection, here the basic idea is that the vertical histogram of a non-

slanted word has higher peaks, deeper valleys and more variations than any other 

histogram. Figure 5.3 shows a handwritten word image at three different angles, the 

image of Figure 5.3(b) has less slant and its histogram has more and higher peaks. All 

we need is a criterion to judge between different histograms; in (Kavallieratou et al., 

2000) the Winger-Ville distribution (WVD) is employed for this purpose. But it was 

found out that the same criterion utilized for skew detection can also work here. 

Therefore, in the proposed system, the slant angle of the line (or word) image I is 

estimated by the following formula: 

θ)))(I,_(__( max arg
maxmin

shearhorizontalprofileprojectionverticalSDeslant_angl
θθθ ≤≤

=  (5.2)

 
where SD is the sum of the squares of the successive differences of the projection 

profile, and search range is adequate be [-45o, 45o]. 

  This method works well for both handwritten and machine-printed text. By being 

robust to noise and script independent, it is the optimal uniform slant estimator. 

Again, it is emphasized that this method requires a single line or word image as input. 

Obviously, vertical histograms of two or more text lines give no useful information 

about the slant. It contrasts with some other methods (Shridhar and Kimura, 1995; 

Changming Sun and Deyi Si, 1997) which employ structural information and can 

estimate the slant angle from the whole input document. 
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(a)  (b)  (c) 

 

  

(d) Vertical histogram of (a)  (e) Vertical histogram of (b)  (f) Vertical histogram of (c) 
Figure 5.3. Vertical histograms of one image horizontally sheared at three different 
angles. 
Figure 5.4 shows that the SD measure gives a maximum for the vertical histogram of 

horizontally sheared image at the slant angle, but the search space has local maxima 

which make it impossible to use the binary search.  

 

 

   

(a)  (b)  (c) 
 

 

   

 

(d)  (e)  (f) 
Figure 5.4. Plotting the SD measure of vertical histograms of sheared images from -45o 
to 45o. Each plot has a maximum corresponding to the slant angle. 
 

Figure 5.5, shows that variance can not be used as the criterion, because it fails for 

image of Figure 5.4(a). 

 

 

 
(a) for image of Figure 5.4(a), the maximum does 
not correspond to the slant angle. 

 (b) for image of Figure 5.4(e), variance gives 
the same result as SD. 

Figure 5.5. Plotting variance of vertical histograms of sheared images from -45o to 
45o.  
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  Slant corrected words usually has jagged edges which may complicate the extraction 

of structural features. In order to remedy this problem, the image is smoothed by the 

rule set of Figure 5.6. 

 
1 1 1 
1 0 0 
1 1 1  

 
→ 

1 1 1
1 1 0
1 1 1 

1 0 0
1 1 0
1 0 0 

 
→ 

1 0 0
1 0 0
1 0 0 

 
(a) rule 1; rotating this rule at 90o, 180o 
and 270o gives rules 2, 3 and 4. 

 

 
(b) rule 5; rotating this rule at 90o, 180o 
and 270o gives rules 6, 7 and 8.  

 
1 1 1 
1 0 1 
1 1 1  

 
→ 

1 1 1
1 1 1
1 1 1 

1 1 1 
1 0 X
1 1 1  

 
→ 

1 1 1 
1 1 X
1 1 1  

 
(c) rule 9; the complement of this rule, is 
rule 10. 

 

 
(d) rule 11; rotating this rule at 45o, 90o, 
135o, 180o, 225o, 270o , and 315o gives 
rules 12 to 18.  

Figure 5.6. The rule set for smoothing a slant corrected image, where 0 denotes 
background, 1 represents text and X means don't care. 
 

  Each rule is applied to all image pixels simultaneously, and the rules are applied one 

after another (i.e., rule n is applied to the image smoothed by rule n-1). These rules 

preserve the image connectivity, i.e. no rule breaks or merges connected components. 

Figure 5.7 demonstrates that the post-processing step can smooth jagged edges of a 

slant corrected word.  

 

 

  
(a) A part of a slanted word  (b) image (a) after slant correction (c) image (b) after smoothing 
Figure 5.7. Applying rule-based smoothing after slant correction. 
 

5.4 Comparison with a Structural Method 
  In order to show the effectiveness of the proposed method, it is compared with a 

structural slant correction technique (Shridhar and Kimura, 1995) which employs 

statistics of chain-coded image this way: the chain code of entire border pixels of the 

binarized image is extracted first, and then the slant is computed by: 
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where n1, n2 and n3 denote the number of chain elements at angles 45, 90 and 135 

respectively.  

  Both methods are applicable to Farsi and English words. Figure 5.8 illustrates that 

for a handwritten word, chain-code based method is not as accurate as the proposed 

histogram based method, but the latter is significantly slower, because shear 

transformation at various angles is a time consuming operation. For slanted word of 

Figure 5.8(a), n1 = 200, n2 = 59 and n3 = 30; so θ ≈ 30o and the sheared image is 

shown in Figure 5.8(b); while the histogram based method returns θ = 45o, leading to 

the less slanted word of Figure 5.8(c). 

 

   
(a) A slanted word (b) Slant corrected word using 

chain-code based method 
(c) Slant corrected word using 
histogram based method 

Figure 5.8. A comparison between two slant correction techniques for a handwritten 
English word. 
 

Figure 5.9 shows that the chain-code based method fails in the presence of high noise; 

while the histogram based method still works properly. 

   
(a) A noisy slanted word (b) Slant corrected word using 

chain-code based method 
(c) Slant corrected using 
histogram based method 

Figure 5.9. Structural slant correction methods tend to fail in the presence of high 
noise. 
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CHAPTER 6 

SKELETONIZATION 
 

 

6.1 Introduction 
  Skeletonization or medial axis transform (MAT) of a shape has been one the most 

surveyed problems in image processing and machine vision. A skeletonization 

(thinning) algorithm transforms a shape into arcs and curves of thickness one which is 

called skeleton. Ideally, the skeleton should retain basic structural properties of the 

original shape; it should be well-centered, well-connected (preserve connectivity 

information) and robust, and also allows a precise reconstruction (Ivanov et al., 2000). 

Over years, it has been found to be so difficult to get an algorithm that satisfies all of 

the requirements. There is no unique definition for skeleton, so different algorithms, 

with different definitions, produce different skeletons for the same shape.  

  By diminishing variability and distortion of instances of one class and reducing the 

amount of data to be handled, skeletonization simplifies classification. Skeletons have 

been proved to be effective in pattern recognition problems such as character 

recognition, fingerprint recognition, chromosome recognition and analyzing X-ray 

images. Skeletons provide compact representations that allow structural analysis of 

objects, and they have also applications in image compression. 

  The skeletonization techniques can be divided into two major categories (Ahmed, 

1995): direct and indirect. The direct techniques produce skeletons by directly 

removing pixels from the pattern. The direct methods can be further classified into 

iterative and non-iterative. The iterative direct techniques compute skeletons by 

iteratively deleting removable boundary pixel either sequentially (Naccache and 

Shinghal, 1984) or parallel (Zhang and Suen, 1984) (Figure 6.1), until it causes no 

further changes to the image. A pixel is tested and marked to be removed if its 

neighbors (usually 8-neighbors) satisfy certain conditions. In sequential algorithms 

pixels are tested in a fixed order in all iterations and removing a pixel in an iteration 

depends on the resultant image of the previous iteration and the previous operations of 
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this iteration. But, in parallel algorithms removing a pixel only depends on the result 

of the previous iteration, so all pixels can be tested independently in each iteration. 

The iterative methods yield thin and geometrically representative but not necessarily 

well-centered skeletons. 

Skeletonization
Algorithms

Direct Indirect

Itertive Non-Iterative

Sequential Parallel

 
Figure 6.1. The classification of skeletonization algorithms. 
 

  The non-iterative techniques produce skeletons by connecting pixels having special 

properties. A pixel with special properties may be the middle pixel of a component of 

a scan line, the parts of polygonal regions where a pattern is divided into a set of 

regular or irregular polygons, etc. (Ahmed, 1995).  

  Indirect techniques are very similar to non-iterative techniques, and they are proved 

to perform better than some widely used direct techniques (Ahmed, 1995). Indirect 

techniques do not produce skeletons by removing or changing pixels, they rather 

construct skeletons by computing appropriate logical properties such as distributions 

of pattern pixels. In (Ahmed, 1995) an indirect technique is presented in which the 

skeleton is constructed by dividing shape pixels into a set of adjacent clusters and then 

connecting their centers. The cluster centers are computed by a modified version of 

the self-organizing feature map (SOM) algorithm.  

  Conventional skeletonization techniques implicitly assume connectivity of pixels 

inside image region, performing poorly on sparse (non-connective) shapes. The 

sparseness within image regions may be due to aging, uneven lighting or thresholding, 

and in document images, it may also occur because of poor ink quality. In (Singh et 

al., 2000) an indirect method utilizing SOM for the skeletonization of sparse shapes is 
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introduced. The method requires neither well-separated shapes from background nor 

connectivity inside regions, so it can be used in developing robust vision systems. 

