
Algorithms to Generate
Algorithms to GenerateDistinguishing, Homing
Distinguishing, Homingand Synchronizing

and Synchronizing
SequencesSequences

State Table Verification
for Sequential Circuit

Example : Consider FSM

 State table
present input
state x=0 x=1
 A B,0 D,0
 B A,0 B,0
 C D,1 A,0
 D D,1 C,0

(ABCD)

(AB)(DD) (ABCD)

0 1

No distinguishing sequence because
DD means that two states
go to D

Homogeneous component

Algorithm to Generate a Distinguishing Sequence

Distinguishing sequence - path from root to a trivial
vector.
A distinguishing tree is a successor tree in
which a node becomes terminal if
1. Non-homogenous components in an uncertainty
 vector are the same as on the previous level
2. Uncertainty vector contains a homogeneous
 non-trivial component (does not have to be
 a homogeneous vector)
3. Uncertainty vector is trivial

Example : continuation of the same FSM

(ABCD)

(AB)(DD) (ABCD)

 (AB)(DD) (BD)(CC)

(A)(D)(DD) (BC)(AA)

 (A)(D)(BB) (AB)(DD)homing

same

0

0

0

0

1

1

1

1

No distinguishing
sequence

 State table
present input
state x=0 x=1
 A B,0 D,0
 B A,0 B,0
 C D,1 A,0
 D D,1 C,0

loop
loop

Example : Consider FSM, different output vectors
for different initial state

 State table
present input
state x=0 x=1
 A A,0 C,1
 B B,0 D,1
 C A,1 C,0
 D D,0 B,0

Input sequence X = 1,0
initial input
state x=1 x=0
 A C,1 A,1
 B D,1 D,0
 C C,0 A,1
 D B,0 B,0

so X=1,0 distinguishing

A

C D

B

1 0

Each input state responds to 10
with different output sequence

State Table Verification
for Sequential Circuit

Transfer sequence - takes machine from one state
to another
Example : Consider previous FSM

B

B D
0 1

D B
0 1

Not strongly connected FSM

A

C D

B We cannot
reach A or C

State Table Verification
for Sequential Circuit

Example : Consider the following FSM

 State table
present input
state x=0 x=1
 A B,1 C,0
 B A,0 D,1
 C B,0 A,0
 D C,1 A,1

Example : we get the transfer tree

B

B

A D

AC C

0

00

1

1 1

To get to C we can select x = 1,0

A

D C

B

0/1

1/0
1/1

1/1 0/0

0/1

0/0

1/0

 State table
present input
state x=0 x=1
 A B,1 C,0
 B A,0 D,1
 C B,0 A,0
 D C,1 A,1

State Table Verification
for Sequential Circuit

Synchronizing sequence takes machine to the
specific final state regardless of the output or
initial state - does not always exists

Example :
Algorithm to generate synchronizing sequence :
Consider the previous machine with synchronizing
sequence X= 1,1,0

Example :
(ABCD)

(ABC) (ACD)

 (AB) (ACD) (BC) (AC)

(AB) (CD) (AB) (AD) (B) (AC)

0

0

0

0 0

0

1

1

1

1 1

1

 State table
present input
state x=0 x=1
 A B,1 C,0
 B A,0 D,1
 C B,0 A,0
 D C,1 A,1

Synchronizing sequence

Synchronizing sequence
leads to this state

For this tree there are no more
synchronizing sequences

Designing Checking Experiments
Machine must be strongly connected & diagnosable
(i.e. have a distinguishing sequence)
11. Initialization (take it to a fixed state[s])

a) Apply homing sequence & identify the
 current state
b) Transfer current state to S

2.2. Identification (make machine to visit each state
and display response)

3.3. Transition verification (make every state transition
result checked by distinguishing sequence)

Designing Checking Experiments

 State table
present input
table x=0 x=1
 A B,1 C,0
 B A,0 D,1
 C B,0 A,0
 D C,1 A,1

Example : Consider FSM
1. Initialization:
 Successor tree

 (ABCD)

 (BC)(AB) (AC)(AD)

(AB)(A)(B) (A)(C)(D)(D)

1

1

0

0

Homing sequence x = 0,1

Designing Checking Experiments

Initial Response final
states to 0 1 states
 A B,1 D,1 D
 B A,0 C,0 C
 C B,0 D,1 D
 D C,1 A,0 A