Given the pixel distribution of a shape, a piecewise-linear approximation of the shape 

skeleton is iteratively evolved by using a minimum spanning tree-based SOM. The 

adjacency relationships between the shape regions are detected and used in the 

evolution of the skeleton by constraining the SOM to lie on the edges of the Delaunay 

triangulation of the shape distribution. The final skeleton is obtained when the SOM 

converges. The method is invariant to Euclidean transformations and adaptive in 

terms of the topology of the shape distribution and in the number of map units.  

  Skeletonization algorithms are notorious for being slow on ordinary serial 

computers, and most of them suffer from irrational memory and CPU usage. These 

disadvantages are more pronounced for large images. For example, a drawing of 

standard A3 size, scanned at the typical resolution of 600 dpi, would be 

approximately 7000 × 10000 pixels and require 8.3 Mb of memory if treated as a 

binary image, which makes random access to different parts of the image very slow 

(Ivanov et al., 2000). However, for a typical word image of size 200 × 200, neither 

memory nor CPU inefficient usage is essential, and by using faster ubiquitous 

hardware, almost all algorithms are practical for text recognition. In (Ivanov et al., 

2000) a fast and efficient skeletonization algorithm for large images is presented. Its 

main idea is to generate a special polyline for each raster line considering them in top 

to down direction, and then constructing the skeleton from points of these polylines. 

The obtained skeletons are precisely reconstructable, and the amount of required 

memory depends linearly on original image width, but not its area.  

  Ji and Piper (Ji and Piper, 1992) have developed a skeletonization algorithm by 

finding the points whose removal do not alter homotopy of the input image. They 

have proved that the Hilditch's condition is a sufficient condition for removing a 

single point from a binary image without altering its homotopy. The mathematical 

morphology operators erosion and dilation are used to construct skeletons. The 

computational complexity of the algorithm is O(n2) and the memory requirement is 

O(n), where n is the linear scale of the image. The method is fast and can produce 

reconstructable and thin, but not necessarily of unitary thickness, skeletons. 

  There are hundreds of skeletonization algorithms in the literature. Of course it is not 

possible to implement and experiment with all of them. For the skeletonization of the 

Farsi script, five algorithms were implemented: two classical methods (SPTA 
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(Naccache and Shinghal, 1984) and Zhang-Suen's (Zhang and Suen, 1984)), DTSA 

(Sajjadi, 1996) designed for the Farsi scripts, one homotopy-preserving method (Ji 

and Piper, 1992) and the fully parallel Huang et al.'s method (Huang et al., 2003). In 

the rest of this chapter, we briefly describe each of these methods, showing that 

Huang's is better than others for the purpose of this work. Finally, a simple and 

effective skeleton post-processing procedure is described. 

 

6.2 The SPTA 
  The Safe-Point Thinning Algorithm (SPTA) (Naccache and Shinghal, 1984) is a 

sequential method and like other iterative algorithms consists of iteratively deleting 

edge-points (points along the edges of a shape) while keeping end-points (points at 

the ends of a stroke), and also the shape connectedness should not be broken and 

excessive erosion (iteratively removing a stroke) should not be occurred.  

  Thinning is normally applied to binary images, and produces a binary image as 

output. Hereafter, it is assumed that shape pixels are represented by black pixels and 

background pixels are represented by white pixels. For a point p with the coordinate 

(x,y), the set of points with coordinates (x+1,y), (x-1,y), (x,y-1) and (x,y+1) are called 

its 4-neighbours, and its 8-neighbors are the set of points with coordinates (x+1,y), 

(x+1,y-1), (x,y-1), (x-1,y-1), (x-1,y), (x-1,y+1), (x,y+1) and (x+1,y+1) (Figure 6.2). 

 
n3 n2 n1
n4 p n0
n5 n6 n7 

Figure 6.2. A point p and its 8-neighbors (n0 to n7).  
The points n0, n2, n4 and n6 are also referred to as 4-neighbors of p. 

 
  In the SPTA, an edge-point is defined as a black pixel with at least one white 4-

neighbor, an end-point is defined as a black point with at most one black 8-neighbor 

and a break-point is defined as a point whose deletion would break the connectedness 

of the pattern. The algorithm in each pass flags a point if it is an edge-point but not an 

end-point, nor a break-point, and nor must its possible deletion cause excessive 

erosion. All flagged points are removed at the end of a pass, and if there is no flagged 

point the procedure stops. An edge-point can be of one or more of the following 

types: 1) a left-edge point, having its left neighbor n4 white; 2) a right-edge point, 
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having its right neighbor n0 white; 3) a top edge-point, having its top neighbor n2 

white; and 4) a bottom edge-point having its bottom neighbor n6 white.  

  By examining different combinations of the 8-neighbors of a left-edge point p the 

authors have concluded that p can be safely removed (without breaking 

connectedness, end-point deletion and excessive erosion) if the boolean expression S4 

is true: 

 )).().(.( 5632762104 nnnnnnnnnS +++++= (6.1)
 

  A boolean variable has the true value if its corresponding point is black and 

unflagged. Similarly, for a right-edge point, trueness of the expression S0, for a top-

edge point, trueness of the expression S2 and for a bottom-edge point, trueness of the 

expression S6 are sufficient conditions for safe deletion of the corresponding edge-

points.  

 )).().(.( 1276326540 nnnnnnnnnS +++++= (6.2)
 

 )).().(.( 3410540762 nnnnnnnnnS +++++= (6.3)
 

 )).().(.( 7054104326 nnnnnnnnnS +++++= (6.4)
 

  Each pass in the SPTA involves two scans, where all black points (the shape points) 

are examined in each scan. The scanning sequence can be either row-wise or column-

wise. The first scan of a pass, flags safely removable left-edge points and safely 

removable right-edge points. In the second scan of the pass, safely removable top-

edge points and safely removable bottom-edge points are flagged. At the end of the 

pass, all flagged points are removed (become white).  

 

6.3 The Zhang-Suen's Algorithm 
  This algorithm has been used as basis of comparison for skeletonization algorithms 

for many years. It is a fast and simple parallel iterative algorithm, meaning that the 

new value for a pixel can be calculated using only the values from the previous 

iteration.  

  Each pass in the algorithm involves two sub-iterations, where in a sub-iteration, 

certain points are flagged, and at the end of the sub-iteration if there is no flagged 

point the algorithm stops; otherwise the flagged points are removed and the next sub-

iteration starts. In the first sub-iteration, a pixel is flagged if it satisfies all of the 

following four conditions: 
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1. Its connectivity number is one. The connectivity number Cn of a pixel p 

can be defined as the number of transitions from black (foreground) to 

white (background) within the pixel 8-neighbors. It has a value in the 

range of zero to four. 

2. It has at least two and at most six black neighbors. 

3. At least one of n0, n4 and n6 is white. 

4. At least of n0, n2 and n6 is white. 

Now if there is no flagged point the algorithm stops, otherwise all flagged point are 

removed and the second sub-iteration starts where it is the same as the first sub-

iteration except for conditions 3 and 4: 

3. At least one of n0, n2 and n4 is white. 

4. At least one of n2, n4 and n6 is white. 

  As it will be shown later, the Zhang-Suen's algorithm sometimes removes the letter 

dots, which carry the necessary information to distinguish certain Arabic/Farsi letters 

from each other. Therefore, this skeletonization must not be used in the context of 

Arabic/Farsi text recognition. Actually, it always removes 2×2 squares and sometime 

cause excessive erosion.  

 

6.4 The DTSA 
  To overcome the problems of the Zhan-Suen's algorithm for the Arabic/Farsi scripts, 

Sajaddi proposed Decision Table Skeletonization Algorithm (DTSA). This parallel 

iterative algorithm involves four sub-iterations in each pass, and all shape (black) 

pixels are examined in each sub-iteration. Certain points are flagged within a sub-

iteration; at the end of the sub-iteration if there is no flagged point the algorithm 

stops; otherwise the flagged points are removed and the next sub-iteration starts. 

  In the first sub-iteration, each left-edge point for which the boolean expression D4 is 

true is flagged. In the second sub-iteration, each bottom-edge point for which the 

boolean expression D6 is true is flagged. In the third sub-iteration, each right-edge 

point for which the boolean expression D0 is true is flagged. In the forth (last) sub-

iteration, each top-edge point for which the boolean expression D2 is true is flagged. 

Where the definitions of left-edge point, right-edge point, top-edge point and bottom-

edge point are the same as those of the SPTA and: 

 )).).((.( 625353621700 nnnnnnnnnnSD ++⊕++++=  (6.5)
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 )).).((.( 047575043122 nnnnnnnnnnSD ++⊕++++=  (6.6)
 

 )).).((.( 261717265344 nnnnnnnnnnSD ++⊕++++=  (6.7)
 

 )).).((.( 403131407566 nnnnnnnnnnSD ++⊕++++=  (6.8)
 

6.5 The Huang et al.'s Algorithm 
  Huang et al. (Huang et al., 2003) have proposed a fully parallel thinning algorithm 

which involves one iteration in each pass. It uses the information of 3×3 windows (i.e. 

the state of 8-neighbors) like the previous iterative algorithms, but in order to preserve 

connectivity, 3×4, 4×3 and 4×4 masks are also used. The algorithm is very efficient 

and robust to noise of contour. 

  All the following rules are applied simultaneously to each pixel p to determine 

whether it should be flagged or not: 

• If p has zero, one or eight black neighbors, it is not flagged. 

• If p has two black neighbors,  

It is flagged if the two neighbors are consecutive, i.e. n0 and n1 are 

black, or n1 and n2 are black, or n2 and n3 are black, …, or n7 and n0 are 

black. 

• If p has three black neighbors,  

It is flagged if the three neighbors are consecutive, or if they match any 

of the following templates: 

0 1 0 
1 p 0 
1 0 0  

0 1 0
0 p 1
0 0 1 

1 1 0
0 p 1
0 0 0 

0 1 1
1 p 0
0 0 0 

Where 1 denotes a black and 0 denotes a white pixel. 

• If p has four black neighbors, 

It is flagged if the four neighbors are consecutive, or if they match any 

of the following templates: 

1 1 0
0 p 1
0 0 1 

0 1 1
1 p 0
1 0 0 

• If p has five black neighbors, 

It is flagged if the five neighbors are consecutive. 

• If p has six black neighbors, 

It is flagged if the six neighbors are consecutive. 
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• If p has seven black neighbors, 

It is flagged if its white neighbor is a 4-neighbor. 

 

  These rules remove two-pixel-width rectangular patterns, resulting in loss of 

information or pattern connectivity. To obviate this problem, the pixel p is preserved 

(not flagged) if it matches any of the following templates: 

x 0 x 
1 p 1 
1 1 1 
x 0 x  

x 0 0
1 1 0
0 p 0
0 0 x 

x 0 0
0 p 0
0 1 1
0 0 x 

0 0 0 0 
0 p 1 0 
0 1 1 0 
0 0 0 0  

x 0 0 0 
0 p 1 0 
0 0 1 x  

x 1 1 x
0 p 1 0
x 1 1 x 

0 0 0 x
0 1 p 0
x 1 0 0 

  

At the end of a pass, if there is no flagged pixel the algorithm stops; otherwise the 

flagged pixels are removed and the next pass starts. 

 

6.6 Experimental Results 
  For evaluating the quality of the implemented skeletonization algorithms, the 

following items are considered: the width and connectivity of skeleton, excessive 

erosion and robustness to border noise. Rather than go into a long detailed 

explanation, ineffectiveness of the homotopy-preserving and Zhang-Suen's algorithms 

is simply shown by actual examples. In the first experiment, the algorithms are 

applied to the image of Figure 6.3(a), which contains simple geometrical objects. 

Figure 6.3(b) shows that the homotopy-preserving algorithm removes small objects, 

and Figure 6.4(d) shows that the Zhang-Suen's algorithm removes the 2×2 square and 

excessively erodes the two-pixel-width slanted line. The SPTA, DTSA and Huang et 

al.'s algorithms provide acceptable outputs. The results of the SPTA and DTSA are 

similar, but the former is more computationally expensive. 

  The algorithms are applied to the Farsi (Figure 6.4(a)) and English (Figure 6.5(a)) 

character set. As shown in Figure 6.4(b) and Figure 6.5(b), the homotopy-preserving 

algorithm does not preserve connectivity. The Zhang-Suen's algorithm removes some 

of the dots (Figure 6.4(d)), so some letters have the same skeleton, for example 'ت' 

and 'ث', which leads to misidentification. Also notice the skeleton of 'K', in the image 
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of Figure 6.5(d), which has been excessively eroded. Thus, the homotopy-preserving 

and Zhang-Suen's algorithms are applicable neither for Arabic/Farsi nor for English. 

The other three algorithms produce acceptable skeletons for both character sets. 

  To compare the five algorithms in the presence of border noise, the image of Figure 

6.6(a) is presented to each of them. Figure 6.6(b) shows that the homotopy-preserving 

algorithm is not robust to the border noise, and the skeleton is not of unitary 

thickness.  

 

  
(a) The input image (b) The skeleton using the 

homotopy-preserving algorithm 

  
(c) The skeleton using the SPTA (d) The skeleton using the 

Zhang-Suen's algorithm 

  
(e) The skeleton using the DTSA 

 

(f) The skeleton using the 
Huang et al.'s algorithm 

Figure 6.3. Applying the implemented skeletonization algorithm to an image 
containing simple geometrical patterns. 
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  The Zhang-Suen's algorithm produce no spurious branch, meaning its robustness to 

the border noise, but as illustrated before, it has serious drawbacks that prevent its 

applicability. Among the other three algorithms, Huang et al.'s is more robust to 

noise; the resultant skeleton has only one spurious branch. Figure 6.6(e) shows that 

the DTSA is very sensitive to the border noise. 

 

  
(a) The input image (b) The skeleton using the 

homotopy-preserving algorithm 

  
(c) The skeleton using the SPTA (d) The skeleton using the Zhang-Suen's 

algorithm 

  
(e) The skeleton using the DTSA 

 

(f) The skeleton using the Huang et al.'s 
algorithm 

Figure 6.4. Applying the implemented skeletonization algorithm to the Farsi character 
set. 
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(a) The input image (b) The skeleton using the 

homotopy-preserving algorithm 

  
(c) The skeleton using the SPTA (d) The skeleton using the Zhang-Suen's 

algorithm 

  
(e) The skeleton using the DTSA 

 

(f) The skeleton using the Huang et al.'s 
algorithm 

Figure 6.5. Applying the implemented skeletonization algorithm to the English 
character set. 
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(a) The input image (b) The skeleton using the 

homotopy-preserving algorithm 

  
(c) The skeleton using the SPTA (d) The skeleton using the Zhang-Suen's 

algorithm 

  
(e) The skeleton using the DTSA 

 

(f) The skeleton using the Huang et al.'s 
algorithm 

Figure 6.6. Applying the implemented skeletonization algorithm to a Farsi word 
image with noisy border. 
 

  Overall, these experiments show the superiority of the Huang et al.'s algorithm over 

others, as verified by many other experiments. 

 

6.7 Postprocessing 
  A skeletonization algorithm usually produces a distorted skeleton with some 

spurious branches which need a postprocessing step to be removed. The technique 

described here uses the maximum circle idea. Since the local features of the pattern 

are affected by the algorithm, the original pattern is also used to modify the skeleton.  

  Definition 6.1. A feature-point is a black pixel in the skeleton having a connectivity 

number other than two; i.e.  p is a feature-point if and only if Cn(p) ≠ 2. 
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  Definition 6.2. An end-point is a feature-point having a connectivity number of one; 

i.e.  p is an end-point if and only if Cn(p) = 1. An end-point can be deleted without 

affecting the pattern connectivity.  

 

The algorithm is as follows: first, for each end-point ep, the radius Rep of the largest 

circle of black pixels within the original image that is centered at ep is evaluated 

(Algorithm 6.1). Then, the nearest non end-point nep to ep is found, and the link 

between ep and nep is removed if dist(ep,nep) < Rep + Rnep. Where Rnep is the radius of 

the largest circle of black pixels within the original image that is centered at nep. 

  Figure 6.7 shows the advantage gained by the postprocessing step.  

 
 
Let I[r,c] be the binary input image having R rows and C columns, and the 
background is represented by zeros. 
Let Center(rc,cc) be the center of the largest circle of black pixels. 
 
 
maxRadius = min(min(rc, R – rc – 1), min(cc, C – cc – 1)); 
 
if I[rc,cc] == 0 
{ 
  return 0; 
} 
 
for r = 1 to maxRadius 
{ 
  for r1 = rc – r to rc + r 
  { 
    for c1 = cc – r to cc + r 
    { 
      if rccrr cc ≤−+− 2

1
2

1 )()(  AND I[r1,c1] == 0 
      { 
        retrun r; 
      } 
    } 
  } 
} 
 
return r; 
 
Algorithm 6.1 Evaluating the radius of largest circle of black pixels at a point 
 

   
(a) The input image 

 

(b) The skeleton using the 
Huang et al.'s algorithm 

 

(c) The skeleton after 
postprocessing 

Figure 6.7. Postprocessing after skeletonization. 
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CHAPTER 7 

STRUCTURAL FEATURES OF 

ARABIC/FARSI WORDS 
 

 

7.1 Introduction 
  A method to extract structural features from Arabic/Farsi word images is presented 

in this chapter. Structural features are capable of tolerating many variations, but they 

are not robust to noise, and hard to extract. Since the recognition is based on 1D 

HMMs, the features must preserve the sequential characteristics of words, meaning 

that a 2D word image must be converted to a 1D signal so that the relative ordering of 

the characters is retained. The basic idea of the proposed method is based on the 

techniques described in (Khorsheed, 2000; Almuallim and Yamaguchi, 1987). The 

skeleton of a word image is decomposed into a number of links in a certain order. 

Then, each set of links that from a loop (cycle) is replaced with a special link 

representing the loop. Each link is then represented by a 10D feature vector. The 

features are the curvature of the link, its length relative to the word height, the 

position of the its two ends relative to the first row of the image, the connection type 

and four curved features. The features are irrespective of the baseline location, so the 

difficult and crucial problem of baseline detection is avoided 

 

7.2 Preprocessing 

  The preprocessing step has two duties: 1) normalization for word height; 2) skeleton 

modification. Before skeletonization the input word is resized to have a height of 128 

pixels. This is done by detecting the word area that is the minimum rectangle 

containing the word in the input image. In order to be robust to noise, the upper side 

of the rectangle is set to be the first row having a horizontal white run-length with a 

length of higher than 2, and the lower side of the rectangle is set to be the last row 
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having a horizontal white run-length with a length of higher than 2. The left side of 

the rectangle is set to be the first column having a vertical white run-length with a 

length of higher than 2, and similarly the right side of the rectangle is set to be the last 

column having a vertical white run-length with a length of higher than 2. 