Example (cont.) :
Response Table

 State tableState table
present input
table x=0 x=1
 A B,1 C,0
 B A,0 D,1
 C B,0 A,0
 D C,1 A,1

0 1

Designing Checking Experiments

2. Identification:
Analyze the results

time 1 2 3 4 5 6 7 8 9 10 11
input 0 1 0 1 0 0 1 0 1 0 1
state A D A B C D A
output 1 1 1 0 1 0 0 0 1 1 0

D A01

recall

Generates
10 on output

take it to a fixed state

Designing Checking Experiments

3. Transition verification:
Check transition from A to B with input 0, then
apply distinguishing sequence 01

time 1 2 3
input 0 0 1
state A B C
output 1 0 0

Designing Checking Experiments

Example : Check transition from C to B with
input 0 and from C to A with input 1, and so on.
The entire checking test

time 1 2 3 4 5 6 7 8 9 10 11
input 0 0 1 0 0 1 1 0 1 0 0
state A B C B C A D C
output 1 0 0 0 0 0 0 1 1 1 0

Designing Checking Experiments
(cont)

time 12 13 14 15 16 17 18 19 20 21
input 1 1 0 1 0 1 0 0 0 1
state D A D B A
output 1 1 1 1 1 0 1 0 1 1

time 22 23 24 25 26 27 28 29 30 31
input 1 1 0 1 0 1 0 1 0 1
state D A C D B D A
output 1 0 0 1 1 0 1 1 1 0

DFT for Sequential Circuits
Critical testability problems

1. Noninitializable design - change design to have
a synchronizing sequence

2. Effects of component delays - check for hazard &
races in simulation

3. Nondetected logic redundant faults - do not use
logic redundancy

4. Existence of illegal states – avoid; add transition
to normal states

5. Oscillating circuit - add extra logic to control
oscillations

DFT for Sequential Circuits
Checking experiments can not be applied for
FSM without a distinguishing sequence

Modification procedureModification procedure for such FSM:

I. Construct testing table
 upper part contains states & input/output pairs,
 lower part contains products of present & next
 states with the rule that (state)*(-) = (-)

II. Construct testing graph

DFT for Sequential Circuits

Example:

state table

present input
state x=0 x=1
 A A,0 B,0
 B A,0 C,0
 C A,1 D,0
 D A,1 A,0

present input/output
state 0/0 0/1 1/0 1/1
 A A - B -
 B A - C -
 C - A D -
 D - A A -
AB AA - BC -
AC - - BD -
AD - - AB -
BC - - CD -
BD - - AC -
CD - AA AD -

Testing table for machine

Example (continued)
II . Construct testing graph

An edge Xp/Zp exists directed from present state
SiSj to next states SkSl if SkSl (k ≠ l) is present in
row SiSj under Xp/Zp

Example:
for our machine
we have:

AB AC

AD CD BD

BC1/0

1/0

1/0 1/0 1/0 1/0

present input
state x=0 x=1
 A A,0 B,0
 B A,0 C,0
 C A,1 D,0
 D A,1 A,0

DFT for Sequential Circuits

Example:
for our machine
we have:

AB AC

AD CD BD

BC1/0

1/0

1/0 1/0 1/0 1/0

present input
state x=0 x=1
 A A,0 B,0
 B A,0 C,0
 C A,1 D,0
 D A,1 A,0

Example (continued)
Now we can modify the
graph by adding output(s)

First introduce new concept
of definitely diagnosable

DFT for Sequential Circuits (cont)

A machine is definitely diagnosable if its testing
graph has no loops and there are no repeated states
(i.e. no circled states in testing table)

In order to make machine definitely diagnosable
additional outputs (up to k = log (# states)) are
required

DFT for Sequential Circuits
Coming back to our Example: (with added output)

After machine is modified to have distinguishing
sequence apply checking experiment procedure
to test it.

present input
state x=0 x=1
 A A,00 B,01
 B A,01 C,00
 C A,10 D,00
 D A,11 A,01

Testing graph

AD

BC CD

BA
1/01

1/00

Now the machine has a distinguishing sequence

Random Testing
Reduce computation time
1. Random sequence is stored as a test when it can

detect fault, then this fault is detected from the
fault list and another random sequence is
checked

2. Output of CUT (circuit under test) is compared
with this “golden unit”

Two approaches :Two approaches :
Random
pattern

generator

CUT

golden unit
compare

Is it good for
FSMs?

Sources

• Starzyk, Ohio University