  Before link extraction, the skeleton is modified to have as small pixels as possible. A 

pixel p is removed if matches any of the following templates or their rotations at 

angles 90o, 180o and 270o: 

0 1 x 
1 p 0 
x 0 0  

 x 1 x 
1 p 1 
x 0 x 

 
 

  These rules actually remove 4-connectivity of the pattern, and they must be applied 

sequentially in order to preserve 8-connectivity. Figure 7.1 illustrates how these rules 

modify a skeleton by removing some pixels. 

  
(a) The input skeleton 

 

 
Figure 7.1. Skeleton modification by removing pixels that match the templates. 

 

7.3 Link Extraction 
  In speech recognition and online handwritten recognition, the input signal is one-

dimensional itself, but here the 2D word image must be converted to a 1D observation 

sequence. This is done by tracing the skeleton of the word image to extract its links. A 

link is a set of neighboring pixels between two feature-points. So a link is extracted by 

starting from a feature-point and then moving from the current pixel to its adjacent 

until reaching another feature-point. The process is started from the right-most end-

point. In order to extract the links in a canonical order, the following two rules are 

applied: 1) if fp1 and fp2 are two feature-points such that fp1 is located to the right of 

fp2, then all links branching from fp1 must be extracted before any of the branching 

links from fp2; 2) the first link that must be visited, from the links branching from a 

feature-point fp, is the one that makes the minimum angle with the current link 

(ending at fp) and the other branching links must be visited in a clockwise order. 
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Figure 7.2 shows two examples of visiting links in the canonical order. Different 

types of feature-points are also shown in the Figure.  

  Definition 7.1. A dot is a feature-point having a connectivity number of zero; i.e.  p 

is a dot if and only if Cn(p) = 0. 

  Definition 7.2. A branch-point is a feature-point having a connectivity number of 

three; i.e.  p is a branch-point if and only if Cn(p) = 3. 

  Definition 7.3. A cross-point is a feature-point having a connectivity number of four; 

i.e.  p is a cross-point if and only if Cn(p) = 4. 

 

  
(a) (b) 

Figure 7.2. Two examples of visiting links in the canonical order. Lower-numbered 
links are visited before higher-numbered ones. 

 
7.4 Loop Extraction 
  Loop extraction makes the number of strokes smaller, thus leading to lower 

computational cost and easier modeling. Loops are important distinctive features as a 

number of letters have loops inside. A loop can be of any of the following types: 1) 

simple-loop, which is a single link beginning from a feature-point and returning to the 

same point again; 2) multi-link-loop, which is a loop consisting of two or more links 

forming a closed path; 3) double-loop, which is a loop that contains one or more other 

loops (Figure 7.3). Simple-loop can be seen in letters 'ف  ـ' ,'ظ' ,'ط' ,'ض' ,'ض  ـ' ,'ص' ,'ص  ـ', 

' and sometimes 'ـ ھ ' ,'ه' ,'و' ,'م' ,'م  ـ' ,'ق' ,'ق  ـ' ,'ف' ـج   ' ,'ج' ,' ـچ   ' ,'چ' ,' ـح   -Multi .'خ' and ,'خ  ـ' ,'ح' ,'

link-loop can be seen in letters 'ـ غ ' ,'ـغ  ـ' ,'ـ ع ' ,'ـع  ـ' ,'ـ ظ ' ,'ظ' ,'ـ ط ' ,'ط' ,'ـ ض ' ,'ـضـ' ,'ـص' ,'ـصـ', 

' فــ  .'ـ خ ' and 'ـخ  ـ' ,'ـ ح ' ,'ـح  ـ' ,'ـچ' ,'ـچـ' ,'ـج' ,'ـجـ' and sometimes 'ـھ' ,'ـو' ,'ـم' ,'ـمـ' ,'ـق' ,'ـقـ' ,'ـف' ,'

Double-loop can be seen in letters 'ھ  ـ' and 'ـھ  ـ'. Simple-loops are straightforward to 

detect; Algorithm 7.1 is to find multi-link-loops and double-loops in a graph with 

vertices corresponding to feature-points of a word skeleton and edges corresponding 

to the links between the feature-points. We use the edge-list representation to describe 

a word graph.  
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Figure 7.3. Examples of different types of loops. 

 
 
Let G(V,E) be the graph with the set of vertices V, and the set of edges E. 
Let L be a list for DFS, where L[0] denotes the first element. 
 
for each vertex v in V 
{ 
  L.push_front(v); 
  while L is not empty 
  { 
    u = L.front(); // = L[L.size()-1].  
    Let e(u,t) be an unvisited neighboring edge of u. 
    if no such edge exists 
    { 
      L.pop_front(); // remove u from the list. 
    } 
    else 
    { 
      Mark e as visited. 
      if there is an unvisited edge d between t and L[i], a vertex in L 
      { 
        Mark d as visited. 
        Now, {(L[i],L[i+1]), (L[i+1],L[i+2]), ...,  
          (L[L.size()-2],L.front()), (L.front(),t), (t,L[i])} is a cycle. 
        Replace the cycle with a special cyclic edge c (an edge that  
          represents the cycle). 
        if the cycle has already contained a cyclic edge 
        { 
          c is marked as a double-cyclic edge (or a double-loop). 
        } 
      } 
      L.push_front(t); 
    } 
  } 
} 
 
Algorithm 7.1. A DFS algorithm for detecting multi-link-loops and double-loops in a 
word graph. 
 

7.5 Structural Features 

  After forming the word graph, each edge, corresponding to a link or a loop of the 

original word, is transformed into a 10D feature vector. The features have the 

following descriptions: 

• Normalized length feature (f1): The length of an edge (the number of its 

pixels) divided by the height of the word image (128). This feature is 

defined to be 2 for loops, and 0 for dots. f1 is invariance against translation, 

rotation and scaling. 
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• Curvature feature (f2): The curvature of an edge, defined as the proportion 

of the Euclidean distance between the two vertices of the edge by its actual 

length. Thus, the curvature becomes zero for a simple loop, and one for a 

straight line. This feature is defined to be 2 for multi-link-loops, 3 for 

double-loops, and 4 for dots. f2 is invariance against translation, rotation 

and scaling. 

• Slope feature (f3): The slope of the line between the two vertices of an 

edge partitioned into 8 equal interval, labeled 1, 2, ..., 8. This feature is 

defined to be 0 for loops and dots. f3 is invariance against translation and 

scaling.  

• Connection type feature (f4): The (connection) type of the two endpoints of 

an edge (to the previous and next edges). It has one of the following 

values: 

 
Value Type of beginning vertex Type of ending vertex 

0   end-point   end-point 
1   end-point   branch-point 
2   end-point   cross-point 
3   branch-point   end-point 
4   branch-point   branch-point 
5   branch-point   cross-point 
6   cross-point   end-point 
7   cross-point   branch-point 
8   cross-point   cross-point 
9   when the edge is a dot 
10   when the edge is a loop 

 
      f4 is invariance against translation, rotation and scaling. 

• Endpoint distance feature (f5): The normalized distance from the more 

distance vertex of an edge, from to the middle row of the word image, to 

the first row. This feature is defined to be 0 for loops, and helps 

determining whether a dot is above or below a character. f5 is invariance 

against horizontal translation and scaling. 

• Number of segments feature (f6): The number of segments of the polyline 

fitted to an edge (Algorithm 7.2). f6 is invariance against translation, 

rotation and scaling. 

• Curved features (f7-f10): Percentage of pixels above the top feature-point, 

below the bottom feature-point, left of the left feature point, and right of 
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the right feature point respectively. These features are invariance against 

translation and scaling.  

 
 
Let p be the set of vertices to be fitted by a polyline, where p[0] denotes 
the first element. 
 
first = 0; // index of the first point of the current line segment 
last = 0; // index of the last point of the current line segment 
 
for current = 1 to size(p) 
{ 
  d = ∑

=

current

firsti

(perpendicular distance between p[i] and the straight connecting  

                        p[first] and p[current]); 
 
  if d > (current – first + 1) * ERROR 
  { 
    p[first], p[first+1], ..., p[last] is a line segment. 
    first = last; 
  } 
  last = current; 
} 
 
p[first], p[first+1], ..., p[last] is the last line segment. 
 
Algorithm 7.2. Fitting a polyline to a set of points. 
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CHAPTER 8 

HIDDEN MARKOV MODELS FOR 

HANDWRITTEN WORD 

RECOGNITION 
 

 

8.1 Introduction 
  The output of a real-world process may be observed in the form of a continuous or 

discrete signal. A primary problem of interest is to build models for such real-world 

signals. A model for a signal is accompanied by several advantages. First, it provides 

the basis for a theoretical description of a signal processing system which can be used 

to process the signal to have a desired output. Second, a model can provide valuable 

information about the signal source without having to have the source available. 

Finally and most importantly, models actually work well and enable us to realize 

important practical systems (Rabiner, 1989).  

  There are several ways to model a signal depending on its type and properties. 

Generally, a signal model can be deterministic or stochastic (statistical). The 

deterministic models use some known properties of the signal and estimate parameter 

values of the model. On the other hand, in the statistical models, a parametric random 

process characterizes the signal. For applications such as speech recognition and 

handwritten recognition that are accompanied by uncertainty, stochastic models 

achieve better performance. The Hidden Markov Model (HMM), also referred to as 

Markov sources or probabilistic functions of Markov chains in the communication 

literature, is a widely used statistical model.  

  In this chapter, first we review the basic theory of Markov models, and then 

explaining HMMs. Finally, the theory is extended to continuous HMMs. All 

mathematical formulations needed to be implemented and some implementation 

issues are discussed. 
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8.2 Markov Models 
  An important class of stochastic processes is Markov processes, which has some 

special properties making them mathematically manageable. It is often desirable to 

analyze a sequence of random variables that are not independent, but rather the value 

of each variable depends on previous elements in the sequence. In a Markov process, 

the value of the current random variable is adequate to predict the value of future 

random variables i.e. future behavior of the process. In other words, future elements 

of the sequence are conditionally independent of past elements, given the present 

element. Let X = (X1, …, XT) be a sequence of random variable taking values in the 

finite state space S = {s1, …, sN}. The Markov properties are: 

 )|(),...,,|( 1211 tkttkt XsXPXXXsXP === ++  (8.1) 
 

 )|()|( 121 XsXPXsXP ktkt ===+  (8.2) 
 

The second property is called time invariance. If the sequence X has both Markov 

properties, it is said to be a Markov chain. 

  A Markov chain can be completely descried by the stochastic initial state vector ∏ 

and the stochastic transition matrix A: 

 )( 1 ii sXP ==π  (8.3) 
 

 a ij = P(Xt+1 = sj | Xt = si) (8.4) 
 

  Where ii ∀≥ ,0π , and 1
1

=∑ =

N

i iπ , and jia ij ,,0 ∀≥ , and iaN

j ij ∀=∑ =
,1

1
. 

  To illustrate the ideas, consider an example about weather prediction which is about 

trying to guess what the weather will be tomorrow based on a history of weather 

observations in the past. For simplicity, assume that there are three types of weather: 

Sunny, Cloudy and Rainy, and the weather lasts all day, i.e. it doesn't change from one 

state to another in the middle of the day. If we make the Markov assumption (which is 

not valid in real world), then the 3-state finite state machine of Figure 8.1 with 

arbitrary state transition probabilities represents a Markov chain. Note that the sum of 

probabilities of outgoing arcs from each state is 1. From Figure 8.1 it is clear that a 

Markov model can be taught of as a nondeterministic finite state machine with 

probabilities attached to arcs. 
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Figure 8.1. A Markov model for the weather prediction example. 

 

  Let s1 = Sunny, s2 = Cloudy and s3 = Rainy, and the weather on the first day be 

Sunny. Then: 

∏ = (1.0, 0.0, 0.0) 
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4.03.03.0
2.06.02.0
1.01.08.0

A  

  The probability of a sequence of states X1, …, XK is easily calculated for a Markov 

chain: 

 P(X1, ..., XK) = P(X1) P(X2 | X1) P(X3 | X1, X2) ... P(XK | X1, ..., XK-1) 

                       = P(X1) P(X2 | X1) P(X3 | X2) ... P(XK | XK-1) 

   = ∏
−

=
+

1

1
11

K

t
XXX tt

aπ  
 

(8.5) 

 

  So in the above example, the probability that the weather for the next seven days will 

be Sunny, Sunny, Rainy, Rainy, Sunny, Cloudy, Sunny, or more formally the 

probability of the observation sequence O = s1, s1, s3, s3, s1, s2, s1, can be calculated 

as: 

P(O | Model ) = 1π P(s1 | s1) P(s1 | s1) P(s3 | s1) P(s3 | s3) P(s1 | s3) P(s2 | s1) P(s1 | s2) 

            = 1π a11 a11 a13 a33 a31 a12 a21 

            = 1.0 (0.8) (0.8) (0.1) (0.4) (0.3) (0.1) (0.2) 

            = 1.536 × 10-4 (8.6) 
 

  Generally, when we talk about Markov models, we mean first-order Markov models 

in which a history of size one is used to predict future behavior. But, sometimes the 

future states require a larger history in order to be predicted. In an nth order Markov 
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model, n previous states are used to predict the next state. In general, by elaborating 

the state space as a cross-product of the finite previous states, every nth order Markov 

model can be encoded in a first-order Markov model. So theoretically, the first-order 

Markov assumption is not restrictive.  

 

8.3 Hidden Markov Models 
  HMMs are powerful tools in the field of signal processing. Despite their limitations, 

variants of HMMs are still the most widely used technique in modern speech 

recognition systems. The similarity between speech and handwritten text, which both 

are made up of symbols with ambiguous boundaries and variations in appearance, has 

suggested extending the application of the HMMs to handwritten text recognition. 

The HMM does not model the whole pattern as a single feature vector; rather, it 

explores the relationship between consecutive segments of a pattern, since each 

segment is relatively smaller and easier to be characterized (He and Kundu, 1991). 

  A HMM can be considered as a nondeterministic finite state machine where each 

state is associated with a random function. Within a discrete period of time t, the 

model is assumed to be in some state and generates an observation by a random 

function of the state. Based on the transition probability of the current state, the 

underlying Markov chain changes to another state at time t+1. The state sequence that 

the model passes through is unknown, only some probabilistic function of the state 

sequence that is the observations produced by the random function of each state can 

be seen. A HMM can also be considered as a double stochastic process or a partially 

observed stochastic process. A HMM is characterized by the following elements: 

 N: The number of states of the model (8.7) 
 

 S = {s1, s2, ..., sN}: The set of states (8.8) 
 

 ∏ = { iπ = P(si at t = 1)}: The initial state probabilities (8.9) 
 

 A = {a ij = P(sj at t+1 | si at t)}: The state transition probabilities (8.10) 
 

 M: The number of observation symbols (8.11) 
 

 V = {v1, v2, ..., vM}: The set of possible observation symbols (8.12) 
 

 B = {bi(vk) = P(vk at t | si at t}: The symbol emission probabilities (8.13) 
 

 Ot: The observed symbol at time t (8.14) 
 

 T: The length of observation sequence (8.15) 
 



 78

 λ = (A, B, ∏): The compact notation to denote the HMM. (8.16) 

  Obviously, there are the following three constraints: ∑
=

=
N

i
i

1
1π , ia

N

j
ij ∀=∑

=

,1
1

 and 

ivb
M

k
ki ∀=∑

=

,1)(
1
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  The structure of the state transition matrix A determines the topology of the HMM. If  

jia ij ,0 ∀≠  meaning that each state in the model is reachable from any state within 

one transition, the model is called fully-connected or Ergodic. The widely used 

topology in speech/text recognition is the so called Left-to-Right (LR) or Bakis model 

in which lower numbered states account for observations occurring prior to higher 

numbered states.  The temporal order in LR-HMMs is imposed by introducing 

structural zeros to the model in the form of the constraint ∏ = {1, 0, ..., 0} and 

j  ,0 >= ia ij  meaning that the model begins at the first (i.e. left most) state and at 

each time instant it can only proceed to the same or a higher numbered state. As a 

further constraint, in LR-HMM the number of forward jumps at each state is often 

limited in order to restrict large state changes, i.e. ∆+>= ija ij   ,0  for some fixed ∆ 

(Figure 8.2). 

 

 
(a) A 5-state Left-to-Right HMM 

 
(b) A 5-state Left-to-Right HMM with maximum relative forward jump of 2  

Figure 8.2. Left-to-Right HMMs. 
 

  The following example helps understand the application of HMMs. Suppose you 

were locked in a room for several days, and you were asked about the weather 
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outside. The only available piece of information is whether the person who comes into 

the room giving your daily meal is carrying an umbrella or not, so V = {True, False} 

for the observation of carrying umbrella. Let's assume P(Umbrella | Sunny ) = 0.1, 

P(Umbrella  | Cloudy ) = 0.3 and P(Umbrella  | Rainy ) = 0.7. We want to draw 

conclusion form our observations (carrying an umbrella or not) about the weather 

outside as it is hidden from us. Let wi be the weather condition on day i, and the 

boolean value of ui mean whether you see an umbrella on the same day. Using Bayes' 

rule: 

 
),...,(

),...(),...,|,...(
),...|,...,(

1

111
11

n

nnn
nn uuP

wwPwwuuP
uuwwP =  

(8.17) 

 
  The probability P(w1, ...,wn) is the same as the Markov model of the previous 

example, and P(u1, ...,un) is the apriori probability of seeing a particular sequence of 

umbrella events. The probability P(u1,...,un | w1,...,wn) can be calculated as 

)|(1 ii
n
i wuP=∏ if we assume, for all i, given wi, ui is independent of all uj and wj for all 

j ≠ i. 

  For the weather prediction, we can therefore omit the apriori probability P(u1, ...,un) 

as it is independent of the weather. Based on the first-order Markov assumption, the 

likelihood L, a measure proportional to the probability, can be computed as: 

  P(w1,..., wn | u1, ..., un) ∝  

  L(w1,..., wn | u1, ..., un) = P(u1,...,un | w1,..., wn) P(w1, ..., wn) 

                                                            = )|()|( 111 −== ∏∏ ii
n
iii

n
i wwPwuP  (8.18) 
 

  Suppose the day you were locked in was sunny. The next day, the person carried an 

umbrella into the room, and you would like to predict the weather on the next day. 

  First we calculate the likelihood assuming the next day to be sunny: 

 L(w2 = Sunny | w1 = Sunny, u2 = True) = P(u2 = True | w2 = Sunny) .  

  P(w2 = Sunny | w1 = Sunny) =  0.1 (0.8) = 0.08 (8.19) 
 

  Then we calculate the likelihood assuming the next day to be cloudy: 

 L(w2 = Cloudy | w1 = Sunny, u2 = True) = P(u2 = True | w2 = Cloudy) .  

  P(w2 = Cloudy | w1 = Sunny) =  0.3 (0.1) = 0.03 (8.20) 
   

  Finally for the next day to be rainy: 

 L(w2 = Rainy | w1 = Sunny, u2 = True) = P(u2 = True | w2 = Rainy) .  
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  P(w2 = Rainy | w1 = Sunny) =  0.7 (0.1) = 0.07 (8.21) 
 

  Thus, it is more likely that the next day was sunny. 

 

8.4 The Three Fundamental Problems for HMMs 
  Most applications of HMMs need to solve the following problems: 

  Problem 1. Given a model λ = (A, B, ∏), how do we efficiently compute P(O | λ), the 

probability of occurrence of the observation sequence  O = O1, O2, ..., OT. 

  Problem 2. Given the observation sequence O and a model λ, how do we choose a 

state sequence S = s1, s2, ..., sT so that P (O, S | λ), the joint probability of the 

observation sequence O = O1, O2, ..., OT and the state sequence given the model, is 

maximized. In other words, we want to find a state sequence that best explains the 

observation. 

  Problem 3. Given the observation sequence O, how do we adjust the model 

parameters λ = (A, B, ∏) so that  P (O | λ) or P (O, S | λ) is maximized. In other words, 

we want to find a model that best explains the observed data. 

 

8.4.1 Solution to Problem 1 

  It deals with computing the probability that the model λ produces the observation 

sequence O. The most straightforward way to compute P (O | λ) is to find P (O | S, λ) 

for a fixed state S, multiply it by P (S | λ), and then sum up over all possible state 

sequences of length T : 

 ∑=
S

SPSOPOP )|().,|()|( λλλ  (8.22) 

  Since 
TT sssssss aaaSP

132211
...)|(

−
= πλ and )()...()(),|( 21 21 Tsss ObObObSOP

T
=λ , 

Equation (8.22) can be rewritten as: 

 ∑ −
=

S
Tssssssss ObaObaObOP

TTT
)()...()()|(

122111 21πλ  (8.23) 

  Computing the probability by Equation (8.23) is not practical since there are NT state 

sequences, requiring (2T-1)NT multiplications and NT-1 additions. Thus, an efficient 

procedure should be used instead. There are two alternatives: the forward procedure 

and the backward procedure. 

  The forward procedure calculates the forward variable αt(s) for each state s defined 

as: 

 αt(s) = P(O1, O2, ..., Ot, st = s | λ) (8.24) 
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  That is the probability of the partial observation sequence up to time t and the state s, 

given the model λ. The following three-step procedure computes αt(s) for all instances 

of time: 

1. Initialization: 

 NsObs ss ≤≤= 1),()( 11 πα  (8.25) 
2. Induction: 

 
11,1),(])([)( 1
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(8.26) 

  This calculates the forward probability of state r at time t+1 based on the joint 

probability of the previous forward variables from all states at time t and the transition 

probabilities from each of those states to state r. It is due to the fact that state r can be 

reached (with probability a sr) independently from any of the N states at time t. 

3. Termination: 
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(8.27) 

  Calculating the forward variables over all states at all instances of time requires N(N-

1)(T-1)+(N-1) additions and N + N(N+1)(T-1) multiplications, i.e. of the order of N2T 

as compared to 2TNT required for the direct method. 

  The backward procedure follows the same approach but in the opposite direction by 

calculating the backward variable βt(s) for each state s defined as: 

 βt(s) = P(Ot+1, Ot+2, ..., OT | st = s, λ) (8.28) 

  That is the probability of the observation sequence from t+1 to T given the state s at 

time t and the model λ. Like αt(s), βt(s) can be computed by the following three-step 

procedure for all instances of time: 

1. Initialization: 

 NssT ≤≤= 1,1)(β  (8.29) 
2. Induction: 
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(8.30) 

3. Termination: 

 
∑
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(8.31) 

  Computing P(O | λ) using the backward variables also involves of the order of N2T 

calculations. 
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8.4.2 Solution to Problem 2 

  Here we have to find the most likely state sequence (the hidden part of the model) 

associated with an observation sequence. The famous Viterbi algorithm is a dynamic 

programming approach to find the optimal path. It intermediately keeps the best 

possible state sequence at each instance of time for each of the N states, and finally it 

gives the best path for each of the N states as the last state for the observation 

sequence, from which the one with highest probability is selected.  

  The four-step Viterbi algorithm follows the same strategy as the forward procedure 

but it replaces summation with maximization (or minimization, depending on the 

optimality criterion). For a given the observation sequence O = O1, O2, ..., OT and the 

model λ, the algorithm involves the following steps: 

1. Initialization: 

 )()( 11 Obs ssπδ =  (8.32) 
 

 Nss ≤≤= 1,0)(1ψ  (8.33) 
  Where δt(s) denotes the accumulated weight when we are in state s at time t, and 

ψt(s) represents the state at time t-1 which has the lowest cost (maximum probability) 

corresponding to the state transition to state s at time t. 

2. Induction:  

 )(])([max)( 11 tsrstNrt Obars −≤≤
= δδ  (8.34) 

 
 TtNsars rst

Nr
t ≤≤≤≤= −

≤≤
2,1],)([maxarg)( 1

1
δψ  (8.35) 

3. Termination: 
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* sP TNs
δ

≤≤
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4. Path Backtracking: 

 1....,,2,1),( *
11

* −−== ++ TTtqq ttt ψ  (8.38) 

  Now, Q* = {q1
*, q2

*, ..., qT
*} is the optimal state sequence, and P* is the joint 

probability of the observation sequence O and the optimal state sequence Q*. 

  Like the forward and backward procedures, the complexity of the Viterbi algorithm 

is of the order of N2T. 

  A direct implementation of the above algorithm does not take care about underflow. 

It is clear that the probabilities we are calculating involve multiplying together very 

small numbers, which will rapidly underflow the range of floating point numbers on a 
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computer. To remedy this problem, the Viterbi algorithm is changed to work with 

logarithms. This not only solves the underflow problem, but also speeds up the 

computation, since addition is much faster than multiplication. A quick 

implementation of the Viterbi algorithm is highly desirable because it is a runtime 

algorithm, and not a training algorithm which can usually proceed offline. The 

efficient and practical version of the Viterbi algorithm is given below: 

0. Preprocessing: 

 Nsss ≤≤= 1),log(~ ππ  (8.39) 
 

 Nsraa rsrs ≤≤= ,1),log(~  (8.40) 
 

 TtNsObOb tsts ≤≤≤≤= 1,1)),(log()(~  (8.41) 

1. Initialization: 

 )(~~)(~
11 Obs ss += πδ  (8.42) 

 
 Nss ≤≤= 1,0)(1ψ  (8.43) 
2. Induction:  

 )(~]~)(~[max)(~
11 tsrstNrt Obars ++= −≤≤

δδ  (8.44) 
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3. Termination: 
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4. Path Backtracking: 

 1....,,2,1),( *
11

* −−== ++ TTtqq ttt ψ  (8.48) 

  Now, Q* = {q1
*, q2

*, ..., qT
*} is the optimal state sequence, and exp(P*) is the joint 

probability of the observation sequence O and the optimal state sequence Q*. 

  You may notice that the Viterbi algorithm only involves multiplications, but the 

forward/backward algorithm involves additions too. Logarithms can still be used to 

prevent floating point underflow, here we need to calculate log(x+y) which can be 

achieved by the following technique (Manning and Schütze, 1999): 
 
  if y – x > log big 
    return y; 
  else if x – y > log big 
    return x; 
  else 
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    return min(x,y) + log(exp(x - min(x,y)) + exp(y – min(x,y))); 
 
  Where big is suitable large constant like 1030. 

 

8.4.3 Solution to Problem 3 
  There are two general approaches for estimating the model parameters (training) 

depending on the probability that is chosen for maximization. The segmental k-means 

(Juang and Rabiner, 1990) algorithm adjusts the parameters so that P (O, Q*| λ) is 

maximized, where Q* is the optimal state sequence corresponding to the observation 

sequence O. The Baum-Welch algorithm (Rabiner, 1989) adjust the parameters to 

increase P (O | λ) until a maximum value is reached, here P (O | λ) involves summing 

up P (O, S | λ) over all possible state sequences S, meaning that the algorithm does not 

focus on a particular state sequence. The segmental k-means algorithm is often 

preferred, because it requires much less computation as compared to the Baum-Welch 

algorithm, and also in text recognition applications, both modeling and decoding must 

be performed on the observation datasets and the criterion P (O, Q*| λ) seems quite 

natural for both these tasks. 

 

8.4.4 The Segmental K-Means Algorithm 

  The segmental k-means algorithm requires a number of observation (training) 

sequences. Let there are w number of such sequences. Each sequence 

iTOOOO ,...,, 21= consists of Ti observation vectors, so we have∑
=

w

i
iT

1
observation 

vectors. Instead of w number of such sequences, if one long sequence is given, it can 

be segmented into an arbitrary number of short sequences. Each observation symbol 

Oi is assumed to be a vector of dimension of one or higher; and all observation 

vectors must be of equal dimension. The algorithm consists of the following steps: 

1. Randomly choose N observation vectors C1,C2,...,CN, and assign each of the 

remaining observation vectors to one of these N vectors from which its Euclidean 

distance is minimum. Therefore N clusters, each called a state, numbered from 1 to N 

are formed. The notation sOt ∈ means that the tth observation symbol Ot of an 

observation sequence is assigned to state s. This initial choice of clustering does not 

influence the final HMM, but it can decide the number of iterations for training. To 

make the initial choice of clusters as widely distributed as possible a good strategy 
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when w ≥ N is to choose C1 as the first observation vector of the first sequence, C2 as 

the second observation vector of the second sequence and so on (Dugad and Desai, 

1996). This step provides a good initialization for the complete training procedure. 

2. Calculate the initial and the transitions probabilities: 
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(8.50) 

 

3. Calculate the mean and covariance matrix for each state: 
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4. Calculate the probability distribution for each observation vector for each state: 
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(8.53) 

 

  It has been proved that the algorithm converges to the state-optimized likelihood 

function for a wide range of density functions including Gaussian. Here, the Gaussian 

density is optionally chosen.  

5. Use the Viterbi algorithm with the new probabilities to find the optimal state 

sequence Q* for each training sequence. An observation vector is reassigned a state if 

its original assignment is different from the corresponding estimated optimal state, i.e. 

assign Ot to s if qt
* = s. 

6. If any vector is reassigned a new state in Step 5, then use the new state assignment 

and repeat Step 2 to Step 6; otherwise, stop. 

 

8.4.5 The Baum-Welch Algorithm 
  The Baum-Welch algorithm is an Expectation-Maximization (EM) algorithm. The 

EM algorithm is a widely used approach to learning in the presence of unobserved 

(hidden) variables. It searches for a maximum likelihood hypothesis by iteratively re-

estimating the expected values of the hidden variables given its current hypothesis, 
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then recalculating the maximum likelihood hypothesis using these expected values for 

the hidden variables. In other words, the current hypothesis is used to estimate the 

unobserved variables, and then the expected values of these variables are used to 

calculate an improved hypothesis. It can be proved that the algorithm converges to a 

local maximum hypothesis (Mitchell, 1997).  

  An initial hypothesis (HMM) can be constructed in any way, but a reasonable initial 

estimate is obtained by using the first four steps of the segmental k-means algorithm. 

First, we should introduce some concepts and formulas that will be used in the final 

formulas. Consider γt(s) = P(st = s | O, λ) that is the probability of being in state s at 

time t given the observation sequence O and the model λ. Using the Bayes law we 

have: 
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  Where αt(s) and βt(s) are the forward and backward variables. 

  We also define ξt(r,s) = P(st = r, st+1 = s | O, λ) that is the probability of being in state 

r at time t and making a transition to state s at time t+1. Using the Bayes law and the 

causality property of Markov chain, it can be shown that: 
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  If γt(s) is summed up from t = 1 to T, the expected number of times state s is visited 

is obtained, and if it is summed up only to T-1, the expected number of transitions out 

of state s is obtained. Similarly, if ξt(r,s) is summed up from t = 1 to T-1, the expected 

number of transitions from state r to s is obtained: 
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  γt(r) and ξt(r,s) can be related by summing up ξt(r,s) over s: 
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  The Baum-Welch re-estimation formulas are now defined as follows: 

 Nsss ≤≤= 1),(ˆ 1γπ  (8.59) 



 87

 
 

Nsrrsra
T

t
t

T

t
trs ≤≤= ∑∑

−

=

−

=

,1,)(),(ˆ
1

1

1

1
γξ  

 
(8.60) 

 
 

Nsssvb
T

t
t

T

vOt
tks

kt

≤≤= ∑∑
===

1,)()()(ˆ
1,1

γγ  
 

(8.61) 

 

  The re-estimation formula for sπ is simple the probability of being in state s at time 

1. The formula for a rs is the ratio of expected number of transitions from state r to 

state s to the expected number of times making a transition out of state r. The formula 

for bs(vk) is the ratio of the expected number of times of being in state s and observing 

symbol vk to the expected number of times of being in state s. 

 

8.5 Continuous Hidden Markov Models 
  Thus far, HMMs have been applied for process with discrete observation sequences, 

i.e. all observation vectors belong to a finite alphabet V = {v1, v2, ..., vM}. In such a 

case, the model is a Discrete Hidden Markov Model (DHMM). The discrete 

observations can be the indices of codebook obtained by Vector Quantization (VQ) 

which is a clustering technique for producing an approximation of distribution of a 

multi-dimensional signal in a codebook. VQ is responsible for loosing some 

information from the signal. The loss is due to the quantization error (distortion) that 

can be reduced but not be eliminated by increasing the codebook size (number of 

clusters).  

  A Continuous Hidden Markov Model (CHMM) is an extension of DHMM to 

overcome the distortion problem. CHMM has more parameters than DHMM, thus 

requiring more memory and more deliberate techniques to initialize the model as it 

may easily diverge with randomly selected initial parameters.  

  In CHMM the parameter B is represented differently as here there is not a finite set 

of observation symbols V. The probability density function of an observation vector ot 

in each state is considered to be a multivariate Gaussian mixture (other distributions 

are also valid, but the multivariate Gaussian mixture is general and proved to be 

promising): 
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  where: 

 cim: The mth mixture gain coefficient in state i (8.63) 
 

 μim: The mean of the mth mixture in state i (8.64) 
 

 ∑im: The covariance of the mth mixture in state i (8.65) 
 

 M: The number of mixtures used (8.66) 
 

 K: The dimensionality of the observation space (8.67) 
 

  The following constraints have to be satisfied to ensure the consistency of the model: 
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  The covariance matrix ∑ can be simplified by using a diagonal matrix with elements 

representing the variance of each mixture. This approximation reduces the 

computational cost to a great extent, but the number of mixtures should be increased 

to make the model work better. 

  In the case of multi-mixture CHMMs, the re-estimation formulas have to be 

modified. Let γt(i,m) be the probability of being in the mth mixture of state i at time t: 
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  It should be clear that γt(i,m) = γt(i) when M=1. 

  The re-estimation formulas for cim, μim and ∑im are now defined as follows: 
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8.6 Training and Recognition 
  The recognition system is trained and evaluated on a dataset of 100 city names of 

Iran. Thus a pattern recognition problem with 100 classes is considered. Most samples 

in the dataset were automatically generated by a Java program drawing input string 

with different fonts, sizes and orientations on output image. The dataset contains 150 

samples for each word. The complete list of words and a few sample images 

generated by the program are shown in Appendix A. 

  Since the lexicon size is limited (100), a holistic approach based on model 

discriminant CHMM is chosen as the recognition engine, i.e. each word in the lexicon 

is modeled by a separate CHMM (Figure 8.3). The main advantage of the model 

discriminant scheme is that if a new word is added, the recognition system can simply 

be updated by adding the new word model to the system knowledgebase. But it has 

the major drawback of using a predefined lexicon which limits the recognition outputs 

to the lexicon words. Although a large lexicon of size ten thousands covers almost all 

words in a language, but such a large lexicon requires much memory and causes a 

severe delay in producing the ranked word list as the Viterbi algorithm has to be 

executed for each word model λi. To overcome the memory and speed problems, an 

alternative is to build a single HMM for all words, where each character is modeled 

by a small group of the HMM states, and a word is represented by a path through the 

model. This approach is called path discriminant HMM as a pattern is classified to the 

word which has the maximum path probability over all possible paths. Previous 

researches (Khorsheed, 2000) prove that a path discriminant (single-HMM) scheme 

achieves less accuracy than a model discriminant (multi-HMM) scheme for a same 

lexicon. 

  The number of states of a word model is set to be the size of the shortest observation 

sequence of the training instances of the word. A Bakis structure is selected for all 

HMMs, with minimum relative forward jump of 0 (loop to current state) and 

maximum relative forward jump of 2. The maximum allowed number of densities in 
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each state is set to 10. No limit is imposed on the number of training iterations, i.e. the 

training procedure continues until convergence.  

 

 
Figure 8.3. The block diagram of the handwritten recognition system. 

 

  Figure 8.4 shows an overview of the complete segmentation-recognition system. 
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Output Text

Height
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Figure 8.4. An overview of the complete segmentation-recognition system. 

 

8.7 Experimental Results 
  Here some experimental results for the isolated word recognition system are 

presented. The multi-HMM recognition system can provide an N-best list of 

hypotheses rather than a single hypothesis. The N-best list is generated by sorting the 

entire probabilities P(O | λi). Given an N-best list of possible hypotheses, a system 

may use other knowledge to find the correct hypothesis. It is said that a word image is 

N-best recognized when the N-best list includes the correct word hypothesis for the 

minimum value of N. Obviously the N-best recognition rate increases with N, and 

reaching 100% when N equals to the lexicon size in worst case. Some of the words in 

the following figures have overlapped and connected characters, contaminated with 

noise. It is observed that some characters are broken into parts. Sometime loops are 
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not present in such characters as 'م' and 'و' that normally have loops, but loops are 

formed in characters that should not have them. All of these artifacts decrease the 

recognition rate, as the proposed system use structural features. 
 

 
  

(a) 5-best recognized (b) 2-best recognized (c) 4-best recognized 

   
(d) not recognized for N ≤ 20 (e) 1-best recognized (f) 1-best recognized 

 
  

(g) 1-best recognized (h) 1-best recognized (i) not recognized for N ≤ 20 

  
 

(j) 7-best recognized (k) 1-best recognized (l) 1-best recognized 

 

 
  

(m) 1-best recognized (n) 15-best recognized (o) 4-best recognized 

 
  

(p) 4-best recognized (q) 1-best recognized (r) not recognized for N ≤ 20 

   
(s) 1-best recognized (t) 1-best recognized (u) 1-best recognized 

Figure 8.5. Examples of handwritten words used to evaluate the system performance. 
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(a) not recognized for N ≤ 20 (b) 6-best recognized (c) 1-best recognized 

   
(d) 1-best recognized (e) 1-best recognized (f) 1-best recognized 

   
(g) 1-best recognized (h) 4-best recognized (i) 1-best recognized 

   
(j) 1-best recognized (k) 1-best recognized (l) 1-best recognized 

  
 

(m) 1-best recognized (n) 1-best recognized (o) 8-best recognized 

 
 

 
(p) 2-best recognized (q) 2-best recognized (r) 3-best recognized 

 
  

(s) not recognized for N ≤ 20 (t) 1-best recognized (u) 1-best recognized 

 
  

(v) not recognized for N ≤ 20 (w) 1-best recognized (x) 1-best recognized 
Figure 8.6. Examples of handwritten words used to evaluate the system performance. 
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(a) 1-best recognized (b) 1-best recognized (c) 6-best recognized 

   
(d) 1-best recognized (e) 1-best recognized (f) 2-best recognized 

  
(g) 1-best recognized (h) 1-best recognized 

  
(i) 1-best recognized (j) not recognized for N ≤ 20 

  
(k) 2-best recognized (l) 1-best recognized 

  
(m) not recognized for N ≤ 20 (n) 1-best recognized 

  
 

(o) 4-best recognized (p) 1-best recognized (q) 1-best recognized 
 

 
 

(r) 1-best recognized (s) 1-best recognized 
Figure 8.7. Examples of handwritten words used to evaluate the system performance. 
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(a) not recognized for N ≤ 20 (b) 2-best recognized (c) 1-best recognized 

  
 

(d) not recognized for N ≤ 20 (e) 1-best recognized (f) not recognized for N ≤ 20 

   
(g) 1-best recognized (h) 15-best recognized (i) 1-best recognized 

  
(j) not recognized for N ≤ 20 (k) 3-best recognized 

 
 

(l) 3-best recognized (m) 14-best recognized 

 
 

(n) 1-best recognized (o) 10-best recognized 

 
 

(p) 1-best recognized (q) 3-best recognized 

Figure 8.8. Examples of handwritten words used to evaluate the system performance. 
 

 



 

 

Conclusion 
  A complete offline recognition system for Farsi handwritten words was presented. 

To the best of our knowledge, this work was the first to use continuous hidden 

Markov models with structural features to recognize Farsi handwritten words. In 

addition to feature extraction and recognition, other parts of a complete recognition 

system, including text segmentation, binarization, skew correction, slant correction 

and skeletonization were addressed. 

  A new machine learning approach based on the naive Bayes classifier, which is fast 

both in training and application phase, was developed for text segmentation. It was 

shown that excellent results could be obtained by this simple classifier. Lack of large 

amount of proper training data usually restricts practicality of the modern AI methods. 

To overcome this problem, a simple procedure for generating the required training 

data from a set of 8 hand-segmented images was presented. 

  Four different algorithms for document image binarization were compared and 

contrasted: the Otsu's global method, the Niblack's local method, the Wu and 

Manmatha's method and the Liu and Srihari's method. The last two methods are 

designed specially for document image binarization, and performing better than the 

first two general-purpose methods, particularly in the presence of textured, shaded or 

noisy backgrounds. Excluding Niblack's, the other methods are quite fast, and even 

suitable for real-time applications. 

  Different skew and slant correction algorithms were surveyed for handwritten 

documents, and the problem of multiple skews was dealt with in a two-stage process. 

The first stage correct the global skew, and after extracting text lines, in the second 

stage, the skew of each line is corrected locally. It was shown that the projection 

profile based method for correcting global skew was robust and practical to be used in 

real systems, and since this method was rather slow, some techniques were proposed 

to speed it up. It was shown that the same technique utilized for skew correction could 

be applied to remove the slant of handwritten words. 

  Five different skeletonization algorithms were compared and contrasted: the SPTA, 

the Zhang-Suen's algorithm, the DTSA, the Ji and Piper's homotopy-preserving 

algorithm, and the Huang et al.'s algorithm. The main focus was on preserving text 
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characteristics, such as not removing dots, obtaining well-connected skeletons of 

unitary thickness, and robustness with respect to border noise. It was shown that the 

Zhang-Suen's and the homotopy-preserving algorithms are not suitable for 

recognition. Among the other three algorithms, Huang et al.'s is the most robust, as it 

produces skeletons with the smallest number of spurious branches. It is also quite fast 

and practical. All of the surveyed skeletonization algorithms were iterative; however, 

it is worthy to survey non-iterative and indirect methods in the context of text 

recognition. A simple and effective skeleton post-processing technique was also 

described. 

  There exist two main types of features: statistical and structural. Structural features 

are capable of tolerating many variations, but not robust to noise, and hard to extract. 

On the other hand, statistical features are robust to noise, and easy to extract, but with 

the disadvantage of requiring a large set of training instances to attain well-trained 

classifiers. Structural features were used in this study since they have been less 

studied for offline handwritten recognition. The features were extracted from the 

graph representing the skeleton of an input word image. The loops and edges of the 

graph were visited in a canonical order, and then each one was represented by a 10D 

feature vector. So, each input word image was represented by a 1D observation 

sequence, being appropriate for 1D HMM-based classifier. The 10 features used to 

describe the edges or loops were independent of the baseline location, so the difficult 

and crucial problem of baseline detection was avoided. 

  The recognition was based on continuous hidden Markov models (CHMMs). Unlike 

discrete hidden Markov models (DHMMs), CHMMs do not quantize observation 

vectors, so they don't involve the distortion problem of DHMMs. Since the lexicon on 

which the system was intended to be trained was limited, a few hundred words, a 

model discriminant recognition scheme was chosen, i.e. each word in the lexicon was 

modeled by a separate CHMM. This scheme has two main advantages: 1) if a new 

word is added, the recognition system can simply be updated by adding the new word 

model to the system knowledgebase. When a neural network is used, for example, 

once a new class is added, the whole network must be retrained, which is a time-

consuming procedure; and 2) the recognition can take advantage of being executed on 

a parallel computer, so the recognition delay can be kept constant with increasing the 

number of classes (the lexicon size).  
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  There is no publicly available dataset for Farsi handwritten word images, and it is 

not wise to compare different systems evaluated on different datasets. The executable 

version of training, recognition and evaluation modules of the proposed system is 

provided on the thesis webpage: http://pasargad.cse.shirazu.ac.ir/~mhaji/handrec. So 

it can be trained and evaluated on different datasets, and simply compared with 

others'. The proposed method achieved a maximum recognition rate of about 82% on 

a small lexicon, containing word images of 100 cities of Iran. The striking aspect of 

the recognition system is its excellent generalization performance, as seen in our 

experiments, when multi-font machine-printed word images were used for training, 

the recognition ability could be generalized to handwriting. 

  To improve the recognition rate and dealing with large lexica, further research could 

be carried out in the following areas: 1) comparing and combining different 

classifiers; 2) combining statistical and structural features; 3) using more advanced 

HMMs; and 4) using lexicon pruning techniques to limit candidate words. The 

problem of recognizing handwritten text, with a performance comparable to human's, 

seems so difficult that it will remain unsolved, unless much more elaborate techniques 

are developed. 
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Appendix A 
 

  100 cities of Iran for which the training images were generated: 
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 دزفول
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(e) (f) (g) (h) 

 
(i) (j) (k) (l) 

 
(m) (n) (o) (p) 

Figure A.1 Some training images of the word 'Shiraz' from the underlying dataset 
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(a) (b) (c) (d) 

 
(e) (f) (g) (h) 

 
(i) (j) (k) (l) 

 
(m) (n) (o) (p) 

Figure A.2 Some training images of the word 'Tehran' from the underlying dataset 
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